STT 871-872 Preliminary Examination Wednesday, August 24, 2011 12:30 p.m. - 5:30 p.m.

1. Let X denote one observation from an unknown distribution.

- (a) Give a level 0 and power 1 test of H_0 : $X \sim \text{Ber}(1/2)$ vs. H_1 : $X \sim N(0, 1)$. (5)
- (b) Give a test of level $\alpha = 0.031$ for $H_0 : X \sim Bin(5, 1/2)$ vs. $H_1 : X \sim Poisson(5)$. (5)

2. Let 0 be unknown. Consider a sequence of independent Bernoulli random variables with success probability <math>p. Let X_i denote the number of successes in the first i trials, $1 \le i \le n$.

- (a) Compute $E(X_i | X_n), i = 1, 2, \dots, n-1.$ (5)
- (b) Consider the linear model given by

$$X_i = i \, p + \epsilon_i, \quad 1 \le i \le n$$

where ϵ_i , $i = 1, 2, \dots, n$ are iid F with F unknown. Find the least squares estimator \hat{p} of p. Derive explicitly the BLUE (best linear unbiased estimator) of p. (5)

- **3**. Let $F(x), x \in \mathbb{R}$ be a known cdf and let f(x) be its corresponding density.
- (a) Show that for each $\theta > 0$, $[F(x)]^{\theta}$ is a cdf on \mathbb{R} . (4)
- (b) Let X_1, X_2, \dots, X_n be iid random variables from the cdf $[F(x)]^{\theta}$, for $x \in \mathbb{R}$ and unknown $\theta > 0$. Find a complete sufficient statistic and UMVUE of $1/\theta$. (6)
- 4. Let X_1, X_2, \dots, X_n be iid $U(-\theta, \theta)$, where $\theta > 0$ is unknown.
- (a) Find the maximum likelihood estimate $\hat{\theta}_n$ of θ . Find constants a_n and b_n (possibly depending on θ) such that $a_n\hat{\theta}_n + b_n$ converges weakly to a non-degenerate distribution, as $n \to \infty$. (4)
- (b) Find the constant c₀ and a group of transformations such that c₀ θ_n is the MRE (minimum risk equivariant) estimator under the loss function L(δ, θ) = (δ − θ)²/θ², for each n ≥ 2.
- (c) Show that the estimator in part (b) is a minimax under the same loss function as in part (b), and for all $n \ge 2$. (6)
- 5. Let (Y_1, Y_2) be a bivariate random vector with the following distribution:

$$P(Y_1 > y_1, Y_2 > y_2) = \exp\{-\beta(y_1 + y_2) - \delta \max(y_1, y_2)\},\$$

for $\beta > 0$ and $\delta > 0$. Let M = 1 if $Y_1 \neq Y_2$, and 0, otherwise, and let $W_1 = \min\{Y_1, Y_2\}$, $W_2 = \max\{Y_1, Y_2\}, T = Y_1 + Y_2$, and $V = W_2 - W_1$.

- (a) Show that (M, W_2, T) is a *minimal sufficient* statistic under a suitable dominating measure. (6)
- (b) Show that W_1 is independent of (M, V) and find the distribution of W_1 . (6)

6. Let $\theta \in \mathbb{R}$ and let F be a cdf such that F(0) = 1/2. Let X_1, X_2, \dots, X_n be iid from $F(\cdot - \theta)$ that is $P_{\theta}(X_i \leq x) = F(x - \theta), x \in \mathbb{R}$, for all $i = 1, 2, \dots, n$. Define the n order statistics by $X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)}$.

(a) Construct a sequence $\{k_n\}$ of positive integers $1 \le k_n \le n$ satisfying the following two properties:

(1)
$$P_{\theta}(X_{(k_n)} \le \theta < X_{(n-k_n+1)}) \ge 1 - \alpha$$
, for all $\theta \in \mathbb{R}$.

(2) $P_{\theta}(X_{(k_n)} \le \theta < X_{(n-k_n+1)}) \to 1-\alpha, \text{ as } n \to \infty.$ (6)

(b) Now assume F has derivative f at 0 with f(0) > 0. Find the constant w such that

$$n^{1/2} \left(X_{(n-k_n+1)} - X_{(k_n)} \right) \to w,$$

(6)

in probability as $n \to \infty$.

7. Let $(X_1, X_2, X_3) \sim \text{Multinomial}(n, p_1, p_2, p_3)$. The Hardy-Weinberg equilibrium states that

$$H : p_1 = \theta^2, \quad p_2 = 2 \theta (1 - \theta) \text{ and } p_3 = (1 - \theta)^2$$

for some $0 < \theta < 1$.

- (a) Show that $X_2 + 2X_1$ has a Binomial distribution under *H*. (6)
- (b) Show that the level of UMP unbiased test for testing H versus K : not H, is determined by the conditional distribution of X_1 , given $X_2 + 2X_1$. Find an expression for this conditional distribution. (6)
- 8. Consider the linear model

$$y_{ij} = \mu_i + \epsilon_{ij},$$

where ϵ_{ij} are iid $N(0, \sigma^2)$, $\sigma^2 > 0$ and unknown, for $j = 1, 2, \dots, n$ and $i = 1, 2, \dots, p$. Consider the problem of testing the hypothesis $H : \mu_i = \beta_0 + \beta_1 x_i$, for some unknown real numbers β_0 and β_1 , where x_i 's are known constants with $\sum_{i=1}^p x_i = 0$.

(a) Find the UMP invariant test at level α for testing H versus the alternative K: not H. (6) (b) Find the asymptotic expression of the power for the following sequence of alternatives

$$\mu_i = \theta + h_i / \sqrt{n}, \qquad i = 1, 2, \cdots, p,$$

as $n \to \infty$, based on the constants h_i that satisfy $\sum_{i=1}^p h_i = \sum_{i=1}^p x_i h_i = 0.$ (6)

(c) Does the test in part (a) still achieve level α , as $n \to \infty$, even if the distribution of ϵ_{ij} 's are not normal but still have mean 0 and unknown variance σ^2 . Prove or disprove.(6)