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Abstract 
 
Expression quantitative trait loci (eQTL) mapping holds great promise in elucidating gene 
regulations and predicting gene networks associated with complex phenotypes. We propose a 
systems biology approach by incorporating prior pathway information into an eQTL mapping 
framework, to identify novel pathway regulators that mediate pathway expression changes. We 
model gene expressions in a pre-defined biological pathway as a multivariate response to test the 
joint variation changes among different genotype categories at a locus. The method is motivated 
and applied to a yeast dataset.  Significant pathway regulators and regulation hotspots are 
detected. The proposed method provides a powerful tool for understanding gene regulations in a 
pathway level. 
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1 Introduction 

Traditional quantitative trait loci (QTL) mapping has been focused on identifying genetic loci 
responsible for the phenotypic changes of a trait. Such studies are designed to detect linkage or 
association between genetic markers and the functional (causal) variants responsible for the 
phenotypic changes, and fail to disentangle the functional mechanisms of variants due to the 
regulation of other genes. In addition, the number and effect size for the detected alleles for most 
complex traits are very limited, leaving a large faction unaccounted for from a systems biology 
perspective. 

Recent advances on microarray technology open an alternative front for multiple gene 
discoveries by studying thousands of gene expression profiles simultaneously under certain 
conditions or treatments. As an intermediate process that associates transcriptional profiles with 
an organism’s trait variation, analysis of gene expression holds great promise to infer genetic 
regulatory changes accompanying a disease trait, and serves as an alternative to identify novel 
relationships among genes. A number of studies have shown that gene expressions are 
inheritable traits, thus can be used for genetic mapping (e.g., Brem et al., 2002; Cheung et al. 
2003; Schadt et al. 2003). The two endeavors, genetic mapping and gene expression analysis, 
were recently merged together through a procedure called expression QTL (eQTL) mapping in 
which each gene expression is considered as one trait for QTL identification (Schadt et al., 2003).  

Most current eQTL mapping studies treat each gene expression as one single trait. The so 
called single trait analysis may not be powerful enough to identify genetic variants responsible 
for gene expression changes, given that genes function in networks. Wessel et al. (2007) found in 
their eQTL mapping study that many SNPs are responsible for the expression change of genes 
belonging to a certain pathway. It is commonly recognized that genes in a biological pathway, 
e.g. metabolic pathway, gene regulation pathway or signal transduction pathway, “cooperate” 
with each other and function as a team to fulfill their designated tasks. Differential expression of 
one gene, especially those that play key roles in the pathway, would influence expression levels 
of other genes in the same pathway. Thus, a signal perturbation of a particular gene in a pathway 
would induce a cascade of biochemical events that affects all, or many of the other genes 
belonging to the same network or pathway. Take this functional mechanism of a pathway into 
account, the currently broad claims of cis- or trans-regulation detected with the single trait 
analysis might not be sufficient and efficient enough to capture the relationship between genetic 
variations and gene expressions. 

Mootha et al. (2003) have previously showed that focusing on expression data in terms of 
predefined pathways can provide valuable insights not easily achievable by methods focused on 
individual genes. Many scientists are thus interested in identifying which genetic variant 
mediates the expression change of a pathway. The identified regulator, termed pathway regulator, 
provides additional information about the function of gene regulation from a systems biology 
perspective. A number of eQTL studies have taken pathway information into account (e.g. Lee et 
al., 2007; Wu et al., 2008). Most of these studies follow a two-stage procedure: do a single trait 
analysis in the first stage and then perform a gene set enrichment analysis (GSEA) to test if an 
expression pathway is enriched at a particular locus. The two-stage approach obviously does not 
take the expression correlation information into account; even genes in a pathway are commonly 
correlated. Moreover, the accuracy of the second stage enrichment analysis depends heavily on 
the results of the first stage. When genes function jointly but with small marginal effects, this 
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approach may fail to identify important pathway regulators. The relative merits of multivariate 
analysis over the univariate analysis is clearly demonstrated in the example given in Johnson and 
Wichern (2007, example 6.16 and 6.17 on page 333-335). Another disadvantage of the two-stage 
analysis is the multiplicity issue. With thousands of gene expression profiles, single trait analysis 
needs to adjust for the large number of tests when declaring significance. This may lead to a low 
power in identifying genes with small marginal effects, which again affects the power of the 
second stage enrichment analysis. 

Considering the limitation of the current single-trait-based analysis and motivated by real 
biological phenomenon, we propose to identify common pathway regulators by treating gene 
expressions belonging to a common pathway as a multivariate response, and focus our interests 
in identifying pathway regulators that mediate the expression changes of a particular biological 
pathway or process. More importantly, when multiple gene expressions are jointly considered, 
the multiple testing burden in a single trait analysis is potentially reduced, hence leading to 
increased power.  For the illustrations in the paper we restrict ourselves to one yeast dataset 
(Brem and Kruglyak, 2005). Our analysis indicates there are potential pathway regulators in 
regulating pathway gene expressions. Significant pathway regulator hotspots are identified. We 
also performed an enrichment analysis to test which genetic pathway is enriched in regulating the 
expression change of a certain expression pathway, and found significantly enriched genetic 
pathways in regulating other pathway gene expressions. 
 
2 Methods 
2.1 eQTL dataset 
The yeast dataset was generated from 112 meiotic recombinant progeny of two yeast strains: 
BY4716 (BY; a laboratory strain) and RM11-1a (RM; a natural isolate), aimed to understanding 
the genetic architecture of gene expressions. The dataset contains expression profiles of 6216 
gene expression traits and 2956 SNP marker genotype profiles. For details about the dataset, see 
Brem and Kruglyak (2005). 

