Answers of Master's Exam, Fall, 2008

To: Master's degree students.

From: Jim Stapleton, Professor Emeritus

I discovered, as I did the problems below, that some of these problems are quite difficult. I suggest that you not try to complete all of them. For example, 1a) and 4c) took me a long time to complete, especially 5c). In general I think the exam was quite long. I doubt very much that future exams will be even approximately as long.

1) a) $\frac{32!30!2^{27}}{60!}$
b) $\frac{\binom{32}{3}\binom{32}{7}}{\binom{64}{10}}$
2) a) 0.1505 , b) 0.4756
c) 0.1495
d) 0.00605 (using $1 / 2$ correction)
3) a) $\lim _{n \rightarrow \infty} F_{n}(x)=\mathrm{F}(\mathrm{x})$ for every x on the real line at which F is continuous.
b) $\mathrm{F}_{\mathrm{n}}(\mathrm{x})=0$ for $\mathrm{x}<0, \mathrm{p}_{\mathrm{n}}$ for $0 \leq \mathrm{x}<(1+1 / \mathrm{n})^{\mathrm{n}}$, 1 for $\mathrm{x} \geq(1+1 / \mathrm{n})^{\mathrm{n}}$. $\lim _{n \rightarrow \infty} F_{n}(x)=0$ for $\mathrm{x}<0,1 / 2$ for $0<\mathrm{x} \leq \mathrm{e}^{1}, 1$ for $\mathrm{x}>\mathrm{e}^{1}$. The function
$F(x)=0$ for $x<0,1 / 2$ for $0 \leq x<e^{1}, 1$ for $x \geq 1$ is a cdf and is this limit at all points except $x=e^{1}$, a point of discontinuity of $F(x)$.
c) For every $\varepsilon>0 \quad \lim _{n \rightarrow \infty} \mathrm{P}\left(\left|\mathrm{X}_{\mathrm{n}}-1\right|<\varepsilon\right)=1$.
4) a) $f_{X}(x)=(4 / 3 \pi)\left(4-x^{2}\right)^{1 / 2}$ for $1 \leq x \leq 4$,

$$
=(4 / 3 \pi)\left(\left(4-x^{2}\right)^{1 / 2}-\left(1-x^{2}\right)\right)^{1 / 2} \text { for } 0 \leq x<1
$$

b) $1 /\left(4-x^{2}\right)^{1 / 2}$ for $0 \leq y \leq\left(4-x^{2}\right)^{1 / 2}, 1<x<2$.
c) $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x})=(1 / 2)\left(4-\mathrm{x}^{2}\right)^{1 / 2}$ for $1<\mathrm{x}<2$

$$
=(1 / 2)\left(\left(4-x^{2}\right)^{1 / 2}-\left(1-x^{2}\right)^{1 / 2}\right) \text { for } 0 \leq x<1 \text {. To get } Z \text { simply replace }
$$ x by X.

5) a) $U^{1 / 3}$
b) $\mathrm{F}_{\mathrm{M}}(\mathrm{m})=1-\left(1-\mathrm{m}^{2}\right)\left(1-\mathrm{m}^{3}\right)(1-\mathrm{m})$ for $0 \leq \mathrm{m} \leq 1$.

The derivative with respect to m is the density. It's messy, too messy to write here.
c) $\mathrm{F}_{\mathrm{s}}(\mathrm{s})=(\mathrm{s}+1)^{2}-2 / 5-\mathrm{s} / 2+\mathrm{s}^{5} / 10$ for $-1<\mathrm{s} \leq 0$

$$
=1-2\left[(1 / 5)(1-s)^{5}+(s / 4)(1-s)^{4}\right] \text { for } 0 \leq s \leq 1
$$

