STT 871-872 Fall Preliminary Examination Wednesday, August 22, 2012 12:30 - 5:30 pm

1. Suppose an observation X takes values -1, 0, 1, with respective probabilities $\theta/2, 1-\theta, \theta/2$, for some $0 \le \theta \le 1$, i.e., it has the following density:

$$f_{\theta}(x) := \left(\frac{\theta}{2}\right)^{|x|} (1-\theta)^{1-|x|}, \quad x = -1, 0, 1, \ 0 \le \theta \le 1$$

- (a) Determine the class \mathcal{U} of all unbiased estimators of zero based on X. (5)
- (b) Obtain maximum likelihood estimator $\hat{\theta}(X)$ of θ .
- (c) Prove or disprove: $\hat{\theta}(X)$ is UMVU estimator for θ . (2)
- **2.** Suppose $k \ge 1$ is a known integer, $X \sim P_{\theta}, \theta \in \mathbb{R}^k, q : \mathbb{R}^k \mapsto \mathbb{R}$.
 - (a) Let $T_1(X)$ and $T_2(X)$ be two UMVU estimators of $q(\theta)$. Show that (4)

$$P_{\theta}(T_1(X) = T_2(X)) = 1, \ \forall \, \theta \in \mathbb{R}^k.$$

- (b) Let $X \sim \mathcal{N}(\theta, 1), \theta \in \mathbb{R}$. Show that $T(X) := X^2 1$ is UMVU estimator of θ^2 . (2)
- (c) Let S(X) := T(X)I(|X| < 1). Show that $E_0S^2(X) > 0$ and $T(X) = X^2 1$ is an inadmissible estimator of θ^2 w.r.t. the square error loss. (6)

3. Let X be a Binomial(n, p) random variable, for some $0 \le p \le 1$. Define a class of estimators

$$T_{\alpha}(X) := X/n, \quad \text{with prob. } 1 - \alpha,$$

$$:= 1/2, \quad \text{with prob. } \alpha, \quad 0 \le \alpha < 1.$$

Let $R(p, T_{\alpha})$ denote the risk of the estimator T_{α} under the square error loss. Compare $R(p, T_{\alpha})$ for $0 < \alpha < 1$ with $R(p, T_0)$. Find an $\alpha \in (0, 1)$ such that $\sup_{0 \le p \le 1} R(p, T_{\alpha}) < \sup_{0 < p < 1} R(p, T_0)$. Is the estimator T_0 minimax? (12)

4. Let a and k be unknown positive integers. Let f_{θ} denote the density of uniform distribution on $(\theta - 1/2, \theta + 1/2), \theta \in \mathbb{R}$. For $\theta_1 = a, \theta_2 = a + 1, \dots, \theta_k = a + k - 1$, let

$$f_k(x) := \frac{1}{k} \sum_{j=1}^k f_{\theta_j}(x), \quad k = 1, 2, \cdots.$$

Let X_1, X_2, \dots, X_m be i.i.d. observations from $f_k, k = 1, 2, \dots, m$.

- (a) Find the MLE \hat{k} of k. (7)
- (b) Show that k is consistent for k, as $m \to \infty$.

(5)

(3)

5. Let X_1, X_2, \dots, X_n be i.i.d. r.v.'s from the parametric density

$$f_{\theta}(x) := 2\theta x e^{-\theta x^2}, \quad x > 0, \ \theta > 0.$$

- (a) Derive UMP unbiased test of size $0 < \alpha < 1$, for testing $H_0: \theta = 1$, vs. $H_1: \theta \neq 1$, in the fullest possible detail. (8)
- (b) Discuss the corresponding confidence interval for θ . What optimality properties does it have, if any. (4)

6. Let Y_1, \dots, Y_m and Z_1, \dots, Z_m be mutually independent observable r.v.'s with $Y_i \sim N(\xi_i, \sigma^2), Z_i \sim N(\xi_i + c, \sigma^2), i = 1, 2, \dots, m$. Here, $\xi_1, \xi_2, \dots, \xi_m$, c and σ^2 are all unknown parameters. Consider the problem of testing

$$H : \xi_1 = \xi_2 = \dots = \xi_m$$
 vs. $K : \text{not } H.$

- (a) Obtain the explicit expression for the residual sum of squares, SSE, under the full model $H \cup K$ and show that it is non-negative, and describe the *F*-test for the above problem in complete detail. (8)
- (b) Is the estimator SSE/(m-1) consistent for σ^2 , as $m \to \infty$? (4)
- (c) Consider the alternatives where $m^{-1} \sum_{i=1}^{m} (\xi_i \bar{\xi})^2 \to \psi > 0$, as $m \to \infty$. Show that the power of the test in (a) for these alternatives converges to 1, as $m \to \infty$ (4)

7. Recall that in the regression model $Y_i = c_i\beta + \tau_i \eta_i$, where the r.v.'s η_i 's have zero mean and unit variance, and c_i , $\tau_i > 0$ are known numbers, the weighted least square estimator of β is obtained by minimizing the sum $\sum_{i=1}^{n} \tau_i^{-2} (Y_i - c_i b)^2$ w.r.t. b.

Let $0 < x_1 < x_2 < \cdots < x_n$ be known positive numbers. Suppose that the observations Y_i 's are generated by the following model:

$$Y_i = x_i \beta + U_i, \quad U_i = e_1 + e_2 + \dots + e_i, \quad i = 1, 2, \dots, n,$$

where e_i , $1 \le i \le n$ are i.i.d. r.v.'s with mean 0 and $\operatorname{Var}(e_i) = \sigma^2(x_i - x_{i-1}), i = 1, \dots, n$, where $x_0 = 0$.

- (a) Obtain the weighted least square estimator $\hat{\beta}$ of β and show that it depends only on x_n and Y_n . Prove the consistency of $\hat{\beta}$ for β . Explicitly state the assumptions needed for consistency, if any. (10)
- (b) Derive an expression for the test statistic for testing $H_0: \beta = 1$ vs $H_1: \beta > 1$ and describe the distribution of the test statistics under H_0 . (5)
- 8. (a). Let X, X_i , $i \ge 1$ be i.i.d. r.v.'s with EX = 0, $\sigma^2 := EX^2$, $\tau := EX^4 < \infty$. Let

$$T_n := \left(n^{-1} \sum_{i=1}^n X_i^2\right)^{1/2}.$$

Derive the asymptotic distribution of $n^{1/2}(T_n - \sigma)$.

(b). Suppose a sequence of r.v.'s Y_n is such that for some constants a and b > 0, $n^{1/2}(Y_n - a)$ converges in distribution to $\mathcal{N}(0, b^2)$. Then are the following statements true or false, in general. (4)

(7)

(i) $\lim_{n\to\infty} EY_n = a$. (ii) $\lim_{n\to\infty} \operatorname{Var}(Y_n) = b$.