In the yeast genotype profiles, genotypes of neighboring markers tend to be very similar and 
some are even identical.  For those SNP markers showing high correlations, we follow the 
strategy proposed by Sun (Sun, 2007) to construct marker blocks, in order to remove redundancy 
and reduce the genotype dimension. Specifically, we 

i) Merge markers into marker blocks: Define  and  as 
vectors of two SNP genotype profiles over n individuals. Each SNP is coded as 0 or 1 
depending on whether it is inherited from the BY or the RM strain. The Manhattan distance 
between the two SNP genotype vectors is defined as  
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The value of MD indicates the degrees of overlap between the two SNP markers.  A small 
value indicates much overlap between the two markers. We include a SNP marker into a 
marker block if the Manhattan distance between a marker and any markers in its 
neighborhood is less than a predefined value d. In our analysis, we set d = 1. Other values like 
1.25, 1.5 could also be used, depending on how strict constrain you want to put on the marker 
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similarity. If either ui or vi is missing for any individual i, the term |ui−vi| is excluded from 
the summation, and the MD measure is adjusted by multiplying a factor n/(n-m) (Sun, 2007), 
where m is the total number of terms been excluded. With d=1, we ended up with 1168 
marker blocks.

 ii) Define genotype profiles for each marker block: We first find consensus for each marker block 
and then dichotomize it. An individual genotype is set to 0 or 1 if at least 75% of the 
markers in a block equals to 0 or 1 for that individual. Otherwise it is set as missing. 
Individuals with missing genotypes will be eliminated.  

Quite often no markers belong to any blocks, and some marker blocks may consist of multiple 
markers. We interchange the two words “marker” and “marker block” in the following presentation, 
but both terms represent one set of marker. 

 
2.2 Genome-wide pathway regulator identification 
We focused our analysis on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We 
extracted 99 pathways from the R package: YEAST. Let Yi = {yi1,··· ,yip}T  be a vector of gene 
expressions in a pre-defined pathway for the ith subject, where p is the size of the pathway.  We 
assume that the 1168 SNP marker blocks are causal or closely linked to the genetic variants 
responsible for the gene expression changes. For each SNP marker, there are two genotype categories, 
with each one corresponding to one multivariate expression profile. To test the differential expression 
pattern between different genotypes at a locus, a Hotelling’s T2 test can be applied which has the form 
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and are the sample mean expression vector and sample size for genotype coded 

as j (j = 0, 1). Assuming equal variance for expression values in the two genotype categories, pooled 
variance estimation S

jn

pooled can be used in defining the 2T statistics. The 2T test is performed for all 99 
KEGG pathways at every marker across the whole genome. Noted that the 2T test is a two sided test. Even 
though genes in the same pathway may be up- or down-regulated, the test is still valid since we are 
interested in testing the mean vector difference between two genotype groups.  

Theoretically the T2 statistic follows a scaled F distribution (Johnson and Wichern, 2007). To 
control the family-wise error rate across the whole genome, we perform a permutation test to 
determine the genome-wide cutoff.  When doing permutations, each row vector of gene expression 
is considered as one observation to retain the gene correlation information within a pathway. Then we 
fix the genotype information and randomly sample expression vectors without replacement. This 
random reshuffling procedure disturbs the relationship between gene expressions and genotypes.  
One thousand permutations are conducted to generate a null distribution for the T2 statistic. For each 
permutation, T2 values for all marker blocks are calculated, and the maximum T2 value is recorded. 
The 1000 maximum T2 values represent the genome-wide null distribution of the T2 statistic in which 
the 95th percentile is considered as the genome-wide cutoff. A SNP marker block is considered as a 
pathway regulator if the observed T2 value is greater than the cutoff value. 
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The T2 test is performed when the number of genes in a pathway is less than the sample size. 
However, in real application some pathways may contain large number of genes (p > n). Given the 
small sample size (total of 112) in the yeast dataset, this dose happen (e.g., pathway ‘04111’ and 
‘03010’). When this happens, instead of using the T2 statistic, we can apply the F statistic proposed 
by Zapala and Schork (2006). Consider a multivariate regression model 

                                                        εβ += XY                                                                         (2) 
where Y is a multivariate response (e.g., gene expressions in a pathway), X is the design matrix for 
SNP genotypes. When only one SNP marker is considered, X is an n × 2 matrix with ones in the 
first column and numerical genotype coding in the second column. The F statistic proposed by 
Zapala and Schork (2006) has the form 
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where H is the hat matrix of the multivariate regression model in (2), and  
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ijij daA −== , which is a so called distance matrix (or dissimilarity matrix) that measures 

distance (or dissimilarity) between expression levels of genes in a pathway; 1 is a column vector of 
ones and I  is an identity matrix. An easy way to form the distance matrix is to use the correlation 
matrix and transform them with simple transformation technique, i.e. )1(2 ijij rd −=  where  is 

the correlation between genes i and j (Zapala and Schork, 2006). 
ijr

      The F statistic is especially useful when the number of parameters p is larger than the sample 
size n (Zapala and Schork, 2006).  However, it is not trivial to find the theoretical distribution of 
the F statistic. Here, we still conduct a permutation procedure to assess the statistical significance. 
When p = 1, the F and the T2 statistics are identical if the distance matrix is computed by the 
standard Euclidean distance measure. For pathways with small number of genes, results obtained 
with the two statistics are also very consistent. However, the F method is more time demanding due 
to large matrix operation for pathways with large number of genes. Thus, we only apply this method 
to pathways with p > n. 

