Answers of Master's Exam, Spring, 2006

1) a)
$$\frac{\binom{4}{0}\binom{6}{3}}{\binom{10}{3}} + \frac{\binom{4}{1}\binom{6}{2}}{\binom{10}{3}} = 80/120$$

b) $(7/10)(6/9)(5/8)(4/7)(3/6)$
c) 0.00278 (using ½ correction)
d) 0.115 (using ½ correction)
e) 0.9970
2) a) $f_Y(y) = 3 y^2$ for $0 \le y \le 1$.
b) $F_M(m) = m^6$ for $0 \le m \le 1, 0$ for $m < 0, 1$ for $m > 1$
c) 0
d) $E(Y_1/Y_2) = E(Y_1) E(1/Y_2) = (3/4)(3/2) = 9/8$.

3) a) Let $X_1, X_2, ...$ be independent and identically distributed with mean μ . Let $\overline{X}_n = \frac{X_1 + ... + X_n}{n}$ Then for any $\epsilon > 0$

$$\lim_{n \to \infty} P(|\bar{X}_n - \mu| > \varepsilon) = 0$$

b) Suppose that Var(X_1) = $\sigma^2 < \infty$. Then P($|\overline{X}_n - \mu| > \varepsilon$) $\leq Var(\overline{X}_n)/\varepsilon^2 = (\sigma^2 / n)/\varepsilon^2$, whose limit as n approaches infinity is zero.

4) a) $f_{XY}(x, y) = 4 x^3 / x = 4 x^2$ for $0 \le y \le x, 0 < x < 1$. Therefore, $f_Y(y) = \int 4 x^2 dx = (4/3)(1 - y^3)$ for $0 \le y < 1, 0$ otherwise. b) $U^{1/4}$

c) Given X = x, Y is uniformly distributed on [0, x], so E(Y | X = x) = x/2. E(Y | X) is therefore X/2.

d) See a).

5) a)
$$B = (A_1 \cup A_2 \cup A_3) \cap (A_4 \cup A_5)$$

b) Let $q_k = 1 - p_k$ for each k. $P(B) = (1 - q_1 q_2 q_3)(1 - q_4 q_5)$

c) $P(A_1 \cap B) = p_1 (1 - q_4 q_5)$. Divide this by P(B) to get $P(A_1 | B) = p_1/(1 - q_1 q_2 q_3)$

Statistics Part

6) a) The function given is not a density. Multiply it by 2. $\hat{\lambda} = n/\Sigma X_i^2$.

b) Then $\mu = E(X_1) = 1/\lambda$, so the method of moments estimator is $1/\overline{X}$.

7) a) Let $D_i = (Weight loss of low-card diet) - (Weight loss of high-card diet), i = 1, 2, ..., 6$

Suppose that the D_i constitute a random sample from the $N(\mu_D, \sigma_D^2)$ distribution.

Let $H_0: \mu_D \le 0, H_a: \mu_D > 0$

Reject H_0 for $t \ge 2.015$. We observe t = 2.9077, so we reject H_0 .

b) We could use the sign test. We observe X = 5 positive values. For median = 0, $X \sim \text{binomial}(8, \frac{1}{2})$, so the p-value is $P(X \ge 5) = 6/64 > 0.05$ so we do not reject H_0 at the $\alpha = 0.05$ level. Wilcoxon's signed rank statistic is $W_+ = 20$, so p-value = $P(W_+ = 20 \text{ or } 21) = 6/64$, so we reject H_0 .

8) a) Let \hat{p}_1 and \hat{p}_2 be the sample proportions X_1/n_1 and X_2/n_2 . $\hat{\Delta} = \hat{p}_1 - \hat{p}_2$. Then $Var(\hat{\Delta}) = p_1 (1-p_1)/n_1 + p_2 (1-p_2)/n_2$ and we can estimate this variance by replacing the p_i by their estimates. Call this estimator $\hat{\sigma}^2$. A 95% Confidence Interval:

$$[\hat{\Delta} \pm 1.96 \hat{\sigma}]$$

b) $[0.0833 \pm 0.0590]$

- c) In a large number, say 10000, repetitions of this experiments, always with samples sizes 1000 and 800, about 95 % of the intervals obtained would contain the true parameter Δ .
- d) 19208

9) a) 0.15625

b) The Neyman-Pearson Theorem states that the most powerful test of H_0 : p = 0.25 vs H_a : $p = p_0$, where $p_0 > 0.25$ rejects for

$$\begin{split} \lambda &= p_0^2 \left(1-p_0\right)^{s-2} / 0.25^2 (1-.2)^{s-2} \geq (p_0/0.25)^2 \left((1-p_0)/0.25\right)^{s-2} \geq k \text{ for some } k \text{ ,} \\ \text{where } s &= x_1 + x_2 \text{, the number of successes. Since } p_0/0.25 > 1 \text{, } \lambda \text{ is a decreasing } \\ \text{function of } s \text{, so, equivalently, we should reject for } s \leq k^* \text{, where } k^* \text{ is some } \\ \text{constant. In this case we take } k^* = 2. \end{split}$$

c) Power = 3/8.

10) a) Let Q(β) = Σ (Y_i - β x_i)². Taking the partial derivative wrt to β and setting the result equal to zero, we get $\hat{\beta}$ as given.

- b) Replacing each Y_i by $\beta x_i + \varepsilon_i$, we get $E(\hat{\beta}) = \beta + E(\Sigma \varepsilon_i x_i)/(\Sigma x_i^2) = \beta$.
- c) Var $(\hat{\beta}) = \sigma^2 / \Sigma x_i^2$.
- d) d) $\hat{\beta} = 2.333$, $S^2 = 2/9$, [2.333 ± 0.656]

10) a) P($X_{(1)} \le w$) = 1 – P($X_{(1)} > w$) = 1 – $(e^{-w/\lambda})^n = 1 - e^{-wn/\lambda}$, so E($X_{(1)}$) = λ / n and E(λ^*) = λ .

b) Var $(\lambda^*) = (\lambda/n)^2$ and Var $(\overline{X}) = \lambda^2/n$, so e $(\lambda^*, \overline{X}) = Var(\overline{X})/Var(\lambda^*) = n$. Thus, λ^* has greater efficiency for all n > 1.