Answers of Master's Exam, Spring, 2009

1) a) $\frac{13!13!2^{13}}{26!}$
b) $\frac{13!2^{13}}{26!}$
2 a) $3 / 40$
b) $2 / 3$
c) 0.4332
d) 0.629 (normal approximation with $1 / 2$ correction)
2) a) $\lim _{n \rightarrow \infty} F_{n}(x)=F(x)$ for every x on the real line at which F is continuous, where F is the c.d.f. of X .
b) For every $\varepsilon>0, \lim _{n \rightarrow \infty} P\left(\left|Y_{n}-5\right|>\varepsilon\right)=0$.
c) $F(x)=e^{x}$ for $-\infty<x \leq 0,1$ for $x>0$. F is the cdf of X.
3) a) $f_{x}(x)=3 x^{2}$ for $0 \leq x \leq 1,0$ otherwise
b) $\quad \mathrm{f}_{\mathrm{Y}}(\mathrm{y})=\mathrm{y}^{2}$ for $0 \leq \mathrm{y} \leq 1$, $=y(2-y)$ for $1<y \leq 2$ $=0$ otherwise
c) $f_{Y \mid X}(y \mid x)=2 y /\left(3 x^{2}\right)$ for $x \leq y \leq 2 x, 0<x \leq 1$
d) $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x})=(7 / 6) \mathrm{x}$, for $0<\mathrm{x} \leq 1$, so $\mathrm{Z}=(7 / 6) \mathrm{X}$
e) $\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x})=\mathrm{E}(\mathrm{Y} \mid \mathrm{X}=\mathrm{x}) /(1+\mathrm{x})+\mathrm{x}=(7 / 6) \mathrm{x} /(1+\mathrm{x})+\mathrm{x}$ for $0<\mathrm{x} \leq 1$, so $\mathrm{V}=(7 / 6) \mathrm{X} /(1+\mathrm{X})+\mathrm{X}$
4) a) $U^{1 / 3} \quad$ b) $f_{M}(m)=m^{6}$ for $0 \leq m \leq 1,0$ for $\mathrm{m}<0,1$ for $\mathrm{m}>1$.
c) $\mathrm{F}_{\mathrm{s}}(\mathrm{s})=(1 / 3)(1+\mathrm{s})^{3}$ for $-1 \leq \mathrm{s} \leq 0, \mathrm{~s}+(1-\mathrm{s})^{3} / 3$ for $0<\mathrm{s} \leq 1,0$ for $\mathrm{s}<-1$, 1 for $\mathrm{s}>1$
$\mathrm{f}_{\mathrm{s}}(\mathrm{s})=(1+\mathrm{s})^{2}$ for $-1 \leq \mathrm{s} \leq 0, \quad 1-(1-\mathrm{s})^{2}$ for $0<\mathrm{s} \leq 1,0$ otherwise.
d) Let $Y=\left(X_{3}-1 / 3\right)^{2}$. Then

$$
\begin{aligned}
\mathrm{F}_{\mathrm{Y}}(\mathrm{y}) & =\left(\mathrm{y}^{1 / 2}+1 / 3\right)^{3}-\left(1 / 3-\mathrm{y}^{1 / 2}\right)^{3} \text { for } 0 \leq \mathrm{y} \leq 1 / 9,\left(\mathrm{y}^{1 / 2}+1 / 3\right)^{3} \text { for } 1 / 9<\mathrm{y} \leq 4 / 9 \\
& 0 \text { for } \mathrm{y}<0,1 \text { for } \mathrm{y}>4 / 9 \\
\mathrm{f}_{\mathrm{Y}}(\mathrm{y}) & =(3 / 2)\left(\mathrm{y}^{1 / 2}+1 / 3\right)^{2} \mathrm{y}^{-1 / 2}+\left(1 / 3-\mathrm{y}^{1 / 2}\right)^{2} \mathrm{y}^{-1 / 2} \text { for } 0 \leq \mathrm{y} \leq 1 / 9 \\
& =(3 / 2)\left(\mathrm{y}^{1 / 2}+1 / 3\right)^{2} \mathrm{y}^{-1 / 2} \text { for } 1 / 9<\mathrm{y} \leq 4 / 9,0 \text { otherwise. }
\end{aligned}
$$

e) $\operatorname{Var}\left(\mathrm{X}_{1}\right)=\sigma_{1}{ }^{2}=1 / 12, \operatorname{Var}\left(\mathrm{X}_{2}\right)=\sigma_{2}{ }^{2}=1 / 18, \operatorname{Var}\left(\mathrm{X}_{3}\right)=\sigma_{3}{ }^{2}=3 / 80$

Let $\mathrm{Y}_{1}=3 \mathrm{X}_{1}-7 \mathrm{X}_{2}+2 \mathrm{X}_{3}, \mathrm{Y}_{2}=-4 \mathrm{X}_{1}+5 \mathrm{X}_{2}+9 \mathrm{X}_{3}$. $\operatorname{Cov}\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}\right)=-1.9319, \operatorname{Var}\left(\mathrm{Y}_{1}\right)=3.8097, \operatorname{Var}\left(\mathrm{Y}_{2}\right)=5.7597$, $\rho\left(Y_{1}, Y_{2}\right)=-0.4124$
f) $E\left(X_{3}{ }^{2}\right)=3 / 5, \quad E\left(X_{1}{ }^{1 / 2}\right)=2 / 3, E\left(1 /\left(2+X_{2}\right)\right)=2(1-2 \log (3)+2 \log (2))=$ 0.37814 , so $\mathrm{E}(\mathrm{W})=($ product of these $)=0.15126$.

