Answers of Master's Exam, Spring, 2007

1) a) A subset of a sample space, or a set of outcomes of an experiment.

b) P($X \in A, Y \in B$) = P($X \in A$) P($Y \in B$) for all (Borel) subsets of the real-line. Equivalently, P($X \le x, Y \le y$) = P($X \le x$) P($Y \le y$) for all pairs of real numbers (x, y).

2) $F(x) \lim_{x \to -\infty} = 0$, $\lim_{x \to +\infty} F(x) = 1$, F is monotone non-decreasing, and F is continuous on the right.

3)
$$\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} (X_i - a)^2 - (\bar{X} - a)^2 n$$
 for any constant a. Thus, $E(\sum_{i=1}^{n} (X_i - \bar{X})^2)$

= n σ^2 - n Var(\overline{X}) = n σ^2 - n(σ^2/n) = (n - 1) σ^2 , and E(S²) = (n - 1) $\sigma^2/(n-1) = \sigma^2$. Students could be asked to prove the first identity.

4) Use the normal approximation of the binomial, with the $\frac{1}{2}$ correction. Answer: 0.237

5) 0.926/0.94 = 0.9851

6) a) Var(Y) does not exist since the integral of $x^2 f(x)$ from 0 to 1 does not exist. We could say that Var(Y) is $+\infty$.

b) $F_Y(y) = 1/(2y^2)$ for $1/2 < y \le 1$, $1/(4y^3)$ for $\frac{1}{2} < y < \infty$, 0 otherwise

7) a) $1 - 4 e^{-3}$ b) 82

8) a) 0.53056 b) 0.0643

9) a) $F_W(w) = w - w \log(w)$ for $0 < w \le 1$, 0 for w < 0, 1 for w > 1. b) $\Phi((0.2 - n/4)/ [7/(144n)]^{1/2})$, since E(W) = 14 and Var(W) = 7/144. c) 0.65465

10) 3383

11) a) Sampling is without replacement. Sampling is done in such a way that all samples of 80 employees are equally likely.

b) $\overline{X} = 1$, $S^2 = 0.65823$

c) 0.0049615

d) 200 ± 27.612

e) The sampling and the interval were determined in such a way that 95% of all possible samples produce intervals which contain the population total T.

- 12) a) Reject H₀ for $\overline{X} \ge 43.29$
 - b) 0.8037
 - c) [37.966, 48.034]
- 13) a) $\hat{\theta} = \bar{X}/(1 + \bar{X}).$

b) $\lim_{n \to \infty} P(|\hat{\theta}_n - \theta| < \epsilon |\theta) = 1$ for every $\epsilon > 0$, for each θ in the parameter space.

c) By the weak law of large numbers \overline{X}_n converges in probability to the mean μ . Since $\theta = \mu/(1 + \mu)$ is a continuous function of μ , $\hat{\theta}_n$ converges in probability to θ .

d) Let $Y_i = \log(X_i)$. The MLE is $n/\Sigma Y_i = 1/\overline{Y}$.

- 14) a) The first column: 0.36, 9, 6/7 Second column: 9, 9/4, 3/14 Third column: 6/7, 3/14, 1/49
 b) Reject for (x₁, x₂) in {{1,1}, (1,2), (2,1), (2,2)}
 - c) Power 0.81
- 15) a) $\hat{\beta}$ ' = (3, 2, 1)
 - b) 4
 - c) 5/2
 - d) 2 ± 6.80
- 16) Suppose that D_i is (A value B value for plot i), with the D_i independent, each with the N(μ_D , σ_D^2) distribution, with μ_D , σ_D^2 unknown. We wish to test H₀: $\mu_D \leq 0$, vs H_a: $\mu_D > 0$.

We observe $D_1 = 2$, $D_2 = 3$, $D_3 = 2$, $D_4 = 5$, $D_5 = 3$, $\overline{D} = 3$, $S_D^2 = 6/4 = 1.5$ T = (3 - 0)/[1.5/5]^{1/2} = 5.477. Reject for T > 2.132, so we reject H₀.

