Answers of Master’s Exam, Spring, 2007

1) a) A subset of a sample space, or a set of outcomes of an experiment.
b) $\mathrm{P}(\mathrm{X} \in \mathrm{A}, \mathrm{Y} \in \mathrm{B})=\mathrm{P}(\mathrm{X} \in \mathrm{A}) \mathrm{P}(\mathrm{Y} \in \mathrm{B})$ for all (Borel) subsets of the real-line. Equivalently, $\mathrm{P}(\mathrm{X} \leq \mathrm{x}, \mathrm{Y} \leq \mathrm{y})=\mathrm{P}(\mathrm{X} \leq \mathrm{x}) \mathrm{P}(\mathrm{Y} \leq \mathrm{y})$ for all pairs of real numbers (x, y).
2) $F(x) \lim _{x \rightarrow-\infty}=0, \lim _{x \rightarrow+\infty} F(x)=1, F$ is monotone non-decreasing, and F is continuous on the right.
3) $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\sum_{i=1}^{n}\left(X_{i}-a\right)^{2}-(\bar{X}-a)^{2} n$ for any constant a. Thus, $E\left(\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right)$
$=\mathrm{n} \sigma^{2}-\mathrm{n} \operatorname{Var}(\overline{\mathrm{X}})=\mathrm{n} \sigma^{2}-\mathrm{n}\left(\sigma^{2} / \mathrm{n}\right)=(\mathrm{n}-1) \sigma^{2}$, and $\mathrm{E}\left(\mathrm{S}^{2}\right)=(\mathrm{n}-1) \sigma^{2} /(\mathrm{n}-1)=\sigma^{2}$.
Students could be asked to prove the first identity..
4) Use the normal approximation of the binomial, with the $1 / 2$ correction.

Answer: 0.237
5) $0.926 / 0.94=0.9851$
6) a) $\operatorname{Var}(Y)$ does not exist since the integral of $x^{2} f(x)$ from 0 to 1 does not exist. We could say that $\operatorname{Var}(\mathrm{Y})$ is $+\infty$.
b) $\mathrm{F}_{\mathrm{Y}}(\mathrm{y})=1 /\left(2 \mathrm{y}^{2}\right)$ for $1 / 2<\mathrm{y} \leq 1,1 /\left(4 \mathrm{y}^{3}\right)$ for $1 / 2<\mathrm{y}<\infty, 0$ otherwise
7) a) $1-4 e^{-3} \quad$ b) 82
8) a) 0.53056 b) 0.0643
9) a) $\mathrm{F}_{\mathrm{W}}(\mathrm{w})=\mathrm{w}-\mathrm{w} \log (\mathrm{w})$ for $0<\mathrm{w} \leq 1,0$ for $\mathrm{w}<0,1$ for $\mathrm{w}>1$.
b) $\Phi\left((0.2-n / 4) /[7 /(144 n)]^{1 / 2}\right)$, since $E(W)=14$ and $\operatorname{Var}(W)=7 / 144$.
c) 0.65465
10) 3383
11) a) Sampling is without replacement. Sampling is done in such a way that all samples of 80 employees are equally likely.
b) $\bar{X}=1, S^{2}=0.65823$
c) 0.0049615
d) 200 ± 27.612
e) The sampling and the interval were determined in such a way that 95% of all possible samples produce intervals which contain the population total T.
12) a) Reject H_{0} for $\overline{\mathrm{X}} \geq 43.29$
b) 0.8037
c) $[37.966,48.034]$
13) a) $\hat{\theta}=\bar{X} /(1+\bar{X})$.
b) $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{P}\left(\left|\hat{\theta}_{\mathrm{n}}-\theta\right|<\varepsilon \mid \theta\right)=1$ for every $\varepsilon>0$, for each θ in the parameter space.
c) By the weak law of large numbers \bar{X}_{n} converges in probability to the mean μ. Since $\theta=\mu /(1+\mu)$ is a continuous function of $\mu, \hat{\theta}_{\mathrm{n}}$ converges in probability to θ.
d) Let $\mathrm{Y}_{\mathrm{i}}=\log \left(\mathrm{X}_{\mathrm{i}}\right)$. The MLE is $\mathrm{n} / \Sigma \mathrm{Y}_{\mathrm{i}}=1 / \overline{\mathrm{Y}}$.
14) a) The first column: $0.36,9,6 / 7$ Second column: $9,9 / 4,3 / 14$

Third column: 6/7, 3/14, 1/49
b) Reject for $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ in $\{\{1,1\},(1,2),(2,1),(2,2)\}$
c) Power o. 81
15) a) $\hat{\beta}^{\prime}=(3,2,1)$
b) 4
c) $5 / 2$
d) 2 ± 6.80
16) Suppose that D_{i} is (A value - B value for plot i), with the D_{i} independent, each with the $\mathrm{N}\left(\mu_{\mathrm{D}}, \sigma_{\mathrm{D}}{ }^{2}\right)$ distribution, with $\mu_{\mathrm{D}}, \sigma_{\mathrm{D}}{ }^{2}$ unknown. We wish to test H_{0} : $\mu_{\mathrm{D}} \leq 0$, vs $\mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{D}}>0$.

