STT 871-872 Fall Preliminary Examination Wednesday, August 28, 2013
 12:30-5:30 pm

1. Consider the set up in which our data are $\left(x_{i}, Y_{i}, w_{i}\right), 1 \leq i \leq n$, obeying the model

$$
Y_{i}=\beta_{1}+w_{i} \beta_{2}+x_{i} \beta_{3}+\varepsilon_{i}, \quad i=1,2, \cdots, n,
$$

where $w_{1}, w_{2} \cdots, w_{n}$ and $x_{1}, x_{2}, \cdots, x_{n}$ are known constants; β_{1}, β_{2}, and β_{3} are real parameters; and $\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}$ are i.i.d. $N\left(0 ; \sigma^{2}\right)$ random errors. Assume that $\sum_{1}^{n} w_{i}=0=\sum_{1}^{n} x_{i}$. For notation, let $S_{w w}=\sum w_{i}^{2}, S_{x x}=\sum x_{i}^{2}, S_{w x}=\sum w_{i} x_{i}$ and so on.
a. Write the model in matrix form as $\mathbf{Y}=\mathbf{X} \beta+\varepsilon$ describing entries in the matrix \mathbf{X}.
b. If $n>3$, show that \mathbf{X} will be full rank iff $D=S_{x x} S_{w w}-S_{w x}^{2} \neq 0$.
c. Assuming X is of full rank, give an explicit formula for the least squares estimator $\hat{\beta}$ of $\beta=\left(\beta_{\mathbf{1}}, \beta_{\mathbf{2}}, \beta_{\mathbf{3}}\right)$ (It will involve terms such as $S_{x x}, S_{x Y}$, etc.). You may use the following fact.

$$
\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\left(\begin{array}{ccc}
\frac{1}{n} & 0 & 0 \\
0 & S_{x x} / D & -S_{w x} / D \\
0 & -S_{w x} / D & S_{w w / D}
\end{array}\right)
$$

2. Let X, X_{1}, \ldots, X_{n} be i.i.d. r.v.'s such that for $\theta>0$, they have common density (with respect to Lebesgue measure),

$$
\begin{aligned}
f_{\theta}(x) & =x \theta^{2} e^{-\theta x}, & & x>0 \\
& =0, & & x \leq 0
\end{aligned}
$$

Let $p=g(\theta)=(1+\theta) e^{-\theta}=P_{\theta}(X>1)$. The two natural estimators of p are

$$
\tilde{p}_{n}=n^{-1} \sum_{i=1}^{n} I\left(X_{i}>1\right), \quad \text { and } \quad \hat{p}_{n}=g\left(\hat{\theta}_{n}\right),
$$

where $\hat{\theta}_{n}$ is the maximum likelihood estimator of θ.
a. Find the limiting distribution of $\sqrt{n}\left(\tilde{p}_{n}-p\right)$.
b. Find the limiting distribution of $\sqrt{n}\left(\hat{\theta}_{n}-\theta\right)$,
c. Derive the asymptotic relative efficiency of \tilde{p}_{n} with respect to \hat{p}_{n}.
3. Let $\theta>0$ and X_{1}, X_{2}, \ldots, be i.i.d. having uniform distribution on $(0, \theta)$. Let P_{n} and Q_{n} denote the joint distributions of $X_{1}, X_{2}, \cdots, X_{n}$, when $\theta=1$, and when $\theta=1-1 / n^{p}$,
respectively, where p is a fixed positive constant.
a. For which values of p are $\left\{P_{n}\right\}$ and $\left\{Q_{n}\right\}$ mutually contiguous?
b. When $\left\{P_{n}\right\}$ and $\left\{Q_{n}\right\}$ mutually contiguous, identify the limit points of the distribution of $d Q_{n} / d P_{n}$, under P_{n}.
4. Let X be a $N(\theta, 1)$ r.v., with θ in the set of integers $\mathbf{N}=\{\cdots,-2,-1,0,1,2, \cdots\}$. Consider the problem of estimating of θ with the loss function $L(\theta, a)$ as the $0-1$ loss.
a. Suppose an estimator T is equivariant, i.e., satisfies $T(x+k)=T(x)+k$, for all $x \in \mathbb{R}$ and all $k \in \mathbf{N}$. Show that the risk function of T is constant in θ.
b. Let $S(X)=X-[X]$, where $[X]$ is the integer nearest to X. Show that every equivariant estimate is of the form $[X]-v(S(X))$, for some measurable function v of $S(X)$.
c. Find the minimum risk equivariant estimate of θ.
d. Which of the three estimates $X,[X]$, and S, are (i) sufficient for θ, (ii) complete sufficient for θ.
5. Suppose that $X_{1}, X_{2}, \cdots, X_{n}$ are independent r.v.'s, with X_{i} having $N\left(\mu_{i}, 1\right)$ distribution. Consider the following hypotheses:

