# STT 871-872 Preliminary Examination Wednesday, August 24, 2011 <br> 12:30 p.m. - 5:30 p.m. 

1. Let $X$ denote one observation from an unknown distribution.
(a) Give a level 0 and power 1 test of $H_{0}: X \sim \operatorname{Ber}(1 / 2)$ vs. $H_{1}: X \sim N(0,1)$.
(b) Give a test of level $\alpha=0.031$ for $H_{0}: X \sim \operatorname{Bin}(5,1 / 2)$ vs. $H_{1}: X \sim \operatorname{Poisson}(5)$.
2. Let $0<p<1$ be unknown. Consider a sequence of independent Bernoulli random variables with success probability $p$. Let $X_{i}$ denote the number of successes in the first $i$ trials, $1 \leq i \leq n$.
(a) Compute $E\left(X_{i} \mid X_{n}\right), i=1,2, \cdots, n-1$.
(b) Consider the linear model given by

$$
X_{i}=i p+\epsilon_{i}, \quad 1 \leq i \leq n
$$

where $\epsilon_{i}, i=1,2, \cdots, n$ are iid $F$ with $F$ unknown. Find the least squares estimator $\hat{p}$ of $p$. Derive explicitly the BLUE (best linear unbiased estimator) of $p$.
3. Let $F(x), x \in \mathbb{R}$ be a known cdf and let $f(x)$ be its corresponding density.
(a) Show that for each $\theta>0,[F(x)]^{\theta}$ is a cdf on $\mathbb{R}$.
(b) Let $X_{1}, X_{2}, \cdots, X_{n}$ be iid random variables from the $\operatorname{cdf}[F(x)]^{\theta}$, for $x \in \mathbb{R}$ and unknown $\theta>0$. Find a complete sufficient statistic and UMVUE of $1 / \theta$.
4. Let $X_{1}, X_{2}, \cdots, X_{n}$ be iid $U(-\theta, \theta)$, where $\theta>0$ is unknown.
(a) Find the maximum likelihood estimate $\hat{\theta}_{n}$ of $\theta$. Find constants $a_{n}$ and $b_{n}$ (possibly depending on $\theta$ ) such that $a_{n} \hat{\theta}_{n}+b_{n}$ converges weakly to a non-degenerate distribution, as $n \rightarrow \infty$.
(b) Find the constant $c_{0}$ and a group of transformations such that $c_{0} \hat{\theta}_{n}$ is the MRE (minimum risk equivariant) estimator under the loss function $L(\delta, \theta)=(\delta-\theta)^{2} / \theta^{2}$, for each $n \geq 2$.
(c) Show that the estimator in part (b) is a minimax under the same loss function as in part (b), and for all $n \geq 2$.
5. Let $\left(Y_{1}, Y_{2}\right)$ be a bivariate random vector with the following distribution:

$$
P\left(Y_{1}>y_{1}, Y_{2}>y_{2}\right)=\exp \left\{-\beta\left(y_{1}+y_{2}\right)-\delta \max \left(y_{1}, y_{2}\right)\right\},
$$

for $\beta>0$ and $\delta>0$. Let $M=1$ if $Y_{1} \neq Y_{2}$, and 0 , otherwise, and let $W_{1}=\min \left\{Y_{1}, Y_{2}\right\}$, $W_{2}=\max \left\{Y_{1}, Y_{2}\right\}, T=Y_{1}+Y_{2}$, and $V=W_{2}-W_{1}$.
(a) Show that $\left(M, W_{2}, T\right)$ is a minimal sufficient statistic under a suitable dominating measure.
(b) Show that $W_{1}$ is independent of $(M, V)$ and find the distribution of $W_{1}$.
6. Let $\theta \in \mathbb{R}$ and let $F$ be a cdf such that $F(0)=1 / 2$. Let $X_{1}, X_{2}, \cdots, X_{n}$ be iid from $F(\cdot-\theta)$ that is $P_{\theta}\left(X_{i} \leq x\right)=F(x-\theta), x \in \mathbb{R}$, for all $i=1,2, \cdots, n$. Define the $n$ order statistics by $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$.
(a) Construct a sequence $\left\{k_{n}\right\}$ of positive integers $1 \leq k_{n} \leq n$ satisfying the following two properties:
(1) $\quad P_{\theta}\left(X_{\left(k_{n}\right)} \leq \theta<X_{\left(n-k_{n}+1\right)}\right) \geq 1-\alpha, \quad$ for all $\theta \in \mathbb{R}$.
(2) $\quad P_{\theta}\left(X_{\left(k_{n}\right)} \leq \theta<X_{\left(n-k_{n}+1\right)}\right) \rightarrow 1-\alpha, \quad$ as $n \rightarrow \infty$.
(b) Now assume $F$ has derivative $f$ at 0 with $f(0)>0$. Find the constant $w$ such that

$$
\begin{equation*}
n^{1 / 2}\left(X_{\left(n-k_{n}+1\right)}-X_{\left(k_{n}\right)}\right) \rightarrow w \tag{6}
\end{equation*}
$$

in probability as $n \rightarrow \infty$.
7. Let $\left(X_{1}, X_{2}, X_{3}\right) \sim \operatorname{Multinomial}\left(n, p_{1}, p_{2}, p_{3}\right)$. The Hardy-Weinberg equilibrium states that

$$
H: p_{1}=\theta^{2}, \quad p_{2}=2 \theta(1-\theta) \quad \text { and } \quad p_{3}=(1-\theta)^{2}
$$

for some $0<\theta<1$.
(a) Show that $X_{2}+2 X_{1}$ has a Binomial distribution under $H$.
(b) Show that the level of UMP unbiased test for testing $H$ versus $K$ : not $H$, is determined by the conditional distribution of $X_{1}$, given $X_{2}+2 X_{1}$. Find an expression for this conditional distribution.
8. Consider the linear model

$$
y_{i j}=\mu_{i}+\epsilon_{i j},
$$

where $\epsilon_{i j}$ are iid $N\left(0, \sigma^{2}\right), \sigma^{2}>0$ and unknown, for $j=1,2, \cdots, n$ and $i=1,2, \cdots, p$. Consider the problem of testing the hypothesis $H: \mu_{i}=\beta_{0}+\beta_{1} x_{i}$, for some unknown real numbers $\beta_{0}$ and $\beta_{1}$, where $x_{i}$ 's are known constants with $\sum_{i=1}^{p} x_{i}=0$.
(a) Find the UMP invariant test at level $\alpha$ for testing $H$ versus the alternative $K: \operatorname{not} H$.
(b) Find the asymptotic expression of the power for the following sequence of alternatives

$$
\begin{equation*}
\mu_{i}=\theta+h_{i} / \sqrt{n}, \quad i=1,2, \cdots, p, \tag{6}
\end{equation*}
$$

as $n \rightarrow \infty$, based on the constants $h_{i}$ that satisfy $\sum_{i=1}^{p} h_{i}=\sum_{i=1}^{p} x_{i} h_{i}=0$.
(c) Does the test in part (a) still achieve level $\alpha$, as $n \rightarrow \infty$, even if the distribution of $\epsilon_{i j}$ 's are not normal but still have mean 0 and unknown variance $\sigma^{2}$. Prove or disprove.(6)

