Answers of Master's Exam, Fall, 2008

To: Master's degree students. From: Jim Stapleton, Professor Emeritus

I discovered, as I did the problems below, that some of these problems are quite difficult. I suggest that you not try to complete all of them. For example, 1a) and 4c) took me a long time to complete, especially 5c). In general I think the exam was quite long. I doubt very much that future exams will be even approximately as long.

1) a)
$$\frac{32!30!2^{27}}{60!}$$
 b) $\frac{\binom{32}{3}\binom{32}{7}}{\binom{64}{10}}$
2) a) 0.1505, b) 0.4756 c) 0.1495 d) 0.00605 (using ½ correction)

3) a) $\lim F_n(x) = F(x)$ for every x on the real line at which F is continuous.

b) $F_n(x) = 0$ for x < 0, p_n for $0 \le x < (1+1/n)^n$, 1 for $x \ge (1+1/n)^n$. $\lim_{n \to \infty} F_n(x) = 0$ for x < 0, $\frac{1}{2}$ for $0 < x \le e^1$, 1 for $x > e^1$. The function

F(x) = 0 for x < 0, ½ for $0 \le x < e^1$, 1 for $x \ge 1$ is a cdf and is this limit at all points except $x = e^1$, a point of discontinuity of F(x).

c) For every
$$\epsilon > 0$$
 $\lim_{n \to \infty} P(\mid X_n - 1 \mid < \epsilon) = 1$

4) a)
$$f_X(x) = (4/3 \pi) (4 - x^2)^{1/2}$$
 for $1 \le x \le 4$,
= $(4/3 \pi)((4 - x^2)^{1/2} - (1 - x^2))^{1/2}$ for $0 \le x < 1$

b)
$$1/(4-x^2)^{1/2}$$
 for $0 \le y \le (4-x^2)^{1/2}$, $1 < x < 2$.

c) $E(Y | X = x) = (1/2) (4 - x^2)^{1/2}$ for 1 < x < 2= $(1/2)((4 - x^2)^{1/2} - (1 - x^2)^{1/2})$ for $0 \le x < 1$. To get Z simply replace x by X.

5) a) U^{1/3}

b) $F_M(m) = 1 - (1 - m^2)(1 - m^3)(1 - m)$ for $0 \le m \le 1$.

The derivative with respect to m is the density. It's messy, too messy to write here.

- c) $F_S(s) = (s + 1)^2 2/5 s/2 + s^5/10$ for $-1 < s \le 0$ = $1 - 2[(1/5)(1 - s)^5 + (s/4)(1 - s)^4]$ for $0 \le s \le 1$ This is a difficult problem, far too long for this exam. Don't spend much time on it.
- d) $F_Y(y) = (e^y 1)^2$ for $0 < y \le ln(2)$.

$$f_{Y}(y) = 2(e^{y} - 1) e^{y}$$
 for $0 < y \le \ln(2)$

e) $Var(X_1) = {\sigma_1}^2 = 1/18$, $Var(X_2) = {\sigma_2}^2 = 3/80$, $Var(X_3) = {\sigma_3}^2 = 1/12$ Let Y_1 and Y_2 be the two linear combinations. $Cov(Y_1, Y_2) = -18 {\sigma_1}^2 - 50 {\sigma_2}^2 + 18 {\sigma_3}^2 = -7.8333$ f) Let $W = X_1^{1/2} X_2 1/3 =$

6) a) MLE is $\hat{\sigma} = (1/n) \Sigma (X_i - 1) = \overline{X} - 1$. b) Same as answer to a). c) $I(\sigma) = 1/\sigma^2$, so $1/nI(\sigma) = \sigma^2/n$.

7) a) $f_1(x)/f_0(x) = (5/3) x^2$ for $0 \le x \le 1$. Reject for large X, say $X \ge k$. Take $k = (1 - \alpha)^{1/3}$ so that $P(X \ge k) = \alpha$. b) Neyman-Pearson c) Power = $1 - (1 - \alpha)^{5/3}$

8) a) Let Y_1, \ldots, Y_6 be the control observations. Let X_1, \ldots, X_6 be the steroid observations. Suppose that the 12 random variables are independent. Suppose that Y_1, \ldots, Y_6 have cdf F_1 and X_1, \ldots, X_6 have cdf F_2 . (The subscripts could be reversed, otr the cdf's could be called F and G.) H₀: F₁(x) = F₂(x) for all x, or simply F₁ = F₂. H_a: H₀ not true.

b) The ranks of the X_i 's are 2, 6, 12, 11, 5, 9, so the Wilcoxon statistic is $W_X = 45$.

