Answers of Master's Exam, Fall, 2009

1) $1-3 e^{-2}$
2) $9 / 207$
3) a) $M_{n}(t)=e^{t / n}(n+1) /(5 n)+e^{(1-1 / n) t}(4 n+1) /(5 n)$
b) $\lim _{n \rightarrow \infty} \mathrm{M}_{\mathrm{n}}(\mathrm{t})=1 / 5+(4 / 5) \mathrm{e}^{\mathrm{t}}$, for all t . This is the mgf of the Bernoulli distribution with parameter $p=4 / 5=0.8$. By the continuity theorem for mgf's, Z_{n} converges in distribution to this Bernoulli distribution.
4) a) $E\left(Z_{1}\right)=p_{1}+p_{3}, \operatorname{Cov}\left(Z_{1}, Z_{2}\right)=\operatorname{Var}\left(Y_{3}\right)=p_{3}\left(1-p_{3}\right)$
b) $\left(Z_{1}, Z_{2}\right)$ takes the following values with probabilities as given:

$(0,0)$	$\mathrm{q}_{1} \mathrm{q}_{2} \mathrm{q}_{3}$	$(0,1) \mathrm{q}_{1} \mathrm{p}_{2} \mathrm{q}_{3}$	$(0,2)$	0
$(1,0)$	$\mathrm{p}_{1} \mathrm{q}_{2} \mathrm{p}_{3}$	$(1,1) \mathrm{q}_{1} \mathrm{q}_{2} \mathrm{p}_{3}+\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{q}_{3}$	$(1,2) \mathrm{q}_{1} \mathrm{p}_{2} \mathrm{p}_{3}$	
$(2,0)$	0	$(2,1) \mathrm{p}_{1} \mathrm{q}_{2} \mathrm{p}_{3}$		$(2,2) \mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{3}$

5) a) $X_{3}=F_{3}^{-1}\left(F_{1}\left(X_{1}\right)\right)=X_{1}^{-1 / 3}$
b) $f_{M}(m)=6 m^{6}$ for $0 \leq m \leq 1$, since each of $Y_{1}=X_{1}, Y_{2}=X_{2}{ }^{2}, Y_{3}=X_{3}{ }^{3}$ has cdf $G(y)=y^{2}$ on $[0,1]$.
c) Find $H(y)=P\left(Y_{1}-Y_{2} .>y\right)$ for each y, then integrate $H(y) g(y)$ from 0 to one, where g is the derivative of G . Answer: 1/6
6) a) Let $\lambda\left(x_{1}, \ldots, x_{n}\right)$ be the likelihood ratio with $f\left(x_{1}, \ldots, x_{n} ; \theta=\eta\right)$ in the numerator,
$f\left(x_{1}, \ldots, x_{n} ; \theta=1\right)$ in the denominator. Then $\lambda\left(x_{1}, \ldots, x_{n}\right)=\eta^{n}\left(\Pi x_{i}\right)^{\eta-1}$. We should reject for large $\log (\lambda)=n \log (\eta)+(\eta-1) \log \left(\Pi x_{i}\right)$. For $\eta>1$, this is an increasing function of the product W. Thus, we should reject for $W>c$ for some constant c. We want $\mathrm{P}(\mathrm{W}>\mathrm{c} \mid \theta=1)=1-\mathrm{c}$ for $\mathrm{n}=1$. Thus, c should be $1-\alpha$.

Comment: The power function of this test for any θ is $\mathrm{P}(\mathrm{W}>\mathrm{c} \mid \theta)=1-\mathrm{c}^{\theta}$. The general case for any n can be solved using the transformation $Y_{i}=-\log \left(X_{i}\right)$ and taking advantage of the fact that the sum of independent exponential rv's has the gamma distribution with shape parameter $\mathrm{n} . \$
7) Could use the sign test. p-value $=58 / 128$ Two-sided test.
8) a) $\hat{\theta}=(1-\bar{X}) / \bar{X}$
b) $\hat{\theta}_{\text {MLE }}=\bar{Y}$, where $Y_{i}=-\log \left(X_{i}\right)$ for each i.
c) Each Y_{i} has the exponential distribution with mean θ. Thus $\mathrm{E}(\overline{\mathrm{Y}})=\theta$. Answer: Yes
9) a) Let $\mathrm{Q}\left(\beta_{1}, \beta_{2}\right)=\Sigma\left(\mathrm{Y}_{1 \mathrm{j}}-\beta_{1}\right)^{2}+\Sigma\left(\mathrm{Y}_{2 \mathrm{j}}-\beta_{2}\right)^{2}$. Differentiating wrt to β_{i} we get $\hat{\beta}_{\mathrm{i}}$ for $\mathrm{i}=$ 1, 2.
b) $E\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)=\beta_{1}-\beta_{2}, \operatorname{Var}\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)=\sigma^{2}\left(1 / n_{1}+1 / n_{2}\right)$.
c) For $\sigma^{2}=10$, the Z statistic is $-2.6 /[10(1 / 5+1 / 5)]=-1.3$, so the p-value for a one sided test is $\mathrm{P}(\mathrm{Z} \leq-1.3) \doteq 0.10$. Do not reject H_{0}.

