Answers of Master's Exam, Fall, 2007

Probability

1) a) There are 1 C, 5 A's, 2 R's, 1 D, 2 B's
$\binom{1}{1}\binom{5}{1}\binom{2}{1}\binom{1}{1} /\binom{11}{4}=(1)(5)(2)(1) / 330$
b) $(9 / 11)^{5}(2 / 11)$
c) Let $\mathrm{X}=(\#$ cards with R$), \mathrm{X} \sim \operatorname{Binomial}(605,2 / 11), \mathrm{E}(\mathrm{X})=110$, $\operatorname{Var}(\mathrm{X})=$ $90, \mathrm{z}=(131.5-110) / \sqrt{90}=2.2663, \mathrm{P}(\mathrm{X}>131)=1-\Phi(\mathrm{z})=0.0117$.
d) 0.1103
e) 5 ! 2 ! 2 ! 1 ! !! $/ 11!=(5)(2)(2)(4)(1)(3)(1)(2)(2)(1)(1) /(11!)$
2) a) $X_{1}=U^{1 / 2}$
b) For $-1 \leq \mathrm{s}<0$, let $\mathrm{z}=1+\mathrm{s}$. . $\mathrm{F}_{\mathrm{s}}(\mathrm{s})=\mathrm{z}^{2}-\mathrm{z}^{4} / 2+(4 / 3) \mathrm{z}^{3} \mathrm{y}-\mathrm{z}^{2} \mathrm{y}^{2}$. $=$ $z^{3}(1-s)-z^{4} / 2+(4 / 3) z^{3} y$
For $0 \leq \mathrm{s} \leq 1, \mathrm{~F}_{\mathrm{s}}(\mathrm{s})=1-\mathrm{F}_{\mathrm{s}}(-\mathrm{s})$ by symmetry around zero.
Comment: This problem can take much time to solve accurately. I advise students to indicate the double integrals involved (over triangles) without simplifying them.
c) $F_{Y}(y)=F_{X}\left(\left(1+y^{1 / 2}\right) / 2\right)-F_{X}\left(\left(\left(1-y^{1 / 2}\right) / 2\right)=(1 / 4)\left[\left(1+y^{1 / 2}\right)^{2}-\left(1-y^{1 / 2}\right)^{2}=\right.\right.$ $\mathrm{y}^{1 / 2}$ for $0 \leq \mathrm{y} \leq 1,0$ for $\mathrm{y}<0,1$ for $\mathrm{y}>1$
d) Let $\sigma^{2-}=\operatorname{Var}\left(\mathrm{X}_{1}\right)=\operatorname{Var}\left(\mathrm{X}_{2}\right)=\operatorname{Var}\left(\mathrm{X}_{3}\right), \mathrm{Z}_{1}=\mathrm{X}_{2}+2 \mathrm{X}_{3}, \mathrm{Z}_{2}=5 \mathrm{X}_{1}+4 \mathrm{X}_{2}$ $-3 X_{3}$. Then $\operatorname{Cov}\left(Z_{1}, Z_{2}\right)=-2 \sigma^{2}, \operatorname{Var}\left(Z_{1}\right)=5 \sigma^{2}, \operatorname{Var}\left(Z_{2}\right)=50 \sigma^{2}, \rho\left(Z_{1}, Z_{2}\right)=$ $-2 \sigma^{2} / \sqrt{(5)(50) \sigma^{4}}=-2 / \sqrt{250}$. Notice that the correlation coefficient does not depend on σ^{2}. I saved some time in writing by defining the symbols Z_{1}, Z_{2}.
e) By independence $E(W)=E\left(X_{1}{ }^{2}\right) E\left(1 / X_{2}\right) E\left(1 / X_{3}\right)=(2 / 3) 2^{2}=8 / 3$. Don't make the mistake of thinking that $E\left(1 / X_{2}\right)$ is equal to $1 / E\left(X_{2}\right)$.
3) a) $\lim _{n \rightarrow \infty} F_{n}(x)=\mathrm{F}(\mathrm{x})$ for every x on the real line at which F is continuous.
b) $\lim _{n \rightarrow \infty} F_{n}(x)=0$ for $\mathrm{x}<0,1$ for $\mathrm{x} \geq 1$. The distribution with $\operatorname{cdf} \mathrm{F}(\mathrm{x})=0$ for $\mathrm{x}<1,1$ for $x \geq 1$ (mass one at 1) is therefore the limiting distribution of the sequence $\left\{F_{n}\right\}$. Though F is discontinuous at $x=1$, we need not have $\lim _{n \rightarrow \infty} F_{n}(1)$, though we do for this example. If, for example, $\mathrm{F}_{\mathrm{n}}(\mathrm{x})=0$ for $\mathrm{x} \leq 1$, $\mathrm{n}(\mathrm{x}-1)$ for $1<\mathrm{x} \leq 1+1 / \mathrm{n}, 1$ for $x \geq 1+1 / n$, then $\lim _{n-\infty} F_{n}(1)=0$, but the limiting cdf is F.
c) Let X_{1}, \ldots, X_{n} be iid with mean μ, variance σ^{2}. Let $S_{n}=X_{1}+\ldots+X_{n}$.