Under H₀ $E(W_X) = 6.5(6) = 39$, and $Var(W_X) = 6(6)(13/12) = 39$, $P(W_X \ge 45 | H_0) = 1 - \Phi((44.5 - 39)/(39^{1/2})) = 1 - \Phi(0.8807) = 0.189$, so that the p-value is 0.378. Do not reject at the $\alpha = 0.1$ level.

9) Let $D_i = Expenditure - Intake$ for the ith player, i = 1, ..., 7

Suppose that the $D_i{'s}$ are a random sample from the N($\mu_D, {\sigma_D}^2)$ distribution.

 $H_0: \mu_D = 0, H_a: \mu_D \neq 0,$

 $T = (\overline{D} - 0) / [S_D^2/7]^{1/2} = -1.7714 / (13.782/7)^{1/2} = -1.2624.$

p-value = 2(0.1268) = 0.2536. Do not reject at the 0.10 level.

10) a) Let $Q(\beta) = \Sigma (Y_i - \beta x_i^{1/2})^2$. Differentiating wrt to β , we get

- $\Sigma x_i^{1/2}(Y_i - \beta x_i^{1/2})$. This is zero for $\beta = \hat{\beta} = \Sigma x_i^{1/2} Y_i / \Sigma x_i$.

b) $\hat{\beta} = \sum x_i^{1/2} (\beta x_i^{1/2} + \epsilon_i) / \sum x_i^2 = \beta + \sum x_i^{1/2} \epsilon_i / \sum x_i$. The second term has expectation zero because $E(\epsilon_i) = 0$ for each i.

c) Var($\hat{\beta}$) = $(1/\Sigma x_i)^2 \Sigma x_i \sigma^2 = \sigma^2 / \Sigma x_i$.

d) Replacing each $x_i^{1/2}$ by (c $x_i^{1/2}$) we get $\hat{\beta}^* = (c^{1/2}/c) \hat{\beta} = \hat{\beta} c^{-1/2}$.

11) a) Let
$$\hat{p}_1 = X_1/n_1$$
 and $\hat{p}_2 = X_2/n_2$, $\hat{\Delta} = 3 \hat{p}_1 - 2 \hat{p}_2$, $E(\hat{\Delta}) = \Delta$, $Var(\hat{\Delta})$

=
$$(9 p_1 q_1/n_1 + 4 p_2 q_2/n_2)$$
, where $q_i = 1 - p_i$ for $i = 1, 2$.

 $Z = (\hat{\Delta} - \Delta)/Var(\hat{\Delta})^{1/2}$ is approximately distributed as N(0, 1). Replacing the p_i by their estimates in $\hat{Var}(\hat{\Delta})$ to get \hat{Z} , using Slutsky's Theorem, we conclude that \hat{Z} is approximately N(0, 1).

Therefore the 95% Confidence Interval is $[\hat{\Delta} \pm 1.96 [\hat{Var}(\hat{\Delta})]^{1/2}$.

c) The procedure used to determine the interval has the property that 95% of all possible intervals determined when random samples are taken will produce intervals containing the parameter Δ . We do not know whether this interval contains the parameter.

d) We need n large enough to have $(9 p_1 q_1/n + 4 p_2 q_2/n) \le [0.1/1.96]^2$. This is largest for $p_1 = p_2 = \frac{1}{2}$, so we need $(1/n)((9/4 + 4/4) = 13/4n < [0.1/1.96]^2$, $n > [1.96/0.1]^2 (13/4) = 1248$

12) Let X_{ij} be the frequency in cell ij. Suppose that the 6 X_{ij} have the multinomial distribution with parameters pij. We wish to test H_0 : Rows and Columns are independent. We get the estimates

102	62	37	
51	31	17.	
•		,• ,•	,

Pearson's chi-square statistic is 2.472. The 0.90 quantile of the chi=square distribution with (2-1)(3-1) = 2 df is 4.605, so we fail to reject H₀.