STT 871-872 Fall Preliminary Examination Wednesday, August 28, 2013 12:30 - 5:30 pm

1. Consider the set up in which our data are $(x_i, Y_i, w_i), 1 \le i \le n$, obeying the model

$$Y_i = \beta_1 + w_i \beta_2 + x_i \beta_3 + \varepsilon_i, \qquad i = 1, 2, \cdots, n,$$

where w_1, w_2, \dots, w_n and x_1, x_2, \dots, x_n are known constants; β_1, β_2 , and β_3 are real parameters; and $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ are i.i.d. $N(0; \sigma^2)$ random errors. Assume that $\sum_{i=1}^{n} w_i = 0 = \sum_{i=1}^{n} x_i$. For notation, let $S_{ww} = \sum w_i^2, S_{xx} = \sum x_i^2, S_{wx} = \sum w_i x_i$ and so on.

a. Write the model in matrix form as $\mathbf{Y} = \mathbf{X}\beta + \varepsilon$ describing entries in the matrix \mathbf{X} . [5] b. If n > 3, show that \mathbf{X} will be full rank iff $D = S_{xx}S_{ww} - S_{wx}^2 \neq 0$. [5]

c. Assuming X is of full rank, give an explicit formula for the least squares estimator β of $\beta = (\beta_1, \beta_2, \beta_3)$ (It will involve terms such as S_{xx}, S_{xY} , etc.). You may use the following fact. [5]

$$(\mathbf{X'X})^{-1} = \begin{pmatrix} \frac{1}{n} & 0 & 0\\ 0 & S_{xx}/D & -S_{wx}/D\\ 0 & -S_{wx}/D & S_{ww/D} \end{pmatrix}.$$

2. Let X, X_1, \ldots, X_n be i.i.d. r.v.'s such that for $\theta > 0$, they have common density (with respect to Lebesgue measure),

$$f_{\theta}(x) = x\theta^2 e^{-\theta x}, \qquad x > 0;$$

= 0, $\qquad x \le 0.$

Let $p = g(\theta) = (1 + \theta)e^{-\theta} = P_{\theta}(X > 1)$. The two natural estimators of p are

$$\tilde{p}_n = n^{-1} \sum_{i=1}^n I(X_i > 1), \quad \text{and} \quad \hat{p}_n = g(\hat{\theta}_n),$$

where $\hat{\theta}_n$ is the maximum likelihood estimator of θ .

a. Find the limiting distribution of $\sqrt{n}(\tilde{p}_n - p)$. [5]

[5]

- b. Find the limiting distribution of $\sqrt{n}(\hat{\theta}_n \theta)$,
- c. Derive the asymptotic relative efficiency of \tilde{p}_n with respect to \hat{p}_n . [5]

3. Let $\theta > 0$ and X_1, X_2, \ldots , be i.i.d. having uniform distribution on $(0, \theta)$. Let P_n and Q_n denote the joint distributions of X_1, X_2, \cdots, X_n , when $\theta = 1$, and when $\theta = 1 - 1/n^p$,

respectively, where p is a fixed positive constant.

a. For which values of p are $\{P_n\}$ and $\{Q_n\}$ mutually contiguous? [5]

b. When $\{P_n\}$ and $\{Q_n\}$ mutually contiguous, identify the limit points of the distribution of dQ_n/dP_n , under P_n . [5]

4. Let X be a $N(\theta, 1)$ r.v., with θ in the set of integers $\mathbf{N} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}$. Consider the problem of estimating of θ with the loss function $L(\theta, a)$ as the 0-1 loss.

a. Suppose an estimator T is equivariant, i.e., satisfies T(x+k) = T(x) + k, for all $x \in \mathbb{R}$ and all $k \in \mathbb{N}$. Show that the risk function of T is constant in θ . [5]

b. Let S(X) = X - [X], where [X] is the integer nearest to X. Show that every equivariant estimate is of the form [X] - v(S(X)), for some measurable function v of S(X). [5]

[5]

[5]

c. Find the minimum risk equivariant estimate of θ .

d. Which of the three estimates X, [X], and S, are (i) sufficient for θ , (ii) complete sufficient for θ . [5]