2.3 Pathway regulation hotspot detection 
An eQTL hotspot is defined as a genetic region where a large number of gene expressions are mapped to 
than random (Morley et al., 2004; Breitling et al., 2008). In traditional eQTL hotspot detection, genomic 
regions are generally defined as “bins” with each “bin” covering a genomic interval in a length of, 
say 5Mb (in humans) (Morley et al., 2004). Similar as the regular eQTL hotspot detection, we can 
also identify pathway regulation hotspot. Let ))1168(,,1(, == LlNl  be the number of pathways 

which are significantly mapped to marker block l . Let ∑=
=

L

l lNN
1

 be the total number of 

pathways significantly mapped to the whole genome. Then a Poisson distribution can be assumed for 
each  with the mean parameter λ estimated by the empirical mean . Consider each marker lN LN /
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block as one potential hotspot, the probability of observing  or more significant pathways 
mapped to a marker block can be considered as the hotspot p-value, denoted as . Take the 
Bonferroni correction at the 0.05 genome-wide significant level, a marker block is considered as a 
pathway regulation hotspot if . Alternatively, we can combine neighborhood marker 
blocks as one synthetic block with a pre-defined length, e.g., 20kb length. Then the total genome can 
be divided into K (< L) segments. Following the same procedure described above, pathway 
regulation hotspots can also be tested. 

lN

lp

Lpl /05.0<

      Relaxing the Poisson assumption, we can also use a nonparametric permutation procedure to 
identify regulation hotspots. Let  be a matrix which contains the mapping results, where 

 if pathway  is significantly mapped to locus 
)( ijqQ =

1=ijq )99,,2,1(, =ii )1168,,1(, =jj  and 0=ijq  
otherwise.  We randomly permute the positions for 1’s for each row of matrix Q and generate 
1000 permuted matrices  while keeping the row sums of all these ’s the same as 
the row sum of original observed matrix Q, i.e.  
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The distribution of column sums for each permuted matrix is recorded. A locus is declared as a 
regulation hotspot if the observed count at that locus is larger than the 95th percentile of the 
permuted distribution.  

2.4 Genetic pathway enrichment analysis 
In a recent genome-wide association study for identifying disease risk variants, Wang et al. (2007) 
proposed a pathway-based association study to map genetic pathways (GPs) involving multiple genetic 
variants functioning together to give rise to a disease phenotype. In reality, we expect certain genetic 
pathways be enriched in responsible for the expression change of an expression pathway. By genetic 
pathway we mean SNP variants that belong to a common pathway. Here we use GP to denote a 
genetic pathway and use EP to denote an expression pathway. The purpose of this analysis is to 
identify which GP is enriched in mediating the expression change of an EP. For an enriched GP 
corresponding to an EP, we anticipate the expression variation of the EP can be explained by the 
joint function of SNPs in the GP. 
      From the genome-wide analysis, we can obtain a list of significant pathway regulators 
(markers) corresponding to an EP. Total 1465 unique genes (including annotated and non-annotated) 
are extracted from the whole genome.  GPs are then grouped according to the KEGG pathway 
information. We call a gene is significant if there is at least one marker in this gene is significant. It 
is possible that several markers in a gene are significant. Similarly, there are total of 99 GPs 
retrieved from the KEGG database. Fixing an EP, we test which GP is enriched to explain the 
expression variation for that EP. Let  be the total number of genes that are significantly associated 
with an EP. Let  be the number of genes that belong to a GP, among which S are significantly 
associated with an EP. Then we can formulate a 2×2 table shown in Table 1. The Fisher’s exact test 

Sn

Gn
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can be applied to calculate the enrichment p-value which is then compared with a significance level α. 
We use a less conservative α value, i.e., α = 0.01 to declare GP enrichment.  

 
No. of Sig. gene
No. of non-sig. g
Total 

K (= 1465) is the
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Table 1: A simple layout for testing genetic pathway enrichment 

No. of genes in a GP No. of genes not in a GP Total 
s S nS + S nS

enes nG - S K - nG - nS + S K - nS

nG K - nG K 

 total number of unique genes covering the marker blocks across the genome.  
 

regulators 
99 pathways retrieved from the Yeast package in R for this dataset. The names of 
re listed in the supplement table (Suppl. - Table 1).  At each marker block, a T2 or 
lated for each gene expression pathway, depending on the size of the pathway. We 
 with one pathway: MAPK signaling pathway. Figure 1 shows the T2 profile plot 
 across the 16 yeast chromosome. The horizontal dash-dotted line in the plot 
genome-wide threshold by permutation tests. Genomic positions where the T2 peaks 
old are considered as potential pathway regulators. For this pathway, we identified 
gulators on chromosome 2, 3, 5, 8, 14, 15 and 16. A full plot of the T2 or F profiles for 
ys are listed in the supplement file (Suppl.- Figure 1). All the T2 (or F) values as 
e-wide cutoffs are log transformed with base 10. In Suppl.-Figure 1, the minimum 
cal axis is truncated to the mean of the log10 transformed values. The cutoff values 
re also labeled. 
in the supplemental figure (Suppl. - Figure 1), we can see consistent strong 
ls on chromosome 3, 14 and 15 which indicates that there are important pathway 
 on these three chromosomes.  Since a large number of EPs are regulated by these 
re potentially “master” pathway regulators. For example, SNP marker YCL009C 
ILV6) on chromosome 3 regulates 39 EPs and its neighborhood genes (e.g., genes 
) also regulate large number of EPs. 
s how many regulators each EP has.  All the 99 EPs are plotted in the horizontal 
al axis indicates the number of regulators each pathway has. We can clearly see that 

f some pathways are affected by many genetic variants. For example, pathway 62 
ism pathway) has 98 regulators. Some pathways are not regulated by any variants, for 
 60 (ABC transporters - General) and 90 (Two-component system - Organism-

at many markers are highly correlated in this yeast dataset. Even though we merged 
h large proportion of overlaps, we still expect large number of markers to be highly 
eighborhood markers. Thus, Fig. 2 only gives us a rough idea of how each pathway 
ffected by many regulators. Whenever there is a causal regulator presented in a 
due to strong linkage disequilibrium (LD) between neighborhood markers, its 
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neighborhood markers might also show strong association signals. Thus, the true regulators for each 

c

EP might be smaller than the reported numbers.  

Figure 1: The T2 profile plot across the entire yeast genome (16 chromosomes). The dash-dotted 
horizontal line is the 5% genome-wide permutation cutoff. The vertical dotted lines separate different 
chromosome regions. The peaks of the T2 profiles that pass the cutoff correspond to potential pathway 
regulation loci (e.g. on chromosome 2, 3, 5, 8, 14, 15 and 16). Both the cutoff and the T2 values are log10 
 transformed. 