Statistics

6) a) $\bar{X} / 2$
b) $\mathrm{L}(\sigma)=(1 / \sigma)^{\mathrm{n}} \exp (\mathrm{n}-\mathrm{S} / \sigma)$, where $\mathrm{S}=\Sigma \mathrm{x}_{\mathrm{i}}$. . The plot has a
concave shape with maximum at $\sigma=(1 / n) \sum \mathrm{x}_{\mathrm{i}} . \quad$ c) $\overline{\mathrm{X}} \quad$ d) Bias $=\sigma$.
7) a) Reject for $X \leq \alpha^{1 / 4}$,
b) Neyman-Pearson,
c) $\alpha^{1 / 2}$
8) Let X_{1}, \ldots, X_{7} be the weights gains for the 7 cages with the strong magnetic field. Let $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{7}$ be the weight gains for the 7 cages for the control cages. Suppose that Y_{1}, \ldots, Y_{7} is a random sample from a distribution with cdf F_{X} and $\mathrm{X}_{1}, \ldots, \mathrm{X}_{7}$ is a random sample from a distribution with cdf F_{Y}, and these two sample are independent. The ranks to the X -sample are $7,1,6,13,4,2,3$. We wish to test $H_{0}: F_{X}=F_{Y}$ vs $H_{a}: H_{0}$ not true.
The Wilcoxon statistic is $7+1+6+13+4+2+3=36$. The observed p-value is $\left.2 \mathrm{P}_{0}(\mathrm{~W} \leq 36) \doteq 2 \Phi\left((36.5-52.5) /(49(15) / 12)^{1 / 2}\right)\right)$ $=2 \Phi(-2.044)=0.0409$. Reject H_{0} are the $\alpha=0.05$ level.
9) a) Let $\mathrm{D}_{\mathrm{i}}=($ Older Twin IQ) - (Younger Twin IQ) for pair $\mathrm{i}, \mathrm{i}=1,2, \ldots, 7$. Suppose that the D_{i} are independent, each with a $N\left(\mu_{D}, \sigma_{D}{ }^{2}\right)$ distribution.
Let $H_{0}: \mu_{\mathrm{D}}=0 \mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{D}} \neq 0$..
Reject H_{0} for $|\mathrm{T}|>\mathrm{t}_{0.95}=1.943$, the $95^{\text {th }}$ quantile of the t -distribution with 6 degrees of freedom. We find $\mathrm{T}=\bar{D} / \sqrt{S^{2} / 7}=2.43 / 1.901=1.278$.
p-value $=0.248$. Do not reject at $\alpha=0.10$ level.
b) The ranks of the absolute values, after omitting the zero, are: 5.5, $1,5.5,4$, 4 , 4. The sum of the ranks of the negative values is $\mathrm{W}_{-}=8$. Then $\mathrm{P}\left(\mathrm{W}_{-} \leq 8\right)$ $=(1+7+6+3) / 2^{6}=17 / 64$, so the observed p-value is $34 / 64$. Do not reject.
10) a) Let $\mathrm{w}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}+1$, so $\mathrm{Y}_{\mathrm{i}}=\beta \mathrm{w}_{\mathrm{i}}+\varepsilon_{\mathrm{i}}$. Let $\mathrm{Q}(\beta)=\Sigma\left(\mathrm{Y}_{\mathrm{i}}-\beta \mathrm{w}_{\mathrm{i}}\right)^{2}$. We want to minimize $Q(\beta)$. Differentiating wrt β and setting $Q^{\prime}(\beta)=0$, we get the least squares estimator $\hat{\beta}=\Sigma \mathrm{w}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}} / \mathrm{K}$, where $\mathrm{K}=\Sigma \mathrm{w}_{\mathrm{i}}{ }^{2}$.
b) $\mathrm{E}(\hat{\beta})=\beta \Sigma \mathrm{w}_{\mathrm{i}}^{2} / \mathrm{K}=\beta$ c \quad c) $\operatorname{Var}(\hat{\beta})=\Sigma \mathrm{w}_{\mathrm{i}}^{2} \sigma^{2} / \mathrm{K}^{2}=\sigma^{2} / \mathrm{K}$
d) $\hat{\beta}=1 / 2, \mathrm{~S}^{2}=4 / 9, \mathrm{~T}=(1 / 2-1) /(\mathrm{S} / \mathrm{K})=-3$, p -value $=2(.0075)=0.015$.
11) a) $n=144$, b) $n=144$, c) 102
d) The procedure used to determine the interval has the property that 95% of all possible intervals determined when random samples are taken will produce intervals containing the parameter $\mu_{\mathrm{X}}-\mu_{\mathrm{Y}}$. We do not know whether this interval contains the parameter.
