Answers of Master's Exam, Fall, 2007

Probability

1) a) There are 1 C, 5 A's, 2 R's, 1 D, 2 B's

$$\binom{1}{1} \binom{5}{1} \binom{2}{1} \binom{1}{1} \binom{11}{4} = (1)(5)(2)(1) /330$$

- b) $(9/11)^5 (2/11)$
- c) Let $X = (\# \text{ cards with } R), X \sim \text{Binomial}(605, 2/11), E(X) = 110, Var(X) =$

90,
$$z = (131.5 - 110)/\sqrt{90} = 2.2663$$
, $P(X > 131) = 1 - \Phi(z) = 0.0117$.

- d) 0.1103
- e) $5! \ 2! \ 2! \ 1! \ !! \ /11! = (5)(2)(2)(4)(1)(3)(1)(2)(2)(1)(1)/(11!)$
- 2) a) $X_1 = U^{1/2}$

b) For -1
$$\leq$$
 s $<$ 0, let $z = 1 + s$. . $F_S(s) = z^2 - z^4 / 2 + (4/3)z^3 y - z^2 y^2 = z^3 (1 - s) - z^4 / 2 + (4/3)z^3 y$

For $0 \le s \le 1$, $F_S(s) = 1 - F_S(-s)$ by symmetry around zero.

Comment: This problem can take much time to solve accurately. I advise students to indicate the double integrals involved (over triangles) without simplifying them.

c)
$$F_Y(y) = F_X((1 + y^{1/2})/2) - F_X(((1 - y^{1/2})/2)) = (1/4)[(1 + y^{1/2})^2 - (1 - y^{1/2})^2 = y^{1/2}$$
 for $0 \le y \le 1$, 0 for $y < 0$, 1 for $y > 1$

- d) Let $\sigma^{2^-}=Var(X_1)=Var(X_2)=Var(X_3), Z_1=X_2+2\ X_3, Z_2=5\ X_1+4\ X_2-3\ X_3.$ Then $Cov(Z_1,Z_2)=-2\ \sigma^2$, $Var(Z_1)=5\ \sigma^2$, $Var(Z_2)=50\ \sigma^2$, $\rho(Z_1,Z_2)=-2\ \sigma^2\ /\sqrt{(5)(50)\ \sigma^4}=-2/\sqrt{250}$. Notice that the correlation coefficient does not depend on σ^2 . I saved some time in writing by defining the symbols $Z_1,Z_2.$
- e) By independence $E(W) = E(X_1^2) E(1/X_2) E(1/X_3) = (2/3)2^2 = 8/3$. Don't make the mistake of thinking that $E(1/X_2)$ is equal to $1/E(X_2)$.
- 3) a) $\lim_{n\to\infty} F_n(x) = F(x)$ for every x on the real line at which F is continuous.
 - b) $\lim_{n\to\infty} F_n(x)=0$ for x<0, 1 for $x\ge 1$. The distribution with cdf F(x)=0 for x<1, 1 for $x\ge 1$ (mass one at 1) is therefore the limiting distribution of the sequence $\{F_n\}$. Though F is discontinuous at x=1, we need not have $\lim_{n\to\infty} F_n(1)$, though we do for this example. If, for example, $F_n(x)=0$ for $x\le 1$, n(x-1) for $1< x\le 1+1/n$, 1 for $x\ge 1+1/n$, then $\lim_{n\to\infty} F_n(1)=0$, but the limiting cdf is F.
 - c) Let X_1,\ldots,X_n be iid with mean μ , variance σ^2 . Let $S_n=X_1+\ldots+X_n$. Let $Z_n=(S_n-n\;\mu)/\sqrt{n\;\sigma^2}$. Then for any real number z $\lim_{n\to->\infty}P(Z_n\leq z)=\Phi(z)$, the cdf of the N(0,1) distribution.

4) a)
$$f_X(x) = (2/\pi)\sqrt{1-x^2}$$
 for $0 \le x \le 1$
b) $f_{Y|X}(y|x) = (1/\pi)/f_X(x)$ for $0 \le y \le \sqrt{1-x^2}$, $-1 < x < 1$.
Don't forget to give the domain of functions!
c) Given $X = x$, Y is uniformly distributed on the interval $[-\theta, \theta]$, where $\theta = \sqrt{1-x^2}$. The expected square of such the $U(-\theta, +\theta)$ distribution is $\theta^2/3$.

$$=\sqrt{1-x^2}$$
. The expected square of such the U(-\theta,+\theta) distribution is \theta^2/3 Thus E(Y^2 | X = x) = (1-x^2)/3, so E(Y^2 | X) = (1-X^2)/3.
$$V = E(X+Y^2|X) = X + (1-X^2)/3.$$

5) a) Y takes the values -2 and +2.
$$P(Y = +2) = \int_{0}^{1} 3 x^{2} E(Y|X = x) dx$$

= $\int_{0}^{1} 3 x^{2} x dx = \frac{3}{4}$. $P(Y = -2) = \frac{1}{4}$.

b)
$$f_{X|Y}(x \mid y) = 3 x^2 (1-x)/(1/4) = 12 x^2 (1-x)$$
 for $0 \le x < 1$, o otherwise.

