Answers of Master's Exam, Fall, 2006

1) a)
$$\frac{\binom{4}{0}\binom{4}{3}}{\binom{8}{3}} + \frac{\binom{4}{1}\binom{4}{2}}{\binom{8}{3}} = 28/56 = 1/2$$

b) $(6/8)(5/7)(4/6)(3/5)(2/4)$
c) 0.0334 (using the ¹/₂ correction)
d) 0.102 (using the ¹/₂ correction)
e) 0.8008
2) a) $F_{Y}(y) = y^{3/2}$ for $0 \le y \le 1$, $f(y) = (3/2) y^{1/2}$ for $0 \le y \le 1$
b) $F_{M}(m) = [F_{X}(m)]^{2} = (1/4)(m^{3} + 1)^{2}$ for $-1 \le m \le 1$
c) $1/\sqrt{2}$
d) $E(W) = [E(X_{1})]^{2} = 0^{2} = 0$, $Var(W) = E(W^{2}) = [E(X_{1}^{2})]^{2} = 0.36$

b) $F_M($ m) = (1/16) m^4 for $0 \leq m \leq 2, \, 0$ for $m < 0, \, 1$ for m > 2

c) $F_Y(y) = F_X(1 + y^{1/2}) - F_X(1 - y^{1/2}) = (1/4)[(1 + y^{1/2})^2 - (1 - y^{1/2})^2]$ = $y^{1/2}$ for $0 \le y \le 1$. $f_Y(y) = (1/2) y^{-1/2}$ for $0 \le y \le 1$..

d) Var(X₁) = σ^2 , Cov(X₁, 2 X₁ - 2) = 2 σ^2 , Var(2 X₁ - X₂) = 5 σ^2 , $\rho(X_1, 2 X_1 - X_2) = 2/\sqrt{5}$.

e) E($X_1 X_2$) = E(X_1) E(X_2) = (4/3)².

3) a) Let $X_1, X_2, ...$ be independent and identically distributed with mean μ . Let $\overline{X}_n = \frac{X_1 + ... + X_n}{n}$ Then for any $\epsilon > 0$

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| > \varepsilon) = 0$$

b) Suppose that Var(X_1) = $\sigma^2 < \infty$. Then P($|\bar{X}_n - \mu| > \epsilon$) $\leq Var(\bar{X}_n)/\epsilon^2 = (\sigma^2 / n)/\epsilon^2$, whose limit as n approaches infinity is zero.

4) a)
$$f_{XY}(x, y) = 2 x (1/x) = 2$$
 for $0 \le y \le x, 0 < x < 1$.
Therefore, $f_Y(y) = \int_{-\infty}^{1} 2 dx = 2(1 - y)$ for $0 \le y < 1, 0$ otherwise.
b) $(2 U - 1)^{1/3}$

c) E(Y | X = x) = x/2. E(Y | X) is obtained by replacing x by X.

d) In my opinion this problem should not have been asked. It's too "messy." $F_{XY}(x, y) = 0$ if either x or y is less than zero.

 $= x^{2} \text{ if } 0 \le x \le y \le 1$ = $x^{2} \text{ if } 0 \le x \le 1 \le y$ = $y^{2} + 2(x - y) y \text{ if } 0 \le y \le x \le 1$ = $y^{2} + 2(1 - y)y \text{ if } 0 \le y \le 1 \le x$ = 1 for $x \ge 1$ and $y \ge 1$

5) a) B = $(A_1 \cup A_2 \cup A_3) \cap (A_4 \cup A_5)$ b) Let $q_k = 1 - p_k$ for each k. P(B) = $(1 - q_1 q_2 q_3) (1 - q_4 q_5)$ c) $p_2 / (1 - q_1 q_2 q_3)$

Statistics

6) 6) a) a)
$$\hat{\lambda} = 2 n / \Sigma X_i^2$$
.

b) $\mu = E(X_1) = 2/\lambda$, so the method of moments estimator is $2/\overline{X}$.

7) 7) a) Let $D_i = (Low \text{ carb loss}) - (High-carb loss)$ for the ith person, i = 1, 2, ..., 7Suppose that the D_i constitute a random sample from the $N(\mu_D, \sigma_D^2)$ distribution.

Test H₀: $\mu_D \le 0$ vs H_a: $\mu_D > 0$. Reject for t > 1.943. $\overline{D} \ 0.7$, $S_D^2 = 0.58667$, T = 2.418. Reject H₀.

8) a) Let \hat{p}_1 and \hat{p}_2 be the sample proportions X_1/n_1 and X_2/n_2 . $\hat{\Delta} = \hat{p}_1 - \hat{p}_2$. Then Var($\hat{\Delta}$) = $p_1 (1 - p_1)/n_1 + p_2 (1 - p_2)/n_2$ and we can estimate this variance by replacing the p_i by their estimates. Call this estimator $\hat{\sigma}^2$. A 95% Confidence Interval: $[\hat{\Delta} \pm 1.645 \hat{\sigma}]$ b) [-0.3 ± 0.0493]

- c) In a large number, say 10000, repetitions of this experiments, always with samples sizes 500 and 400, about 95 % of the intervals obtained would contain the true parameter Δ .
- d) 4802
- 8) a) 0.00317

b) Let $W = X_1 + X_2$ be the total number of The Neyman-Pearson Theorem states that the most powerful test of H_0 : p = 0.5 vs H_a : $p = p_0$, where $p_0 < 0.5$ rejects for $\lambda = p_0^2 (1 - p_0)^{w-2} / 0.5^w (1 - .5)^{w-2} \ge k$ for some k, where $w = x_1 + x_2$, the number of successes. Since $p_0/0.5 < 1$, λ is a decreasing function of w, so, equivalently, we should reject for $w \le k^*$, where k^* is some constant.

c) Power = 0.1584.

10) a) Let Q(β) = Σ (Y_i - β /x_i)². Taking the partial derivative wrt to β and setting the result equal to zero, we get $\hat{\beta}$ as given.

- b) Replacing each Y_i by $\beta / x_i + \varepsilon_i$, we get $E(\hat{\beta}) = \beta + E(\Sigma \varepsilon_i / x_i) / \Sigma (1/x_i^2)) = \beta$.
- c) Var($\hat{\beta}$) = $\sigma^2 / \Sigma (1/x_i^2)$.
- d) $\hat{\beta} = 2.3, S^2 = 1.1$ [2.3 ± 0.451]

11) b) Var(μ^*) = $\sigma^2 [1/(2^n - 1)] \Sigma 2^{2(n-i)} = \sigma^2 [1/(2^n - 1)] [4^n - 1]/3$

Var(\overline{X}) = σ^2 / n . The relative efficiency of μ^* to \overline{X} is

e(μ^*, \overline{X}) = Var(\overline{X})/Var(μ^*) = (1/n) [1/(2ⁿ - 1)] [4ⁿ - 1]/3. The limit as n approaches ∞ is ∞ .