Let $Z_{n}=\left(S_{n}-n \mu\right) / \sqrt{n \sigma^{2}}$. Then for any real number $z_{n-->} \lim _{-\infty} \mathrm{P}\left(\mathrm{Z}_{\mathrm{n}} \leq \mathrm{z}\right)=\Phi(\mathrm{z})$, the cdf of the $\mathrm{N}(0,1)$ distribution.
4) a) $f_{X}(x)=(2 / \pi) \sqrt{1-x^{2}}$ for $0 \leq x \leq 1$
b) $\mathrm{f}_{\mathrm{Y} \mid \mathrm{X}}(\mathrm{y} \mid \mathrm{x})=(1 / \pi) / \mathrm{f}_{\mathrm{X}}(\mathrm{x})$ for $0 \leq \mathrm{y} \leq \sqrt{1-\mathrm{x}^{2}},-1<\mathrm{x}<1$.

Don't forget to give the domain of functions!
c) Given $\mathrm{X}=\mathrm{x}, \mathrm{Y}$ is uniformly distributed on the interval $[-\theta, \theta]$, where θ $=\sqrt{1-x^{2}}$. The expected square of such the $U(-\theta,+\theta)$ distribution is $\theta^{2} / 3$. Thus $E\left(\mathrm{Y}^{2} \mid \mathrm{X}=\mathrm{x}\right)=\left(1-\mathrm{x}^{2}\right) / 3$, so $\mathrm{E}\left(\mathrm{Y}^{2} \mid \mathrm{X}\right)=\left(1-\mathrm{X}^{2}\right) / 3$. $\mathrm{V}=\mathrm{E}\left(\mathrm{X}+\mathrm{Y}^{2} \mid \mathrm{X}\right)=\mathrm{X}+\left(1-\mathrm{X}^{2}\right) / 3$.
5) a) Y takes the values -2 and $+2 . P(Y=+2)=\int_{0}^{1} 3 x^{2} E(Y \mid X=x) d x$ $=\int_{0}^{1} 3 x^{2} x d x=3 / 4 . P(Y=-2)=1 / 4$.
b) $f_{X \mid Y}(x \mid y)=3 x^{2}(1-x) /(1 / 4)=12 x^{2}(1-x)$ for $0 \leq x<1$, o otherwise.

Statistics

6) a) $\hat{a}=\min \left(X_{1}, \ldots, X_{n}\right) \quad P(\hat{a} \leq x)=1-P(\hat{a}>x)=1-\left[e^{-2(x-a)}\right]^{n}=1-e^{-2 n(x-a)}$ for $\mathrm{x} \geq \mathrm{a}$
b) $\mu=a+1 / 2$, so the MOM Est. of a is $\bar{X}-1 / 2$.
c) $E(\hat{a})=a+(1 / 2) / n$, so the bias is $1 /(2 n)$.
7) Let $\mathrm{D}_{\mathrm{i}}=($ Before Value - After Value $)$ for patient $\mathrm{i}, \mathrm{i}=1, \ldots, 10$.

Suppose the D_{i} are a random sample from the $N\left(\mu_{D}, \sigma_{D}{ }^{2}\right)$ distribution.
Test $H_{0}: \mu_{\mathrm{D}} \leq 0$ vs $\mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{D}}>0$.
The Di are : 2.7, 2.1, 2.2, 2.6, 2.4, -0.5, -1.0, 1.3, -1.8, -2.0.

We observe $\overline{\mathrm{D}}=1.2, \quad \mathrm{~S}^{2}=2.76, \mathrm{t}=2.28$. The 0.99 quantile of the t -distribution with 9 df is 2.82 , so we should not reject H_{0} at the $\alpha=0.01$ level.
b) Either the sign test or the Wilcoxon signed rank test could be used. The p-value for the sign test is $\mathrm{P}(\mathrm{X} \leq 4)=386 / 2^{10}=0.37695$. Do not reject.

The Wilcoxon signed rank statistic is $\mathrm{W}_{+}=55-($ sum of ranks of negative values $)=$ $\left.55-(1+2+4)=48 . \quad \mathrm{P}\left(\mathrm{W}_{+} \geq 48\right)=\mathrm{P}\left(\mathrm{W}_{-} \leq 7\right)=1+7+5+3+1+2\right) / 2^{10}=20 / 1024$ >0.01, so again we do not reject at the $\alpha=0.01$ level.
8) a) $X_{1} \sim \operatorname{Binomial}\left(n_{1}=1000, p_{1}\right), X_{2} \sim \operatorname{Binomial}\left(n_{2}=800, p_{2}\right)$, independent.