This is a difficult problem, far too long for this exam. Don’t spend much time on it.
d) $F_{Y}(y)=\left(e^{y}-1\right)^{2}$ for $0<y \leq \ln (2)$.
$f_{Y}(y)=2\left(e^{y}-1\right) e^{y}$ for $0<y \leq \ln (2)$
e) $\operatorname{Var}\left(\mathrm{X}_{1}\right)=\sigma_{1}{ }^{2}=1 / 18, \operatorname{Var}\left(\mathrm{X}_{2}\right)=\sigma_{2}{ }^{2}=3 / 80, \operatorname{Var}\left(\mathrm{X}_{3}\right)=\sigma_{3}{ }^{2}=1 / 12$

Let Y_{1} and Y_{2} be the two linear combinations.
$\operatorname{Cov}\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}\right)=-18 \sigma_{1}{ }^{2}-50 \sigma_{2}{ }^{2}+18 \sigma_{3}{ }^{2}=-7.8333$
f) Let $\mathrm{W}=\mathrm{X}_{1}{ }^{1 / 2} \mathrm{X}_{2} 1 / 3=$
6) a) MLE is $\hat{\sigma}=(1 / \mathrm{n}) \Sigma\left(\mathrm{X}_{\mathrm{i}}-1\right)=\overline{\mathrm{X}}-1$.
b) Same as answer to a).
c) $\mathrm{I}(\sigma)=1 / \sigma^{2}$, so $1 / \mathrm{nI}(\sigma)=\sigma^{2} / n$.
7) a) $f_{1}(x) / f_{0}(x)=(5 / 3) x^{2}$ for $0 \leq x \leq 1$. Reject for large X, say $X \geq k$.

Take $k=(1-\alpha)^{1 / 3}$ so that $P(X \geq k)=\alpha$. b) Neyman-Pearson
c) Power $=1-(1-\alpha)^{5 / 3}$
8) a) Let Y_{1}, \ldots, Y_{6} be the control observations. Let X_{1}, \ldots, X_{6} be the steroid observations. Suppose that the 12 random variables are independent. Suppose that $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{6}$ have cdf F_{1} and $\mathrm{X}_{1}, \ldots, \mathrm{X}_{6}$ have cdf F_{2}. (The subscripts could be reversed, otr the cdf's could be called F and G.)
$H_{0}: F_{1}(x)=F_{2}(x)$ for all x, or simply $F_{1}=F_{2} . H_{a}: H_{0}$ not true.
b) The ranks of the X_{i} 's are $2,6,12,11,5,9$, so the Wilcoxon statistic is $\mathrm{W}_{\mathrm{X}}=45$.

Under $\mathrm{H}_{0} \quad \mathrm{E}\left(\mathrm{W}_{\mathrm{X}}\right)=6.5(6)=39$, and $\operatorname{Var}\left(\mathrm{W}_{\mathrm{X}}\right)=6(6)(13 / 12)=39, \mathrm{P}\left(\mathrm{W}_{\mathrm{X}} \geq 45 \mid \mathrm{H}_{0}\right)$ $\doteq 1-\Phi\left((44.5-39) / 39^{1 / 2}\right)=1-\Phi(0.8807)=0.189$, so that the p -value is 0.378 . Do not reject at the $\alpha=0.1$ level.
9) Let $D_{i}=$ Expenditure - Intake for the ith player, $i=1, \ldots, 7$