3.2 Pathway regulation hotspots 
In eQTL mapping study, people are often interested in knowing which genomic region or interval 
plays an important role in regulating gene expressions. The so identified regions or intervals are 
alled eQTL hotspots (Morley et al., 2004). Since we merged some markers to form marker blocks, 

we simply treat each block as one potential pathway regulation hotspot and assess its significance. We 
count the number of EPs regulated by each marker block across the genome. The average number of 
association for one marker block is , and none of the marker block was expected to contain 
association with more than 10 pathways by chance at the 5% genome-wide significant level after 
Bonferroni correction (0.05/1168). We detect a total number of 76 pathway regulation hotspots. As 
shown in Figure 3 the distribution of the identified hotspots. The horizontal dash-dotted line 
indicates the threshold calculated from the Poisson model. The vertical bars indicate the number of 
pathways regulated by each marker block. Significant pathways at the hotspots are indicated by red 
color and all other significant pathways are indicated by cyan color.  We identified several 
pathway regulation hotspot groups located on chromosome 2, 3, 5, 10, 12, 13, 14 and 15. 
Chromosome 5 and 15 show two distantly located hotspots. 

52.2ˆ =λ

      It is interesting to note that most of the hotspots are clustered together on the genome. Some 
clusters have narrow band (e.g., the ones on chromosome 5, 10, 14 and 15), and some have wide band 
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Figure 2: Number of regulators for each expression pathway. The horizontal axis denotes the 99 KEGG 
pathways and the vertical axis denotes the number of marker blocks that are significantly associated with 
each expression pathway. 
(e.g., the ones on chromosome 2, 12 and 13). As we noted from the marker data, there are strong 
orrelations between markers for this yeast dataset. Thus, this kind of pattern is expected. If we 

increase the hotspot interval size, the hotspot bands would become narrower with sharper peaks. 
      We also applied the permutation method to detect regulation hotspot. When using the 
permutation method, the cutoff is changed to 11.  The horizontal dashed line in Fig. 3 indicates the 
ermutation cutoff. Loci with more than 11 associated pathways were identified as hotspots.  With 
ncreased threshold, the number of regulation hotspots reduced to 67. Several hotspots including 
he ones on chromosome 5 and 10 are no longer significant with the new threshold value. Overall, 
he two methods for regulation hotspot identification give quite similar results. A detailed list of 
he hotspot regulation is given in the supplemental file (see Suppl. Table 2). 
     In a recent study of genetic basis for small-molecule drug response, Perlstein et al. (2007) detected 
ight QTL hotspots located on chromosome 1, 3, 12, 13, 14 and 15 with the same yeast marker data. 
ive of those (on chromosome 3, 12, 13 and 14) overlap with the hotspots we identified. This 

nformation indicates the relative importance of these four genomic regions in regulating gene 
xpressions as well as drug response. It is possible that the variation in drug response is due to the 
ariation in pathway expressions which are directly related to hotspots regulation. Models can be 

developed to test the causal relationship among the three sets of data including genetic, gene 
xpression and clinical phenotype (see e.g., Schadt et al., 2005). We will consider this in our future 
ork.  

3.3 Genetic pathway enrichment 
In addition to identify pathway regulation hotspots, we also perform a functional enrichment 
analysis using the Fisher’s exact test to assess if a GP is enriched in regulating the expression of an EP. 
An enrichment p-value is computed to reflect the degree in which a given GP is over-represented. 
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Figure 3: The pathway regulator hotspot. The dash-dotted and the dashed lines indicate the threshold 
calculated using the Poisson distribution and the permutation method, respectively. Dark black bars 
indicate the regulation hotspots. Vertical axis indicates the number of regulated EPs. 
The results are tabulated in Table 2. A heatmap of the pathway enrichment analysis is given in the 
supplemental figure (Suppl. - Figure 2). To make the table consistent with the supplemental figure 
(Suppl. - Figure 2), we also list the pathway number (denoted as #) in addition to the pathway 
identification number (PID). The left column shows the enriched GPs which are responsible for the 
expression change of the corresponding EPs in the left column. All enriched GPs are claimed at the 1% 
significance level. 
      Clearly pathway 15, 20 and 74 are relatively important in regulating the expression of other 
pathways, since each one is enriched for a large number of EPs.  It is hypothesized that the signal 
perturbation of these pathways may have pleiotropic consequences on multiple downstream pathways. 
Particularly for pathway 20, it may act as potential “master” pathway regulators as it regulates 25 
pathway expressions.  Also noted that most enriched GPs are metabolism or biosynthesis related 
pathways, which may indicate that these pathways might play key roles in the yeast genome. 
      In testing GP enrichment, we found that some GPs are enriched in regulating its own gene 
expressions.  We define these GPs who regulate their own gene expressions as cis-pathway regulators.  
The highlighted bold-font pathways in Table 2 are those that show strong cis-regulation effects. 
These six GPs are pathway 13, 15, 20, 27, 43 and 44. All the others show trans-regulation effects. 
Note that the enriched GPs are claimed at the 0.01 significance level.  If we lower the significance 
level to 0.001, all the cis-regulation pathways are gone, indicating that the cis-regulation effect is 
actually weaker than the trans-regulation effect in this application. 
      In a closer look at the enriched GPs, we found that pathway 20 contains two SNP markers 
(YCL009C in gene ILV6 and YCL018W in gene LEU2) that are located on the hotspot on 
chromosome 3.  LEU2, beta-isopropylmalate dehydrogenase, plays an important role in catalyzing 
the third step in the leucine biosynthesis pathway. Pathway 78 also contains two SNP markers 
(YBR176W in gene ECM31 and YCL009C in gene ILV6).  In checking the KEGG pathway, we 
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found that ILV6 is on the most upstream in pathway 78. Thus this gene may play a key role in 
affecting the downstream gene functions and in turn affecting many other pathway expressions.  