5. Suppose that X_1, X_2, \dots, X_n are independent r.v.'s, with X_i having $N(\mu_i, 1)$ distribution. Consider the following hypotheses:

(1)
$$H_0: \mu_i = 0$$
 for all $i = 1, \dots, n$, vs.
 $H_1: \mu_i = ab_i$ with b_i i.i.d. Bernoulli (p) , independent of all $X_j, 1 \le j \le n$,

where $a \in \mathbb{R}$ and $0 are known constants. Let <math>\mu = (\mu_1, \dots, \mu_n)^T$. Note that under the null hypothesis, $\mu = \mathbf{0}_{n \times 1}$.

a. Find the marginal distributions of X_1, X_2, \dots, X_n under H_1 . [5]

b. Show that the likelihood ratio statistic for testing (1) is

$$W = \prod_{i=1}^{n} \left\{ 1 + p \left(\exp(-\frac{a^2}{2}) \exp(aX_i) - 1 \right) \right\}$$

c. For a given c > 0, let $\varphi_c = I\{W > c\}$ be a test function corresponding to the hypotheses (1). Namely, the test φ_c rejects H_0 if W > c and accept H_0 , if $W \leq c$. Define the risk of φ_c to be

$$\operatorname{Risk}_{\pi}(\varphi_c) = P_0(W > c) + E_{\pi} \left[P_{\mu}(W \le c | \mu) \right].$$

where P_0 is the probability measure under the null hypothesis and P_{μ} is the probability measure under the alternative conditional on μ , and the expectation is taken with respect to the distribution π of $\mu = (ab_1, ab_2, \dots, ab_n)$. Show that the test $\varphi_1 = I\{W > 1\}$ minimizes the risk Risk_{π}(φ_c) w.r.t. c > 0. [5] d. Show that the risk of φ_1 has a lower bound

$$\operatorname{Risk}_{\pi}(\varphi_1) \ge 1 - \frac{1}{2}\sqrt{E_0(W^2) - 1},$$

where the expectation E_0 is taken with respect to P_0 .

6. Let $\mathcal{X} = \{1, 2, \dots, k\}$, with $k < \infty$ and $\{P_{\theta}, \theta \in \mathbb{R}\}$ be a family of probabilities on \mathcal{X} such that $P_{\theta}(x) > 0$, for all $\theta \in \mathbb{R}$ and $x \in \mathcal{X}$.

a. Suppose that T_n is a sequence of estimates such that $\sup_n E_{\theta_0}T_n^2 < \infty$. Show that there is a subsequence T_{n_i} and T such that, for all θ , $E_{\theta}T_{n_i} \longrightarrow E_{\theta}T$. [5]

b. Suppose that there is no unbiased estimate of the function $g(\theta)$. Let T_n is a sequence of estimates which are asymptotically unbiased, i.e. for all θ , $E_{\theta}T_n \longrightarrow g(\theta)$. Show that [5]for all θ , $\operatorname{Var}_{\theta}(T_n) \longrightarrow \infty$.

7. Suppose $\theta = (\theta_1, \theta_2)$ is a bivariate parameter and the parameter space is $\Theta = \Theta_1 \times \Theta_2$. Suppose that $\{f(x|\theta): \theta \in \Theta\}$ is family of densities such that $f(x|\theta) > 0$ for all x, θ . Suppose T_1 is sufficient for θ_1 , whenever θ_2 is fixed and known and T_2 is sufficient for θ_2 , whenever θ_1 is fixed and known. Show that (T_1, T_2) is sufficient for (θ_1, θ_2) . |5|

8. Let X_1, X_2, \ldots, X_n be i.i.d observations from $U(\theta - 1, \theta + 1)$ with θ in the set of integers $\mathbf{N} = \{\cdots, -2, -1, 0, 1, 2, \cdots\}.$

- a. Find a MLE $\hat{\theta}_n$ such that under 0-1 loss $\hat{\theta}_n$ has constant risk. [5]
- b. Is it consistent? $\left[5\right]$

c. Show that $\hat{\theta}_n$ is minimax. [5]

d. Show that $\hat{\theta}_n$ is not admissible by constructing an estimate that has 0 risk at $\theta = 0$. $\left[5\right]$

 $\left[5\right]$