Statistics

6) a)
$$a = \min(X_1, ..., X_n)$$
 $P(a \le x) = 1 - P(a > x) = 1 - [e^{-2(x-a)}]^n = 1 - e^{-2n(x-a)}$ for $x \ge a$

b)
$$\mu = a + \frac{1}{2}$$
, so the MOM Est. of a is $\overline{X} - \frac{1}{2}$.

c)
$$E(\hat{a}) = a + (1/2)/n$$
, so the bias is $1/(2n)$.

7) Let
$$D_i = (Before\ Value - After\ Value)$$
 for patient $i, i = 1, \ldots, 10.$

Suppose the $\,D_i$ are a random sample from the $N(\mu_D,\,\sigma_D^{\,2})$ distribution.

Test
$$H_0$$
: $\mu_D \le 0$ vs H_a : $\mu_D > 0$.

The Di are:
$$2.7$$
, 2.1 , 2.2 , 2.6 , 2.4 , -0.5 , -1.0 , 1.3 , -1.8 , -2.0 .

We observe $\overline{D} = 1.2$, $S^2 = 2.76$, t = 2.28. The 0.99 quantile of the t-distribution with 9 df is 2.82, so we should not reject H_0 at the $\alpha = 0.01$ level.

b) Either the sign test or the Wilcoxon signed rank test could be used. The p-value for the sign test is $P(X \le 4) = 386/2^{10} = 0.37695$. Do not reject.

The Wilcoxon signed rank statistic is $W_{+} = 55 - (\text{sum of ranks of negative values}) = 55 - (1+2+4) = 48$. $P(W_{+} \ge 48) = P(W_{-} \le 7) = 1 + 7 + 5 + 3 + 1 + 2)/2^{10} = 20/1024 > 0.01$, so again we do not reject at the $\alpha = 0.01$ level.

8) a) $X_1 \sim \text{Binomial}(n_1 = 1000, p_1), X_2 \sim \text{Binomial}(n_2 = 800, p_2), \text{ independent.}$

Let
$$\hat{p}_1 = X_1 / n_1$$
, $\hat{p}_2 = X_2 / n_2$. $\hat{\Delta} = \hat{p}_1 - \hat{p}_2$. 99% confidence interval on Δ is

$$[\hat{\Delta} \pm 2.58 \sqrt{\hat{p}_1 (1 - \hat{p}_1)/n_1 + \hat{p}_2 (1 - \hat{p}_2)/n_2}].$$

- b) [-0.07 0.0456, -0.07 + .0456]
- c) These samples were taken and the corresponding interval determined in such a way that repeated sampling would determine intervals which contain the true population difference in population proportions (first proportion minus the second proportion) for 99% of all repetitions.
 - d) 8295, using the "worst case", for which $p_1 = p_2 = 0.5$.
- 9) a) Reject H₀ for Level of Significance = P($T > 25.5 \mid \mu = 2$)

$$=1-\Phi((25.5-18)/\sqrt{9}=1-\Phi(2.5)=0.0062$$

b) Use the Neyman-Pearson Lemma, with the likelihood for $\mu=\mu_0>2$ in the numerator, and the likelihood for $\mu=0$ in the denominator. The test reduces to critical region $T\geq k$ for some k, equivalently $\overline{X}>k^*$ for some constant $k^*.$

c) Power = 1 -
$$\Phi((25.5 - 27)/.\sqrt{9}) = 1 - \Phi(-0.5) = \Phi(0.5) = 0.691$$

10) a) Let $Q(\beta) = \Sigma (Y_i - \beta/x_i)^2$, so $\frac{\delta}{\delta \beta} Q(\beta) = \Sigma (-1/x_i) (Y_i - \beta/x_i)$.. Setting this equal to zero and solving for β , we get $\hat{\beta}$ as given.

b)
$$\hat{\beta} = (\Sigma Y_i / x_i) / (\Sigma 1/x_i^2) = \beta + \Sigma (\epsilon_i/x_i) / (\Sigma 1/x_i^2)$$
. Since $E(\epsilon_i) = 0$ for each i , $E(\hat{\beta}) = \beta$.

c)
$$Var(\hat{\beta}) = Var(\Sigma(\epsilon_i/x_i) / (\Sigma(1/x_i^2))) = (1/(\Sigma(1/x_i^2))^2 \Sigma(1/x_i^2) \sigma^2 = \sigma^2/(\Sigma(1/x_i^2))$$
.

d)
$$\hat{\beta} = 0.8$$
, $S^2 = 48.6/3 = 16.2$ 90% CI on β : 0.8 ± 4.89 .

11) Let W = (# women on the jury) Under random sampling W has a hypergeometric distribution.

$$P(W \le 1) = P(W = 0) + P(W = 1) = \frac{\binom{12}{7}\binom{6}{0}}{\binom{18}{7}} + \frac{\binom{12}{6}\binom{6}{1}}{\binom{18}{7}}.$$

12) W = 11, $P(W \le 11 \mid H_0) = 2 \binom{9}{4} = 1/42$, so the p-value for a 2 sided test is 1/21.