Suppose that the D_{i} 's are a random sample from the $N\left(\mu_{D}, \sigma_{D}{ }^{2}\right)$ distribution.
$H_{0}: \mu_{D}=0, H_{a}: \mu_{D} \neq 0$,
$\mathrm{T}=(\overline{\mathrm{D}}-0) /\left[\mathrm{S}_{\mathrm{D}}^{2} / 7\right]^{1 / 2}=-1.7714 /(13.782 / 7)^{1 / 2}=-1.2624$.
p-value $=2(0.1268)=0.2536$. Do not reject at the 0.10 level .
10) a) Let $\mathrm{Q}(\beta)=\Sigma\left(\mathrm{Y}_{\mathrm{i}}-\beta \mathrm{X}_{\mathrm{i}}^{1 / 2}\right)^{2}$. Differentiating wrt to β, we get
$-\Sigma \mathrm{X}_{\mathrm{i}}^{1 / 2}\left(\mathrm{Y}_{\mathrm{i}}-\beta \mathrm{X}_{\mathrm{i}}^{1 / 2}\right)$. This is zero for $\beta=\hat{\beta}=\Sigma \mathrm{X}_{\mathrm{i}}^{1 / 2} \mathrm{Y}_{\mathrm{i}} / \Sigma \mathrm{X}_{\mathrm{i}}$.
b) $\hat{\beta}=\Sigma \mathrm{x}_{\mathrm{i}}^{1 / 2}\left(\beta \mathrm{x}_{\mathrm{i}}^{1 / 2}+\varepsilon_{\mathrm{i}}\right) / \Sigma \mathrm{x}_{\mathrm{i}}^{2}=\beta+\Sigma \mathrm{x}_{\mathrm{i}}^{1 / 2} \varepsilon_{\mathrm{i}} / \Sigma \mathrm{x}_{\mathrm{i}}$. The second term has expectation zero because $E\left(\varepsilon_{i}\right)=0$ for each i.
c) $\operatorname{Var}(\hat{\beta})=\left(1 / \Sigma \mathrm{x}_{\mathrm{i}}\right)^{2} \Sigma \mathrm{x}_{\mathrm{i}} \sigma^{2}=\sigma^{2} / \Sigma \mathrm{x}_{\mathrm{i}}$.
d) Replacing each $x_{i}^{1 / 2}$ by $\left(c x_{i}^{1 / 2}\right)$ we get $\hat{\beta}^{*}=\left(c^{1 / 2} / c\right) \hat{\beta}=\hat{\beta} c^{-1 / 2}$.
11) a) Let $\hat{\mathrm{p}}_{1}=\mathrm{X}_{1} / \mathrm{n}_{1}$ and $\hat{\mathrm{p}}_{2}=\mathrm{X}_{2} / \mathrm{n}_{2}, \hat{\Delta}=3 \hat{\mathrm{p}}_{1}-2 \hat{\mathrm{p}}_{2}, \mathrm{E}(\hat{\Delta})=\Delta, \operatorname{Var}(\hat{\Delta})$
$=\left(9 p_{1} q_{1} / n_{1}+4 p_{2} q_{2} / n_{2}\right)$, where $q_{i}=1-p_{i}$ for $\mathrm{i}=1,2$.
$Z=(\hat{\Delta}-\Delta) / \operatorname{Var}(\hat{\Delta})^{1 / 2}$ is approximately distributed as $N(0,1)$. Replacing the p_{i} by their estimates in $\hat{\operatorname{Var}}(\hat{\Delta})$ to get \hat{Z}, using Slutsky's Theorem, we conclude that Z is approximately $\mathrm{N}(0,1)$.

Therefore the 95% Confidence Interval is $\left[\hat{\Delta} \pm 1.96[\hat{\operatorname{Var}}(\hat{\Delta})]^{1 / 2}\right.$.
c) The procedure used to determine the interval has the property that 95% of all possible intervals determined when random samples are taken will produce intervals containing the parameter Δ. We do not know whether this interval contains the parameter.
d) We need n large enough to have ($9 \mathrm{p}_{1} \mathrm{q}_{1} / \mathrm{n}+4 \mathrm{p}_{2} \mathrm{q}_{2} / \mathrm{n}$) $\leq[0.1 / 1.96]^{2}$.

This is largest for $p_{1}=p_{2}=1 / 2$, so we need $(1 / n)((9 / 4+4 / 4)=13 / 4 n<$ $[0.1 / 1.96]^{2}, \quad n>[1.96 / 0.1]^{2}(13 / 4)=1248$
12) Let $X_{i j}$ be the frequency in cell ij . Suppose that the $6 \mathrm{X}_{\mathrm{ij}}$ have the multinomial distribution with parameters pij. We wish to test H_{0} : Rows and Columns are independent. We get the estimates
$102 \quad 62 \quad 37$
513137.

Pearson's chi-square statistic is 2.472 . The 0.90 quantile of the chi=square distribution with $(2-1)(3-1)=2 \mathrm{df}$ is 4.605 , so we fail to reject H_{0}.

