Answers of Master's Exam, Spring, 2006

1) a) $\frac{\binom{4}{0}\binom{6}{3}}{\binom{10}{3}}+\frac{\binom{4}{1}\binom{6}{2}}{\binom{10}{3}}=80 / 120$
b) $(7 / 10)(6 / 9)(5 / 8)(4 / 7)(3 / 6)$
c) 0.00278 (using $1 / 2$ correction)
d) 0.115 (using $1 / 2$ correction)
e) 0.9970
2) a) $f_{Y}(y)=3 y^{2}$ for $0 \leq y \leq 1$.
b) $\mathrm{F}_{\mathrm{M}}(\mathrm{m})=\mathrm{m}^{6}$ for $0 \leq \mathrm{m} \leq 1,0$ for $\mathrm{m}<0,1$ for $\mathrm{m}>1$
c) 0
d) $\mathrm{E}\left(\mathrm{Y}_{1} / \mathrm{Y}_{2}\right)=\mathrm{E}\left(\mathrm{Y}_{1}\right) \mathrm{E}\left(1 / \mathrm{Y}_{2}\right)=(3 / 4)(3 / 2)=9 / 8$.
3) a) Let X_{1}, X_{2}, \ldots be independent and identically distributed with mean μ.

Let $\bar{X}_{n}=\frac{X_{1}+\ldots+X_{n}}{n} \quad$ Then for any $\varepsilon>0$

$$
\lim _{\mathrm{n} \rightarrow \infty} P\left(\left|\bar{X}_{\mathrm{n}}-\mu\right|>\varepsilon\right)=0
$$

b) Suppose that $\operatorname{Var}\left(\mathrm{X}_{1}\right)=\sigma^{2}<\infty$. Then $\mathrm{P}\left(\left|\overline{\mathrm{X}}_{\mathrm{n}}-\mu\right|>\varepsilon\right) \leq \operatorname{Var}\left(\overline{\mathrm{X}}_{n}\right) / \varepsilon^{2}=\left(\sigma^{2} / \mathrm{n}\right) / \varepsilon^{2}$, whose limit as n approaches infinity is zero.
4) a) $f_{X Y}(x, y)=4 x^{3} / x=4 x^{2}$ for $0 \leq y \leq x, 0<x<1$.

Therefore, $f_{Y}(y)=\int^{1} 4 x^{2} d x=(4 / 3)\left(1-y^{3}\right)$ for $0 \leq y<1,0$ otherwise.
b) $U^{1 / 4}$
c) Given $X=x, Y$ is uniformly distributed on $[0, x]$, $\operatorname{so} E(Y \mid X=x)=x / 2$. $\mathrm{E}(\mathrm{Y} \mid \mathrm{X})$ is therefore $\mathrm{X} / 2$.
d) See a).
5) a) $\mathrm{B}=\left(\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \mathrm{~A}_{3}\right) \cap\left(\mathrm{A}_{4} \cup \mathrm{~A}_{5}\right)$
b) Let $q_{k}=1-p_{k}$ for each $k . P(B)=\left(1-q_{1} q_{2} q_{3}\right)\left(1-q_{4} q_{5}\right)$
c) $\mathrm{P}\left(\mathrm{A}_{1} \cap \mathrm{~B}\right)=\mathrm{p}_{1}\left(1-\mathrm{q}_{4} \mathrm{q}_{5}\right)$. Divide this by $\mathrm{P}(\mathrm{B})$ to get $\mathrm{P}\left(\mathrm{A}_{1} \mid \mathrm{B}\right)$ $=\mathrm{p}_{1} /\left(1-\mathrm{q}_{1} \mathrm{q}_{2} \mathrm{q}_{3}\right)$

Statistics Part

6) a) The function given is not a density. Multiply it by $2 . \hat{\lambda}=n / \Sigma X_{i}{ }^{2}$.
b) Then $\mu=\mathrm{E}\left(\mathrm{X}_{1}\right)=1 / \lambda$, so the method of moments estimator is $1 / \overline{\mathrm{X}}$.
7) a) Let $\mathrm{D}_{\mathrm{i}}=($ Weight loss of low-card diet $)-($ Weight loss of high-card diet $), i=1$, $2, \ldots, 6$