4 Discussion 

Understanding the genetic architecture of complex traits is one of the major challenges in modern 
biology. In a series of recent advances, many efforts have been focused on mapping genetic regions, 
called QTLs, in responsible for the phenotypic variation of a complex trait. Due to limited 
mapping resolution and with other non-genetic factors contributing to the phenotypic variation, 
this process has not been very successful in real applications, leaving only a few successful cases 
being reported in literature (e.g., Frary et al., 2000; Li et al., 2006). Recent advances in microarray 
technology allows us to measure the transcription abundance of many organisms and hence open 
another framework in understanding the genetic basis of gene expression, aimed to understanding the 
regulation of a genetic system. The initiation of the eQTL mapping with combined genetic mapping 
and gene expression analysis brings new prospects in understanding the complex process of gene 
regulation toward the ultimate goal of improving trait quality and disease prevention (Cookson et al., 
2009). 

Based on the biological assumption that genes function in networks, dissect the genetic architecture 
of gene regulation from a systems biology perspective should provide more insights regarding the 
function of a biological system. In this article, we made an attempt to study gene regulations by 
combining gene expression and genetic polymorphism data together and proposed a pathway-based 
systems biology approach that aims to identifying genetic variants that regulate pathway gene 
expressions. We proposed to do the analysis by considering gene expressions in a pre-defined 
pathway as a multivariate response.  Since genes in the same biological pathway tend to have 
similar expression pattern, looking at a bunch of expression levels in a pathway as our unit 
phenotype will give us more information about the differential expression pattern about this pathway, 
and thereby will give us more power to steadily detect the association of a genetic variation with the 
expression changes of a pathway. We focused our application to a real dataset in yeast and identified 
significant regulation patterns across the 16 yeast chromosomes. The detected pathway regulators 
tend to cluster together on the genome which might be due to the strong correlations among SNP 
markers on the genome. 
      Strong pathway regulation hotspots were identified in this study.  Most of the hotspots overlap 
with the ones tested with single trait analysis (Brem and Kruglyak, 2005). Perlstein et al. (2007) 
recently applied the same yeast data to study individual genetic differences in response to small-
molecule drugs and identified eight hotspots in response to multiple com-pounds. Their hotspots 
overlap with most of the pathway regulation hotspots identified in our study except the one on 
chromosome 1. This information indicates that the same polymorphisms may affect both gene 
expression and compound response. The genetic enrichment test proposed in this work can be applied 
to their study to understand which genetic pathways are involved in drug response.  Noted in our 
analysis, each hotspot contain either a single pleiotropic polymorphism or several closely linked 
polymorphisms (marker block) affecting the response to multiple pathway expressions. If we group  
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# 

1 
13 

15 

16 

17 

20 

27 

35 

39 
43 
44 
46 
68 

74 

78 

PID
Table 2: Genetic pathway enrichment analysis results. The right column indicates enriched 
genetic pathways (GPs) that are responsible for the expression change of the corresponding 

expression pathways (EPs) in the right column, at the 0.01 significant level.  Pathways 
highlighted with bold faces indicate cis-pathway regulation. 

(PID) Enriched Genetic Pathway # (PID) Expression Pathway  

(04010) MAPK signaling pathway 47 (00480) Glutathione metabolism 
(03020) RNA polymerase 13 (03020) RNA polymerase 

(00051) Fructose and mannose metabolism 

15 
16 
43 
70 

(00051) Fructose and mannose metabolism 
(00052) Galactose metabolism 
(00520) Nucleotide sugars metabolism 
(00625) Tetrachloroethene degradation 

(00052) Galactose metabolism 
15 
43 

(00051) Fructose and mannose metabolism 
(00520) Nucleotide sugars metabolism 

(03022) Basal transcription factors 83 (00220) Urea cycle and metabolism of amino groups 

(00290) Valine, leucine and isoleucine biosynthesis 

1 
4 
6 
18 
20 
25 
26 
32 
38 
45 
49 
52 
54 
58 
61 
66 
73 
75 
77 
78 
86 
88 
92 
96 
99 

(04010) MAPK signaling pathway 
(00910) Nitrogen metabolism 
(00410) beta-Alanine metabolism 
(00053) Ascorbate and aldarate  metabolism  
(00290) Valine, leucine and isoleucine biosynthesis 
 (00010) Glycolysis / Gluconeogenesis 
(00330) Arginine and proline metabolism  
(00920) Sulfur metabolism 
(00563) GPI-anchor biosynthesis 
(00340) Histidine metabolism 
(00750) Vitamin B6 metabolism 
(00251) Glutamate metabolism 
(00252) Alanine and aspartate metabolism  
(00670) One carbon pool by folate 
(00300) Lysine biosynthesis 
(00260) Glycine, serine and threonine metabolism  
(00310) Lysine degradation 
(00630) Glyoxylate and dicarboxylate metabolism  
(00450) Selenoamino acid metabolism 
(00770) Pantothenate and CoA biosynthesis  
(00360) Phenylalanine metabolism 
(00680) Methane metabolism 
(00401) Novobiocin biosynthesis 
(00272) Cysteine metabolism 
(00903) Limonene and pinene degradation  

(00650) Butanoate metabolism 27 (00650) Butanoate metabolism 

(00561) Glycerolipid metabolism 51 
68 

(00521) Streptomycin biosynthesis 
(00530) Aminosugars metabolism 

(00513) High-mannose type N-glycan biosynthesis 87 (01030) Glycan structures - biosynthesis 1 
(00520) Nucleotide sugars metabolism 43 (00520) Nucleotide sugars metabolism 
(00020) Citrate cycle (TCA cycle) 44 (00020) Citrate cycle (TCA cycle) 
(00980) Metabolism of xenobiotics by cytochrome P450 64 (00440) Aminophosphonate metabolism 
(00530) Aminosugars metabolism 53 (00072) Synthesis and degradation of ketone bodies 

(03010) Ribosome 
45 
86 
92 

(00340) Histidine metabolism 
(00360) Phenylalanine metabolism 
(00401) Novobiocin biosynthesis 