We observe $D_{1}=2, D_{2}=3, D_{3}=2, D_{4}=5, D_{5}=3, \quad \bar{D}=3, S_{D}{ }^{2}=6 / 4=1.5$ $\mathrm{T}=(3-0) /[1.5 / 5]^{1 / 2}=5.477$. Reject for $\mathrm{T}>2.132$, so we reject H_{0}.
) a) $\frac{\binom{32}{16}\binom{32}{16}}{\binom{64}{32}} \lim _{n \rightarrow \infty} F_{n}(x)$
3) a) $M_{n}(t)=e^{t / n}(n+1) /(5 n)+e^{(1-1 / n) t}(4 n+1) /(5 n)$
b) $\lim _{n \rightarrow \infty} \mathrm{M}_{\mathrm{n}}(\mathrm{t})=1 / 5+(4 / 5) \mathrm{e}^{\mathrm{t}}$, for all t . This is the mgf of the Bernoulli distribution with parameter $\mathrm{p}=4 / 5=0.8$. By the continuity theorem for mgf 's, Z_{n} converges in distribution to this Bernoulli distribution.
4) a) $E\left(Z_{1}\right)=p_{1}+p_{3}, \operatorname{Cov}\left(Z_{1}, Z_{2}\right)=\operatorname{Var}\left(Y_{3}\right)=p_{3}\left(1-p_{3}\right)$
b) $\left(\mathrm{Z}_{1}, \mathrm{Z}_{2}\right)$ takes the following values with probabilities as given:
$\mathrm{q}_{1} \mathrm{q}_{2} \mathrm{q}_{3}$
$(0,1) \quad \mathrm{q}_{1} \mathrm{p}_{2} \mathrm{q}_{3}$
$(0,2) \quad 0$
$(1,1) \mathrm{q}_{1} \mathrm{q}_{2} \mathrm{p}_{3}+\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{q}_{3}$
$(1,2) \quad \mathrm{q}_{1} \mathrm{p}_{2} \mathrm{p}_{3}$
0
$(2,1) \mathrm{p}_{1} \mathrm{q}_{2} \mathrm{p}_{3}$
$(2,2) \mathrm{p}_{1} \mathrm{p}_{2} \mathrm{P}_{3}$
$(1,0) \quad \mathrm{p}_{1} \mathrm{q}_{2} \mathrm{p}_{3}$
$(2,0)$
5) a) $X_{3}=F_{3}^{-1}\left(F_{1}\left(X_{1}\right)\right)=X_{1}^{-1 / 3}$
b) $f_{M}(m)=6 m^{6}$ for $0 \leq m \leq 1$, since each of $Y_{1}=X_{1}, Y_{2}=X_{2}{ }^{2}, Y_{3}=X_{3}{ }^{3}$ has cdf $G(y)=y^{2}$ on $[0,1]$. .
c) Find $H(y)=P\left(Y_{1}-Y_{2} .>y\right)$ for each y, then integrate $H(y) g(y)$ from 0 to one, where g is the derivative of G. Answer: $1 / 6$
6) a) Let $\lambda\left(x_{1}, \ldots, x_{n}\right)$ be the likelihood ratio with $f\left(x_{1}, \ldots, x_{n} ; \theta=\eta\right)$ in the numerator,
$\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} ; \theta=1\right)$ in the denominator. Then $\lambda\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\eta^{\mathrm{n}}\left(\Pi \mathrm{x}_{\mathrm{i}}\right)^{\eta-1}$. We should reject for large $\log (\lambda)=n \log (\eta)+(\eta-1) \log \left(\Pi x_{i}\right)$. For $\eta>1$, this is an increasing function of the product W . Thus, we should reject for $\mathrm{W}>\mathrm{c}$ for some constant c . We want $\mathrm{P}(\mathrm{W}>\mathrm{c} \mid \theta=1)=1-\mathrm{c}$ for $\mathrm{n}=1$. Thus, c should be $1-\alpha$.

Comment: The power function of this test for any θ is $\mathrm{P}(\mathrm{W}>\mathrm{c} \mid \theta)=1-\mathrm{c}{ }^{\theta}$. The general case for any n can be solved using the transformation $Y_{i}=-\log \left(X_{i}\right)$ and taking advantage of the fact that the sum of independent exponential rv's has the gamma distribution with shape parameter n . $\$
7) Could use the sign test. p-value $=58 / 128$ Two-sided test.
8) a) $\hat{\theta}=(1-\bar{X}) / \bar{X}$
b) $\hat{\theta}_{\text {MLE }}=\overline{\mathrm{Y}}$, where $\mathrm{Y}_{\mathrm{i}}=-\log \left(\mathrm{X}_{\mathrm{i}}\right)$ for each i .
c) Each Y_{i} has the exponential distribution with mean θ. Thus $\mathrm{E}(\overline{\mathrm{Y}})=\theta$. Answer: Yes
9) a) Let $\mathrm{Q}\left(\beta_{1}, \beta_{2}\right)=\Sigma\left(\mathrm{Y}_{1 \mathrm{j}}-\beta_{1}\right)^{2}+\Sigma\left(\mathrm{Y}_{2 \mathrm{j}}-\beta_{2}\right)^{2}$. Differentiating wrt to β_{i} we get $\hat{\beta}_{\mathrm{i}}$ for $\mathrm{i}=$ 1, 2.
b) $E\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)=\beta_{1}-\beta_{2}, \operatorname{Var}\left(\hat{\beta}_{1}-\hat{\beta}_{2}\right)=\sigma^{2}\left(1 / n_{1}+1 / n_{2}\right)$.
c) For $\sigma^{2}=10$, the Z statistic is $-2.6 /[10(1 / 5+1 / 5)]=-1.3$, so the p-value for a one sided test is $\mathrm{P}(\mathrm{Z} \leq-1.3) \doteq 0.10$. Do not reject H_{0}.

