Answers of Master's Exam, Fall, 2005

1) а) $\frac{\binom{4}{0}\binom{4}{3}}{\binom{8}{3}}+\frac{\binom{4}{1}\binom{4}{2}}{\binom{8}{3}}=28 / 56=1 / 2$
b) $(6 / 8)(5 / 7)(4 / 6)(3 / 5)(2 / 4)$
c) 0.0334 (using the $1 / 2$ correction)
d) 0.102 (using the $1 / 2$ correction)
e) 0.8008
2) a) $F_{Y}(y)=y^{3 / 2}$ for $0 \leq y \leq 1, f(y)=(3 / 2) y^{1 / 2}$ for $0 \leq y \leq 1$
b) $\mathrm{F}_{\mathrm{M}}(\mathrm{m})=\left[\mathrm{F}_{\mathrm{X}}(\mathrm{m})\right]^{2}=(1 / 4)\left(\mathrm{m}^{3}+1\right)^{2}$ for $-1 \leq \mathrm{m} \leq 1$
c) $1 / \sqrt{2}$
d) $\mathrm{E}(\mathrm{W})=\left[\mathrm{E}\left(\mathrm{X}_{1}\right)\right]^{2}=0^{2}=0, \operatorname{Var}(\mathrm{~W})=\mathrm{E}\left(\mathrm{W}^{2}\right)=\left[\mathrm{E}\left(\mathrm{X}_{1}{ }^{2}\right)\right]^{2}=0.36$
b) $\mathrm{F}_{\mathrm{M}}(\mathrm{m})=(1 / 16) \mathrm{m}^{4}$ for $0 \leq \mathrm{m} \leq 2,0$ for $\mathrm{m}<0,1$ for $\mathrm{m}>2$
c) $F_{Y}(y)=F_{X}\left(1+y^{1 / 2}\right)-F_{X}\left(1-y^{1 / 2}\right)=(1 / 4)\left[\left(1+y^{1 / 2}\right)^{2}-\left(1-y^{1 / 2}\right)^{2}\right]$ $=y^{1 / 2}$ for $0 \leq y \leq 1$. $f_{Y}(y)=(1 / 2) y^{-1 / 2}$ for $0 \leq y \leq 1$..
d) $\operatorname{Var}\left(\mathrm{X}_{1}\right)=\sigma^{2}, \operatorname{Cov}\left(\mathrm{X}_{1}, 2 \mathrm{X}_{1}-2\right)=2 \sigma^{2}, \operatorname{Var}\left(2 \mathrm{X}_{1}-\mathrm{X}_{2}\right)=5 \sigma^{2}$, $\rho\left(X_{1}, 2 X_{1}-X_{2}\right)=2 / \sqrt{5}$.
e) $E\left(X_{1} X_{2}\right)=E\left(X_{1}\right) E\left(X_{2}\right)=(4 / 3)^{2}$.
3) a) Let X_{1}, X_{2}, \ldots be independent and identically distributed with mean μ.

Let $\bar{X}_{\mathrm{n}}=\frac{\mathrm{X}_{1}+\ldots+\mathrm{X}_{\mathrm{n}}}{\mathrm{n}} \quad$ Then for any $\varepsilon>0$

$$
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{P}\left(\left|\bar{X}_{\mathrm{n}}-\mu\right|>\varepsilon\right)=0
$$

b) Suppose that $\operatorname{Var}\left(\mathrm{X}_{1}\right)=\sigma^{2}<\infty$. Then $\mathrm{P}\left(\left|\overline{\mathrm{X}}_{\mathrm{n}}-\mu\right|>\varepsilon\right) \leq \operatorname{Var}\left(\overline{\mathrm{X}}_{n}\right) / \varepsilon^{2}=\left(\sigma^{2} / \mathrm{n}\right) / \varepsilon^{2}$, whose limit as n approaches infinity is zero.
4) a) $f_{X Y}(x, y)=2 x(1 / x)=2$ for $0 \leq y \leq x, 0<x<1$.

Therefore, $f_{Y}(y)=\int_{y}^{1} 2 d x=2(1-y)$ for $0 \leq y<1,0$ otherwise.
b) $(2 U-1)^{1 / 3}$
c) $E(Y \mid X=x)=x / 2 . . E(Y \mid X)$ is obtained by replacing x by X.
d) In my opinion this problem should not have been asked. It's too "messy." $F_{X Y}(x, y)=0$ if either x or y is less than zero.

$$
\begin{aligned}
& =x^{2} \text { if } 0 \leq x \leq y \leq 1 \\
& =x^{2} \text { if } 0 \leq x \leq 1 \leq y \\
& =y^{2}+2(x-y) \text { y if } 0 \leq y \leq x \leq 1 \\
& =y^{2}+2(1-y) y \text { if } 0 \leq y \leq 1 \leq x \\
& =1 \text { for } x \geq 1 \text { and } y \geq 1
\end{aligned}
$$

5) a) $\mathrm{B}=\left(\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \mathrm{~A}_{3}\right) \cap\left(\mathrm{A}_{4} \cup \mathrm{~A}_{5}\right)$
b) Let $q_{k}=1-p_{k}$ for each k.
$P(B)=\left(1-q_{1} q_{2} q_{3}\right)\left(1-q_{4} q_{5}\right)$
c) $p_{2} /\left(1-q_{1} q_{2} q_{3}\right)$