$$
\begin{align*}
& H_{0}: \mu_{i}=0 \quad \text { for all } i=1, \cdots, n, \quad \text { vs. } \tag{1}\\
& H_{1}: \mu_{i}=a b_{i} \text { with } b_{i} \text { i.i.d. } \operatorname{Bernoulli}(p), \text { independent of all } X_{j}, 1 \leq j \leq n,
\end{align*}
$$

where $a \in \mathbb{R}$ and $0<p<1$ are known constants. Let $\mu=\left(\mu_{1}, \cdots, \mu_{n}\right)^{T}$. Note that under the null hypothesis, $\mu=\mathbf{0}_{n \times 1}$.
a. Find the marginal distributions of $X_{1}, X_{2}, \cdots, X_{n}$ under H_{1}.
b. Show that the likelihood ratio statistic for testing (1) is

$$
W=\prod_{i=1}^{n}\left\{1+p\left(\exp \left(-\frac{a^{2}}{2}\right) \exp \left(a X_{i}\right)-1\right)\right\} .
$$

c. For a given $c>0$, let $\varphi_{c}=I\{W>c\}$ be a test function corresponding to the hypotheses (1). Namely, the test φ_{c} rejects H_{0} if $W>c$ and accept H_{0}, if $W \leq c$. Define the risk of φ_{c} to be

$$
\operatorname{Risk}_{\pi}\left(\varphi_{c}\right)=P_{0}(W>c)+E_{\pi}\left[P_{\mu}(W \leq c \mid \mu)\right]
$$

where P_{0} is the probability measure under the null hypothesis and P_{μ} is the probability measure under the alternative conditional on μ, and the expectation is taken with respect to the distribution π of $\mu=\left(a b_{1}, a b_{2}, \ldots, a b_{n}\right)$. Show that the test $\varphi_{1}=I\{W>1\}$ minimizes the risk $\operatorname{Risk}_{\pi}\left(\varphi_{c}\right)$ w.r.t. $c>0$.
d. Show that the risk of φ_{1} has a lower bound

$$
\operatorname{Risk}_{\pi}\left(\varphi_{1}\right) \geq 1-\frac{1}{2} \sqrt{E_{0}\left(W^{2}\right)-1}
$$

where the expectation E_{0} is taken with respect to P_{0}.
6. Let $\mathcal{X}=\{1,2, \cdots, k\}$, with $k<\infty$ and $\left\{P_{\theta}, \theta \in \mathbb{R}\right\}$ be a family of probabilities on \mathcal{X} such that $P_{\theta}(x)>0$, for all $\theta \in \mathbb{R}$ and $x \in \mathcal{X}$.
a. Suppose that T_{n} is a sequence of estimates such that $\sup _{n} E_{\theta_{0}} T_{n}^{2}<\infty$. Show that there is a subsequence $T_{n_{i}}$ and T such that, for all $\theta, E_{\theta} T_{n_{i}} \longrightarrow E_{\theta} T$.
b. Suppose that there is no unbiased estimate of the function $g(\theta)$. Let T_{n} is a sequence of estimates which are asymptotically unbiased, i.e. for all $\theta, E_{\theta} T_{n} \longrightarrow g(\theta)$. Show that for all $\theta, \operatorname{Var}_{\theta}\left(T_{n}\right) \longrightarrow \infty$.
7. Suppose $\theta=\left(\theta_{1}, \theta_{2}\right)$ is a bivariate parameter and the parameter space is $\Theta=\Theta_{1} \times \Theta_{2}$. Suppose that $\{f(x \mid \theta): \theta \in \Theta\}$ is family of densities such that $f(x \mid \theta)>0$ for all x, θ. Suppose T_{1} is sufficient for θ_{1}, whenever θ_{2} is fixed and known and T_{2} is sufficient for θ_{2}, whenever θ_{1} is fixed and known. Show that $\left(T_{1}, T_{2}\right)$ is sufficient for $\left(\theta_{1}, \theta_{2}\right)$.
8. Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d observations from $U(\theta-1, \theta+1)$ with θ in the set of integers $\mathbf{N}=\{\cdots,-2,-1,0,1,2, \cdots\}$.
a. Find a MLE $\hat{\theta}_{n}$ such that under 0-1 loss $\hat{\theta}_{n}$ has constant risk.
b. Is it consistent?
c. Show that $\hat{\theta}_{n}$ is minimax.
d. Show that $\hat{\theta}_{n}$ is not admissible by constructing an estimate that has 0 risk at $\theta=0$. [5]