Let $\hat{\mathrm{p}}_{1}=\mathrm{X}_{1} / \mathrm{n}_{1}, \hat{\mathrm{p}}_{2}=\mathrm{X}_{2} / \mathrm{n}_{2} . \hat{\Delta}=\hat{\mathrm{p}}_{1}-\hat{\mathrm{p}}_{2} .99 \%$ confidence interval on Δ is

$$
\left[\hat{\Delta} \pm 2.58 \sqrt{\hat{\mathrm{p}}_{1}\left(1-\hat{\mathrm{p}}_{1}\right) / \mathrm{n}_{1}+\hat{\mathrm{p}}_{2}\left(1-\hat{\mathrm{p}}_{2}\right) / \mathrm{n}_{2}}\right] .
$$

b) $[-0.07-0.0456,-0.07+.0456]$
c) These samples were taken and the corresponding interval determined in such a way that repeated sampling would determine intervals which contain the true population difference in population proportions (first proportion minus the second proportion) for 99% of all repetitions.
d) 8295 , using the "worst case", for which $\mathrm{p}_{1}=\mathrm{p}_{2}=0.5$.
9) a) Reject H_{0} for Level of Significance $=\mathrm{P}(\mathrm{T}>25.5 \mid \mu=2)$
$=1-\Phi((25.5-18) / \sqrt{9}=1-\Phi(2.5)=0.0062$
b) Use the Neyman-Pearson Lemma, with the likelihood for $\mu=\mu_{0}>2$ in the numerator, and the likelihood for $\mu=0$ in the denominator. The test reduces to critical region $\mathrm{T} \geq \mathrm{k}$ for some k , equivalently $\overline{\mathrm{X}}>\mathrm{k}^{*}$ for some constant k^{*}.
c) Power $=1-\Phi((25.5-27) / . \sqrt{9})=1-\Phi(-0.5)=\Phi(0.5)=0.691$
10) a) Let $\mathrm{Q}(\beta)=\Sigma\left(\mathrm{Y}_{\mathrm{i}}-\beta / \mathrm{x}_{\mathrm{i}}\right)^{2}$, so $\frac{\delta}{\delta \beta} \mathrm{Q}(\beta)=\Sigma\left(-1 / \mathrm{x}_{\mathrm{i}}\right)\left(\mathrm{Y}_{\mathrm{i}}-\beta / \mathrm{x}_{\mathrm{i}}\right)$.. Setting this equal to zero and solving for β, we get $\hat{\beta}$ as given.
b) $\hat{\beta}=\left(\Sigma \mathrm{Y}_{\mathrm{i}} / \mathrm{x}_{\mathrm{i}}\right) /\left(\Sigma 1 / \mathrm{x}_{\mathrm{i}}^{2}\right)=\beta+\Sigma\left(\varepsilon_{\mathrm{i}} / \mathrm{x}_{\mathrm{i}}\right) /\left(\Sigma 1 / \mathrm{x}_{\mathrm{i}}^{2}\right)$. Since $\mathrm{E}\left(\varepsilon_{\mathrm{i}}\right)=0$ for each i , $E(\hat{\beta})=\beta$.
c) $\operatorname{Var}(\hat{\beta})=\operatorname{Var}\left(\Sigma\left(\varepsilon_{\mathrm{i}} / \mathrm{x}_{\mathrm{i}}\right) /\left(\Sigma 1 / \mathrm{x}_{\mathrm{i}}{ }^{2}\right).\right)=\left(1 /\left(\Sigma 1 / \mathrm{x}_{\mathrm{i}}^{2}\right)\right)^{2} \Sigma\left(1 / \mathrm{x}_{\mathrm{i}}^{2}\right) \sigma^{2}=\sigma^{2} /\left(\Sigma 1 / \mathrm{x}_{\mathrm{i}}^{2}\right)$.
d) $\hat{\beta}=0.8, S^{2}=48.6 / 3=16.2 \quad 90 \%$ CI on $\beta: \quad 0.8 \pm 4.89$.
11) Let $\mathrm{W}=$ (\# women on the jury) Under random sampling W has a hypergeometric distribution.
$\mathrm{P}(\mathrm{W} \leq 1)=\mathrm{P}(\mathrm{W}=0)+\mathrm{P}(\mathrm{W}=1)=\frac{\binom{12}{7}\binom{6}{0}}{\binom{18}{7}}+\frac{\binom{12}{6}\binom{6}{1}}{\binom{18}{7}}$.
12) $\mathrm{W}=11, \mathrm{P}\left(\mathrm{W} \leq 11 \mid \mathrm{H}_{0}\right)=2 /\binom{9}{4}=1 / 42$, so the p -value for a 2 sided test is 1/21.