Statistics

6) 6) a) a) $\hat{\lambda}=2 n / \Sigma X_{i}^{2}$.
b) $\mu=\mathrm{E}\left(\mathrm{X}_{1}\right)=2 / \lambda$, so the method of moments estimator is $2 / \overline{\mathrm{X}}$.
1) 7) a) Let $D_{i}=($ Low carb loss $)-($ High-carb loss $)$ for the ith person, $i=1,2, \ldots, 7$

Suppose that the D_{i} constitute a random sample from the $N\left(\mu_{D}, \sigma_{D}{ }^{2}\right)$ distribution.

Test $\mathrm{H}_{0}: \mu_{\mathrm{D}} \leq 0$ vs $\mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{D}}>0$. Reject for $\mathrm{t}>1.943$. $\overline{\mathrm{D}} 0.7, \mathrm{~S}_{\mathrm{D}}{ }^{2}=0.58667$,
$\mathrm{T}=2.418$. Reject H_{0}.
8) a) Let $\hat{\mathrm{p}}_{1}$ and $\hat{\mathrm{p}}_{2}$ be the sample proportions $\mathrm{X}_{1} / \mathrm{n}_{1}$ and $X_{2} / \mathrm{n}_{2} . \hat{\Delta}=\hat{\mathrm{p}}_{1}-\hat{\mathrm{p}}_{2}$. Then $\operatorname{Var}(\hat{\Delta})=\mathrm{p}_{1}\left(1-\mathrm{p}_{1}\right) / \mathrm{n}_{1}+\mathrm{p}_{2}\left(1-\mathrm{p}_{2}\right) / \mathrm{n}_{2}$ and we can estimate this variance by replacing the p_{i} by their estimates. Call this estimator $\hat{\sigma}^{2}$. A 95% Confidence Interval:

$$
[\hat{\Delta} \pm 1.645 \hat{\sigma}]
$$

b) $[-0.3 \pm 0.0493]$
c) In a large number, say 10000 , repetitions of this experiments, always with samples sizes 500 and 400 , about 95% of the intervals obtained would contain the true parameter Δ.
d) 4802
8) a) 0.00317
b) Let $\mathrm{W}=\mathrm{X}_{1}+\mathrm{X}_{2}$ be the total number of The Neyman-Pearson Theorem states that the most powerful test of $H_{0}: p=0.5$ vs $H_{a}: p=p_{0}$, where $p_{0}<0.5$ rejects for $\lambda=\mathrm{p}_{0}{ }^{2}\left(1-\mathrm{p}_{0}\right)^{\mathrm{w}-2} / 0.5^{\mathrm{w}}(1-.5)^{\mathrm{w}-2} \geq \mathrm{k}$ for some k , where $\mathrm{w}=\mathrm{x}_{1}+\mathrm{x}_{2}$, the number of successes. Since $\mathrm{p}_{0} / 0.5<1, \lambda$ is a decreasing function of w , so, equivalently, we should reject for $\mathrm{w} \leq \mathrm{k}^{*}$, where k^{*} is some constant.
c) Power $=0.1584$.
10) a) Let $\mathrm{Q}(\beta)=\Sigma\left(\mathrm{Y}_{\mathrm{i}}-\beta / \mathrm{x}_{\mathrm{i}}\right)^{2}$. Taking the partial derivative wrt to β and setting the result equal to zero, we get $\hat{\beta}$ as given.
b) Replacing each Y_{i} by $\beta / x_{i}+\varepsilon_{i}$, we get $\left.E(\hat{\beta})=\beta+E\left(\Sigma \varepsilon_{i} / x_{i}\right) / \Sigma\left(1 / x_{i}^{2}\right)\right)$ $=\beta$.
c) $\operatorname{Var}(\hat{\beta})=\sigma^{2} / \Sigma\left(1 / \mathrm{x}_{\mathrm{i}}^{2}\right)$.
d) $\hat{\beta}=2.3, S^{2}=1.1 \quad[2.3 \pm 0.451]$
11) b) $\operatorname{Var}\left(\mu^{*}\right)=\sigma^{2}\left[1 /\left(2^{\mathrm{n}}-1\right)\right] \Sigma 2^{2(\mathrm{n}-\mathrm{i})}=\sigma^{2}\left[1 /\left(2^{\mathrm{n}}-1\right)\right]\left[4^{\mathrm{n}}-1\right] / 3$
$\operatorname{Var}(\overline{\mathrm{X}})=\sigma^{2} / \mathrm{n}$. The relative efficiency of μ^{*} to $\overline{\mathrm{X}}$ is
$\mathrm{e}\left(\mu^{*}, \overline{\mathrm{X}}\right)=\operatorname{Var}(\overline{\mathrm{X}}) / \operatorname{Var}\left(\mu^{*}\right)=(1 / \mathrm{n})\left[1 /\left(2^{\mathrm{n}}-1\right)\right]\left[4^{\mathrm{n}}-1\right] / 3$. The limit as n approaches ∞ is ∞.