Suppose that the D_{i} constitute a random sample from the $N\left(\mu_{D}, \sigma_{D}{ }^{2}\right)$ distribution.
Let $H_{0}: \mu_{\mathrm{D}} \leq 0, \mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{D}}>0$
Reject H_{0} for $\mathrm{t} \geq 2.015$. We observe $\mathrm{t}=2.9077$, so we reject H_{0}.
b) We could use the sign test. We observe $\mathrm{X}=5$ positive values. For median $=0$, $\mathrm{X} \sim \operatorname{binomial}(8,1 / 2)$, so the p -value is $\mathrm{P}(\mathrm{X} \geq 5)=6 / 64>0.05$ so we do not reject H_{0} at the $\alpha=0.05$ level.
Wilcoxon's signed rank statistic is $\mathrm{W}_{+}=20$, so p -value $=\mathrm{P}\left(\mathrm{W}_{+}=20\right.$ or 21$)=$ $6 / 64$, so we reject H_{0}.
8) a) Let $\hat{\mathrm{p}}_{1}$ and $\hat{\mathrm{p}}_{2}$ be the sample proportions $\mathrm{X}_{1} / \mathrm{n}_{1}$ and $X_{2} / \mathrm{n}_{2} . \hat{\Delta}=\hat{\mathrm{p}}_{1}-\hat{\mathrm{p}}_{2}$. Then $\operatorname{Var}(\hat{\Delta})=\mathrm{p}_{1}\left(1-\mathrm{p}_{1}\right) / \mathrm{n}_{1}+\mathrm{p}_{2}\left(1-\mathrm{p}_{2}\right) / \mathrm{n}_{2}$ and we can estimate this variance by replacing the p_{i} by their estimates. Call this estimator $\hat{\sigma}^{2}$. A 95% Confidence Interval:

$$
[\hat{\Delta} \pm 1.96 \hat{\sigma}]
$$

b) $[0.0833 \pm 0.0590]$
c) In a large number, say 10000 , repetitions of this experiments, always with samples sizes 1000 and 800 , about 95% of the intervals obtained would contain the true parameter Δ.
d) 19208
9) a) 0.15625
b) The Neyman-Pearson Theorem states that the most powerful test of $\mathrm{H}_{0}: \mathrm{p}=$ 0.25 vs $\mathrm{H}_{\mathrm{a}}: \mathrm{p}=\mathrm{p}_{0}$, where $\mathrm{p}_{0}>0.25$ rejects for
$\lambda=\mathrm{p}_{0}^{2}\left(1-\mathrm{p}_{0}\right)^{\mathrm{s}-2} / 0.25^{2}(1-.2)^{\mathrm{s}-2} \geq\left(\mathrm{p}_{0} / 0.25\right)^{2}\left(\left(1-\mathrm{p}_{0}\right) / 0.25\right)^{\mathrm{s}-2} \geq \mathrm{k}$ for some k, where $s=x_{1}+x_{2}$, the number of successes. Since $p_{0} / 0.25>1, \lambda$ is a decreasing function of s, so, equivalently, we should reject for $s \leq k^{*}$, where k^{*} is some constant. In this case we take $\mathrm{k}^{*}=2$.
c) Power $=3 / 8$.
10) a) Let $\mathrm{Q}(\beta)=\Sigma\left(\mathrm{Y}_{\mathrm{i}}-\beta \mathrm{x}_{\mathrm{i}}\right)^{2}$. Taking the partial derivative wrt to β and setting the result equal to zero, we get $\hat{\beta}$ as given.
b) Replacing each Y_{i} by $\beta \mathrm{x}_{\mathrm{i}}+\varepsilon_{\mathrm{i}}$, we get $\mathrm{E}(\hat{\beta})=\beta+\mathrm{E}\left(\Sigma \varepsilon_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\right) /\left(\Sigma \mathrm{x}_{\mathrm{i}}{ }^{2}\right)=\beta$.
c) $\operatorname{Var}(\hat{\beta})=\sigma^{2} / \Sigma \mathrm{x}_{\mathrm{i}}{ }^{2}$.
d) d) $\hat{\beta}=2333, \mathrm{~S}^{2}=2 / 9, \quad[2.333 \pm 0.656]$
10) a) $P\left(X_{(1)} \leq w\right)=1-P\left(X_{(1)}>w\right)=1-\left(e^{-w / \lambda}\right)^{n}=1-e^{-w n / \lambda}$, so $E\left(X_{(1)}\right)=\lambda / n$ and $\mathrm{E}\left(\lambda^{*}\right)=\lambda$.
b) $\operatorname{Var}\left(\lambda^{*}\right)=(\lambda / \mathrm{n})^{2}$ and $\operatorname{Var}(\overline{\mathrm{X}})=\lambda^{2} / \mathrm{n}$, so $\mathrm{e}\left(\lambda^{*}, \overline{\mathrm{X}}\right)=\operatorname{Var}(\overline{\mathrm{X}}) / \operatorname{Var}\left(\lambda^{*}\right)=\mathrm{n}$. Thus, λ^{*} has greater efficiency for all $\mathrm{n}>1$.