) a)
$$\frac{\binom{32}{16}\binom{32}{16}}{\binom{64}{32}} = \lim_{n \to \infty} F_n(x)$$

3) a)
$$M_n(t) = e^{t/n} (n+1)/(5n) + e^{(1-1/n)t} (4n+1)/(5n)$$

b) $\lim_{n\to\infty} M_n(t) = 1/5 + (4/5) e^t$, for all t. This is the mgf of the Bernoulli distribution with parameter p = 4/5 = 0.8. By the continuity theorem for mgf's, Z_n converges in distribution to this Bernoulli distribution.

 $\begin{array}{c} \text{(4) a) } E(Z_1) = p_1 + p_3, \ \text{Cov}(Z_1, Z_2) = \text{Var}(Y_3) = p_3 \ (1 - p_3) \\ \text{(b) } (Z_1, Z_2) \ \text{takes the following values with probabilities as given:} \\ (0,0) \quad q_1 \ q_2 \ q_3 \qquad (0,1) \quad q_1 \ p_2 \ q_3 \qquad (0,2) \quad 0 \\ (1,0) \quad p_1 \ q_2 \ p_3 \qquad (1,1) \ q_1 \ q_2 \ p_3 + p_1 \ p_2 \ q_3 \qquad (1,2) \ q_1 \ p_2 \ p_3 \\ (2,0) \quad 0 \qquad (2,1) \ p_1 \ q_2 \ p_3 \qquad (2,2) \ p_1 \ p_2 \ p_3 \end{array}$

5) a)
$$X_3 = F_3^{-1}(F_1(X_1)) = X_1^{-1/3}$$

b) $f_M(m) = 6 m^6$ for $0 \le m \le 1$, since each of $Y_1 = X_1$, $Y_2 = X_2^2$, $Y_3 = X_3^3$ has cdf $G(y) = y^2$ on [0,1].

c) Find $H(y) = P(Y_1 - Y_2 . > y)$ for each y, then integrate H(y) g(y) from 0 to one, where g is the derivative of G. Answer: 1/6

6) a) Let $\lambda(x_1, \ldots, x_n)$ be the likelihood ratio with $f(x_1, \ldots, x_n; \theta = \eta)$ in the numerator,

 $f(x_1, ..., x_n; \theta = 1)$ in the denominator. Then $\lambda(x_1, ..., x_n) = \eta^n (\Pi x_i)^{\eta-1}$. We should reject for large $\log(\lambda) = n \log(\eta) + (\eta - 1) \log(\Pi x_i)$. For $\eta > 1$, this is an increasing function of the product W. Thus, we should reject for W > c for some constant c. We want $P(W > c | \theta = 1) = 1 - c$ for n = 1. Thus, c should be $1-\alpha$.

Comment: The power function of this test for any θ is $P(W > c | \theta) = 1 - c^{\theta}$. The general case for any n can be solved using the transformation $Y_i = -\log(X_i)$ and taking advantage of the fact that the sum of independent exponential rv's has the gamma distribution with shape parameter n. \setminus

7) Could use the sign test. p-value = 58/128 Two-sided test.

8) a) $\hat{\theta} = (1 - \overline{X})/\overline{X}$

b) $\hat{\theta}_{MLE} = \overline{Y}$, where $Y_i = -log(X_i)$ for each i.

c) Each Y_i has the exponential distribution with mean θ . Thus $E(\overline{Y}) = \theta$. Answer: Yes

9) a) Let Q(β_1 , β_2) = $\Sigma (Y_{1j} - \beta_1)^2 + \Sigma (Y_{2j} - \beta_2)^2$. Differentiating wrt to β_i we get $\hat{\beta}_i$ for i = 1, 2.

b) $E(\hat{\beta}_1 - \hat{\beta}_2) = \beta_1 - \beta_2$, $Var(\hat{\beta}_1 - \hat{\beta}_2) = \sigma^2(1/n_1 + 1/n_2)$.

c) For $\sigma^2 = 10$, the Z statistic is -2.6/[10(1/5 + 1/5)] = -1.3, so the p-value for a one sided test is $P(Z \le -1.3) \doteq 0.10$. Do not reject H₀.