(00770) Pantothenate and CoA biosynthesis 86 
92 

(00360) Phenylalanine metabolism 
(00401) Novobiocin biosynthesis 

=Pathway ID 
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 the genomic regions as intervals with 20kb length as previous work did (see Brem and Kruglyak, 
2005), we may reduce the number of hotspots to a more compact size. On the other hand, to do so we 
may end up with an interval containing many genes and this may bring difficulties in interpretation. 
     In a similar analysis of the same yeast dataset by Storey et al. (2005), the authors also found out 
the pattern that gene expressions associated with a common SNP marker are tend to be in the same 
pathway given that the pathway information is available. In their analysis, for instance, twelve 
expressions were identified to have strong linkage with the SNP marker at one locus on 
chromosome 3. Two out of these 12 traits are included in the same KEGG pathway: MAPK 
signaling pathway (pathway id “04010”). Seven expression traits were shown to have linkage with the 
SNP marker at another locus on chromosome 3. Three out of these 7 traits are in the same pathway: 
Valine, leucine and isoleucine biosynthesis pathway (pathway id “00290”). These two loci were also 
detected to be pathway regulators in the current study. These results underscore the importance in 
finding genetic regulators responsible for the joint expression change of a pathway. 
      From the biological perspective, due to limited knowledge in genome annotation and gene 
pathways, not all genes can be mapped to a pathway.  In the current analysis, only 1193 gene 
expressions are mapped to the 99 KEGG pathways, leaving a large proportion of genes unmapped.  As 
an alternative, one can focus the analysis on Gene Ontology (GO) terms which have a more 
comprehensive coverage of the gene information. As more and more gene information is documented 
in the public database (e.g., KEGG), this will eventually not being an issue. With limited pathway 
information, we can also classify gene expressions according to their correlation information to 
construct gene co-expression networks or modules (Dong and Horvath, 2007). These modules can be 
treated as pseudo pathways for further analysis. When a module is found to be significantly regulated, 
the function of those unknown genes can thus be inferred from the genes with known function in the 
same module. Since genes in the same module or network potentially share the same regulator, such 
studies can generate meaningful biological hypothesis for experiment test. In addition, principle 
component analysis can also be applied to reduce the dimension of the original data.  Analysis can 
then be focused on the reduced dimension. It should be noted that the proposed method cannot be 
applied to substitute the univariate analysis. It rather should be applied to complement the single 
trait analysis to identify factors with small marginal but strong joint effects. 
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Supplemental information ⎯ Tables 
Suppl. Table 1: List of 99 KEGG pathways and their ID numbers. 

# PID Funcion # PID Funcion 
1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 
49 
51 
53 
55 
57 
59 
61 
63 
65 
67 
69 
71 
73 
75 
77 
79 
81 
83 
85 
87 
89 
91 
93 
95 
97 
99 

04010 
00780 
00280 
00730 
00550 
00190 
03020 
00051 
03022 
04070 
00740 
00380 
00010 
00650 
00970 
00790 
00100 
00561 
00562 
00513 
00565 
00520 
00340 
00480 
00750 
00521 
00072 
04130 
00350 
03050 
00300 
00120 
00760 
00710 
00624 
00627 
00310 
00630 
00450 
00900 
00590 
00220 
00040 
01030 
03060 
00271 
00361 
00632 
00362 
00903 

MAPK signaling pathway 
Biotin metabolism 
Valine, leucine and isoleucine degradation 
Thiamine metabolism 
Peptidoglycan biosynthesis 
Oxidative phosphorylation 
RNA polymerase 
Fructose and mannose metabolism 
Basal transcription factors 
Phosphatidylinositol signaling system 
Riboflavin metabolism 
Tryptophan metabolism 
Glycolysis / Gluconeogenesis 
Butanoate metabolism 
Aminoacyl-tRNA biosynthesis 
Folate biosynthesis 
Biosynthesis of steroids 
Glycerolipid metabolism 
Inositol phosphate metabolism 
High-mannose type N-glycan biosynthesis 
Ether lipid metabolism 
Nucleotide sugars metabolism 
Histidine metabolism 
Glutathione metabolism 
Vitamin B6 metabolism 
Streptomycin biosynthesis 
Synthesis and degradation of ketone bodies 
SNARE interactions in vesicular transport 
Tyrosine metabolism 
Proteasome 
Lysine biosynthesis 
Bile acid biosynthesis 
Nicotinate and nicotinamide metabolism 
Carbon fixation 
1- and 2-Methylnaphthalene degradation 
1,4-Dichlorobenzene degradation 
Lysine degradation 
Glyoxylate and dicarboxylate metabolism 
Selenoamino acid metabolism 
Terpenoid biosynthesis 
Arachidonic acid metabolism 
Urea cycle and metabolism of amino groups 
Pentose and glucuronate interconversions 
Glycan structures - biosynthesis 1 
Protein export 
Methionine metabolism 
Gamma-Hexachlorocyclohexane degradation 
Benzoate degradation via CoA ligation 
Benzoate degradation via hydroxylation 
Limonene and pinene degradation 

2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
 

40 
42 
44 
46 
48 
50 
52 
54 
56 
58 
60 
62 
64 
66 
68 
70 
72 
74 
76 
78 
80 
 

82 
84 
86 
88 
90 
92 
94 
96 
98 

00460 
00910 
00410 
00230 
00500 
00640 
00960 
00052 
00053 
00290 
00240 
00510 
00330 
03030 
00600 
00920 
04111 
00061 
00563 
 
00564 
04120 
00020 
00980 
00430 
00071 
00251 
00252 
00030 
00670 
02010 
00620 
00440 
00260 
00530 
00625 
04140 
03010 
00130 
00770 
00400 
 
