Answers of Master's Exam, Spring, 2009

1) a)
$$\frac{13!13!2^{13}}{26!}$$
 b) $\frac{13!2^{13}}{26!}$

2 a) 3/40 b) 2/3 c) 0.4332 d) 0.629 (normal approximation with $\frac{1}{2}$ correction)

3) a) $\lim_{n\to\infty} F_n(x) = F(x)$ for every x on the real line at which F is continuous, where F is the c.d.f. of X.

- b) For every $\varepsilon > 0$, $\lim_{n \to \infty} P(|Y_n 5| > \varepsilon) = 0$.
- c) $F(x) = e^x$ for $-\infty < x \le 0$, 1 for x > 0. F is the cdf of X.
- 4) a) $f_X(x) = 3 x^2$ for $0 \le x \le 1, 0$ otherwise
 - b) $f_Y(y) = y^2$ for $0 \le y \le 1$, = y(2 - y) for $1 < y \le 2$ = 0 otherwise

c) $f_{Y|X}(y | x) = 2y/(3x^2)$ for $x \le y \le 2x, 0 < x \le 1$

- d) E(Y | X = x) = (7/6) x, for $0 < x \le 1$, so Z = (7/6) X
- e) E(Y|X = x) = E(Y|X=x)/(1+x) + x = (7/6)x/(1+x) + x for $0 < x \le 1$, so V = (7/6)X/(1+X) + X

5) a) $U^{1/3}$ b) $f_M(m) = m^6$ for $0 \le m \le 1, 0$ for m < 0, 1 for m > 1.

c) $F_S(s) = (1/3)(1+s)^3$ for $-1 \le s \le 0$, $s + (1-s)^3/3$ for $0 < s \le 1$, 0 for s < -1, 1 for s > 1 $f_S(s) = (1+s)^2$ for $-1 \le s \le 0$, $1 - (1-s)^2$ for $0 < s \le 1$, 0 otherwise.

d) Let $Y = (X_3 - 1/3)^2$. Then $F_Y(y) = (y^{1/2} + 1/3)^3 - (1/3 - y^{1/2})^3$ for $0 \le y \le 1/9$, $(y^{1/2} + 1/3)^3$ for $1/9 < y \le 4/9$, 0 for y < 0, 1 for y > 4/9. $f_Y(y) = (3/2)(y^{1/2} + 1/3)^2 y^{-1/2} + (1/3 - y^{1/2})^2 y^{-1/2}$ for $0 \le y \le 1/9$ $= (3/2)(y^{1/2} + 1/3)^2 y^{-1/2}$ for $1/9 < y \le 4/9$, 0 otherwise.

e) $Var(X_1) = {\sigma_1}^2 = 1/12$, $Var(X_2) = {\sigma_2}^2 = 1/18$, $Var(X_3) = {\sigma_3}^2 = 3/80$ Let $Y_1 = 3 X_1 - 7 X_2 + 2 X_3$, $Y_2 = -4 X_1 + 5 X_2 + 9 X_3$. Cov $(Y_1, Y_2) = -1.9319$, $Var(Y_1) = 3.8097$, $Var(Y_2) = 5.7597$, $\rho(Y_1, Y_2) = -0.4124$ f) $E(X_3^2) = 3/5$, $E(X_1^{1/2}) = 2/3$, $E(1/(2 + X_2)) = 2(1 - 2\log(3) + 2\log(2)) = 0.37814$, so E(W) = (product of these) = 0.15126.

Statistics

6) a) $\overline{X}/2$ b) $L(\sigma) = (1/\sigma)^n \exp(n - S/\sigma)$, where $S = \Sigma x_i$. The plot has a

concave shape with maximum at $\sigma = (1/n) \Sigma x_i$. c) \overline{X} d) Bias = σ .

7) a) Reject for $X \le \alpha^{1/4}$, b) Neyman-Pearson, c) $\alpha^{1/2}$

8) Let X_1, \ldots, X_7 be the weights gains for the 7 cages with the strong magnetic field. Let Y_1, \ldots, Y_7 be the weight gains for the 7 cages for the control cages. Suppose that Y_1, \ldots, Y_7 is a random sample from a distribution with cdf F_X and X_1, \ldots, X_7 is a random sample from a distribution with cdf F_Y , and these two sample are independent. The ranks to the X-sample are 7, 1, 6, 13, 4, 2, 3. We wish to test H_0 : $F_X = F_Y$ vs H_a : H_0 not true. The Wilcoxon statistic is 7 + 1 + 6 + 13 + 4 + 2 + 3 = 36. The observed p-value is $2 P_0(W \le 36) \doteq 2 \Phi((36.5-52.5)/(49(15)/12)^{1/2}))$

 $= 2 \Phi(-2.044) = 0.0409$. Reject H₀ are the $\alpha = 0.05$ level.

9) a) Let $D_i = (\text{Older Twin IQ}) - (\text{Younger Twin IQ})$ for pair i, i = 1, 2, ..., 7. Suppose that the D_i are independent, each with a $N(\mu_D, \sigma_D^2)$ distribution. Let H_0 : $\mu_D = 0$ H_a : $\mu_D \neq 0$.

Reject H₀ for $|T| > t_{0.95} = 1.943$, the 95th quantile of the t-distribution with 6 degrees of freedom. We find $T = \overline{D} / \sqrt{S^2 / 7} = 2.43/1.901 = 1.278$. p-value = 0.248. Do not reject at $\alpha = 0.10$ level.

- b) The ranks of the absolute values, after omitting the zero, are: 5.5, 1, 5.5, 4, 4, 4. The sum of the ranks of the negative values is $W_{-} = 8$. Then $P(W_{-} \le 8) = (1+7+6+3)/2^{6} = 17/64$, so the observed p-value is 34/64. Do not reject.
- 9) a) Let w_i = x_i + 1, so Y_i = β w_i + ε_i. Let Q(β) = Σ (Y_i β w_i)². We want to minimize Q(β). Differentiating wrt β and setting Q'(β) = 0, we get the least squares estimator β = Σ w_i Y_i / K, where K = Σ w_i².
 b) E(β) = β Σ w_i²/K = β. c) Var(β) = Σ w_i² σ²/K² = σ²/K
 d) β = ¹/₂, S² = 4/9, T = (1/2-1)/(S/K) = -3, p-value = 2(.0075) = 0.015.

10) a) n = 144, b) n = 144, c) 102

d) The procedure used to determine the interval has the property that 95% of all possible intervals determined when random samples are taken will produce intervals containing the parameter $\mu_X - \mu_Y$. We do not know whether this interval contains the parameter.