00720 
00860 
00360 
00680 
02021 
00401 
01031 
00272 
01032 

Cyanoamino acid metabolism 
Nitrogen metabolism 
Beta-Alanine metabolism 
Purine metabolism 
Starch and sucrose metabolism 
Propanoate metabolism 
Alkaloid biosynthesis II 
Galactose metabolism 
Ascorbate and aldarate metabolism 
Valine, leucine and isoleucine biosynthesis 
Pyrimidine metabolism 
N-Glycan biosynthesis 
Arginine and proline metabolism 
DNA replication 
Sphingolipid metabolism 
Sulfur metabolism 
Cell cycle – yeast 
Fatty acid biosynthesis 
Glycosylphosphatidylinositol(GPI)-anchor 

biosynthesis 
Glycerophospholipid metabolism 
Ubiquitin mediated proteolysis 
Citrate cycle (TCA cycle) 
Metabolism of xenobiotics by cytochrome P450 
Taurine and hypotaurine metabolism 
Fatty acid metabolism 
Glutamate metabolism 
Alanine and aspartate metabolism 
Pentose phosphate pathway 
One carbon pool by folate 
ABC transporters - General 
Pyruvate metabolism 
Aminophosphonate metabolism 
Glycine, serine and threonine metabolism 
Aminosugars metabolism 
Tetrachloroethene degradation 
Regulation of autophagy 
Ribosome 
Ubiquinone biosynthesis 
Pantothenate and CoA biosynthesis 
Phenylalanine, tyrosine and tryptophan 

biosynthesis 
Reductive carboxylate cycle (CO2 fixation) 
Porphyrin and chlorophyll metabolism 
Phenylalanine metabolism 
Methane metabolism 
Two-component system - Organism-specific 
Novobiocin biosynthesis 
Glycan structures - biosynthesis 2 
Cysteine metabolism 
Glycan structures - degradation 
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Suppl. - Table 2: Detailed list of hotspot regulations 

Ch Hotspot (Gene) Start  Stop Expression pathways being regulated 

2 YBR131W(CCZ1) 499012 499012 
“03020” “00010” “00600” “00790” “00100” “00020” “00300” “00620” “00310” “00900” 
“00720”“00220” 

2 YBR132C(AGP2) 499889 499895 
“03020” “00740” “00010” “00600” “00790” “00100” “00300” “00620” “00310” “00900” 
“00400” “00590” “00220” 

2 gBR07 506661 508843 
“00500” “03020” “00740” “00010” “00790” “00100” “04111” “00020” “00300” “00620” 
“00900” “00400” “00590” “03060” 

2 YBR139W 516889 517123 
“00500” “04070” “00740” “00790” “00100” “04111” “00564” “00620” “00760” “00900” 
“00400” “00220” 

2 gBR08 519049 521415 
“00500” “03020” “00740” “00790” “00100” “00564” “00020” “00620” “00900” “00400” 
“00220” “03060” 

2 YBR142W(MAK5) 530481 530481 
“00500” “03020” “00740” “00970” “00600” “00790” “00100” “00020” “00620” “00450” 
“00900” “00400” “00590” “00220” “03060” 

2 YBR147W 537314 537314 
“00500” “03020” “00740” “00510” “00970” “00600” “00790” “00100” “04111” “00564” 
“00020” “00620” “00310” “00450” “00900” “00400” “00220” “03060” 
“00361” 

2 YBR154C(RPB5) 548401 548401 
“04010” “00500” “03020” “04070” “00510” “00970” “00600” “00790” “00100” “04111” 
“00562” “00513” “00564” “00020” “00620” “00760” “00450” “00900” “00400” “00590” 
“00220” “01030” “03060” 

2 

YBR156C(SLI115) 
NBR031C 
NBR034W 
NBR035W 

551299 
553812 
555575 
555778 

551299 
553812 
555596 
555787 

“00500” “00640” “03020” “04070” “00740” “00510” “00970” “00600” “00790” “00100” 
“04111” “00562” “00513” “00564” “00020” “00030” “00620” “00760” “00450” “00900” 
“00400” “00590” “00220” “01030” “03060 

2 YBR161W 562409 562415 
“00500” “03020” “00960” “00650” “00600” “00790” “00100” “04111” “00513” “00564” 
“00020” “00620” “00530” “00450” “00900” “00400” “00220” “00360” “03060” 

2 
YBR162W(YSY6)
  

565216 565216 
“00500” “03020” “00960” “00650” “00600” “00790” “00100” “04111” “00564” “00030” 
“00620” “00530” “00450” “00900” “00400” “00220” “00360”  

2 
YBR163W(DEM1) 
YBR165W(UBS1) 

567221 
569414 

567221 
569414 

“00500” “03020” “00960” “00650” “00600” “00790” “00100” “00564” “00030” “00620” 
“00900” “00400” “00220” “01030” 

2 
YBR165W(UBS1) 
YBR166C(TYR1) 

569420 
570229 

569420 
570229 

“00500” “03020” “00650” “00600” “00790” “00100” “00564” “00030” “00620” “00900” 
“00400” “00220” “01030” 

2 
YBR172C(SMY2) 
YBR174C 

579459 
582419 

579459 
582419 

“00500” “00960” “04070” “00650” “00600” “00790” “00100” “04111” “00562” “00564” 
“00900” “00400” “00220” 

2 
YBR176W(ECM31) 

NBR038W 
NBR041W 

584351 
592863 
592989 

584357 
592863 
592989 

“00500” “00960” “00650” “00600” “00790” “0100”  “00564” “00620” “00530” “00900” 
“00400” “00220” 
 

3 YCL026C(FRM2) 75021 75021 
“00910” “00280” “00410” “00640” “00053” “00290” “00380” “00330” “00650” “00750” 
“00670” “00630” “00770” “00680” “00401” “00903” 

3 YCL025C(AGP1) 76127 76127 
“00910” “00280” “00410” “00640” “00053” “00290” “00740” “00380” “00010” “00330” 
“00650” “00561” “00020” “00340” “00750” “00071” “00252” “00670” “00300” “00620” 
“00120” “00310” “00630” “00770” “00220” “00360” “00680” “00401” “00272” “00903” 

3 YCL023C 79091 79091 

“04010” “00910” “00280” “00410” “00640” “00053” “00290” “00740” “00380” “00010” 
“00330” “00650” “00600” “00920” “04111” “00561” “00563” “00564” “00020” “00340” 
“00980” “00750” “00071” “00251” “00252” “00350” “00670” “00300” “00620” “00120” 
“00624” “00310” “00630” “00450” “00770” “00720” “00220” “00360” “00680” “00401” 
“00272” “00903” 

3 
YCL022C 
gCL01 
YCL018W(LEU2) 

81832 
90412 
91977 

81832 
91496 
92391 

“04010” “00910” “00280” “00410” “00640” “00051” “00053” “00290” “00380” “00010” 
“00330” “00650” “00970” “00600” “00920” “04111” “00561” “00563” “00564” “00020” 
“00340” “00980” “00750” “00071” “00251” “00252” “00350” “00670” “00300” “00620” 
“00120” “00440” “00260” “00624” “00310” “00630” “00450” “00770” “00720” “00220” 
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“00360” “00680” “00271” “00401” “00632” “00272” “00903” 

3 YCL014W(BUD3) 100213 100213 

“00910” “00280” “00410” “00640” “00053” “00290” “00380” “00010” “00330” “00650” 
“00600” “00920” “00561” “00563” “00564” “00020” “00340” “00980” “00750” “00071” 
“00251” “00252” “00350” “00670” “00300” “00620” “00120” “00260” “00310” “00630” 
“00450” “00770” “00220” “00680” “00401” “00272” “00903” 

3 YCL009C(ILV6) 105042 105042 

“04010” “00910” “00280” “00410” “00640” “00053” “00290” “00380” “00010” “00330” 
“00650” “00920” “00561” “00563” “00564” “00020” “00340” “00750” “00071” “00251” 
“00252” “00350” “00670” “00300” “00620” “00120” “00260” “00710” “00310” “00630” 
“00450” “00770” “00220” “00360” “00680” “00401” “00272” “00903” “00600” 

3 
NCR015C 
gCR02 

175799 
177850 

175808 
177850 

“04010” “00280” “00410” “00290” “00380” “00600” “00563” “00340” “00350” “00440” 
“00630” “00450” “00770” “00903” 

5 

gEL02 
YEL021W(URA3) 
NEL011C 
YLR014C(PPR1) 

109310 
116530 
117046 
117705 

109310 
116830 
117056 
117705 

“00740” “00240” “00510” “00020” “00251” “00252” “00030” “00620” “00710” “00630” 
“00720” “01030” 

12 YLR236C 611967 611997 
“00410” “00380” “00650” “00600” “00100” “00513” “00071” “00072” “00620” “00530” 
“00627” “00900” “00720” “00361” “00903” 

12 gLR07 634225 634226 
“00280” “00640” “00380” “00650” “00600” “00100” “00072” “04130” “00620” “00530” 
“00627” “00900” “00720” “01030” “00361” “00903” 

12 gLR07 634227 634227 
“00280” “00640” “00380” “00650” “00600” “00100” “00513” “00072” “04130” “00620” 
“00530” “00627” “00310” “00900” “00720” “01030” “00361” “00903” 

12 gLR07 635380 635380 
“00280” “00410” “00190” “00640” “00240” “00380” “00010” “00650” “00600” “00100” 
“00564” “00071” “00072” “04130” “00620” “00530” “00627” “00310” “00900” “00720” 
“00860” “01030” “00361” “00903” 

12 
YLR252W 
YLR253W 

642137 
644082 

642137 
644136 

“00280” “00410” “00190” “00640” “00380” “00010” “00650” “00600” “00100” “00513” 
“00564” “00071” “00072” “04130” “00620” “00530” “00627” “00310” “00130” “00900” 
“00720” “00860” “01030” “00361” “00903” 

12 
YLR257W 
YLR258W(GSY2) 

659357 
672779 

659357 
672785 

“00280” “00410” “00190” “00640” “00960” “00240” “00380” “00510” “00010” “00650” 
“00600” “00100” “00561” “00513” “00564” “00020” “00071” “00072” 
“00252” “04130” “00030” “00620” “00120” “00530” “00627” “00310” “00130” “00900” 
“00720” “00220” “00860” “01030” “03060” “00361” “00632” “00903” 

12 
YLR261C(VPS63) 
YLR263W(RED1) 

668249 
672779 

668249 
672785 

“00280” “00410” “00190” “00640” “00240” “00380” “00510” “00010” “00650” “00600” 
“00100” “00513” “00564” “00020” “00071” “00251” “00072” “00252” “04130” “00620” 
“00120” “00530” “00627” “00310” “00130” “00900” “00720” “00220” “00860” “01030” 
“03060” “00271” “00361” “00903” 

12 YLR265C(NEJ1) 674651 674651 
“00280”  “00410” “00190” “00640” “00380” “00010” “00650” “00600” “00100” “00513” 
“00564” “00020” “00071” “00251” “00072” “00252” “04130” “00620” “00120” “00530” 
“00627” “00310” “00130” “00900” “00720” “00860” “01030” “03060” “00361” “00903” 

12 NLR16W 677957 677957 
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“00670” “00620” “00120” “00260” “00710” “00310” “00770” “00220” “00360” “00272” 
“00903” 
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Supplemental information–Figures 
 

 
 

Suppl. - Figure 1: The log10 based T2 (or F) statistic values across the entire 16 chromosomes of 
the yeast genome for EPs 1-20. Dotted horizontal line indicates the 5% genome-wide 
permutation cutoff. Genomic positions where T2 (or F) values pass the threshold harbor potential 
pathway regulators for the corresponding EP. See Suppl. - Table 1 for the pathway information. 
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Suppl. - Figure 1 continued. 
 
 

22 
 



 
 
 

 
 

Suppl. - Figure 1 continued. 
 
 
 
 
 

23 
 



 
 

 
 

Suppl. - Figure 1 continued. 
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Suppl. - Figure 1 continued. 
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Suppl. - Figure 2: A heatmap of enriched pathways. Only significantly enriched pathways are 
shown in the plot (indicated by squares). Squares on the diagonal line indicate cis-pathway 
regulation and those on off-diagonals indicate trans-regulation. The horizontal and vertical axes 
denote the genetic pathway (GP) and the gene expression pathway (EP), respectively. Strong 
trans-pathway regulations are detected. 
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