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a b s t r a c t

A fractional normal inverse Gaussian (FNIG) process is a fractional Brownian motion
subordinated to an inverse Gaussian process. This paper shows how the FNIG process
emerges naturally as the limit of a random walk with correlated jumps separated
by i.i.d. waiting times. Similarly, we show that the NIG process, a Brownian motion
subordinated to an inverse Gaussian process, is the limit of a random walk with
uncorrelated jumps separated by i.i.d. waiting times. The FNIG process is also derived as
the limit of a fractional ARIMA processes. Finally, the NIG densities are shown to solve the
relativistic diffusion equation from statistical physics.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The normal inverse Gaussian (NIG) process was introduced by Barndorff-Nielsen (1997) to model financial data. The
NIG density exhibits ‘‘semi-heavy’’ tails typically seen in finance and geophysics, but as a Lévy process, it has independent
increments. Kumar and Vellaisamy (2009) developed the fractional normal inverse Gaussian (FNIG) process, as a simple
alternative to theNIG processwith correlated increments. In this paper,we showhow theNIG process emerges as the scaling
limit of a randomwalk with i.i.d. jumps separated by i.i.d. waiting times. Then we show that, if the jumps are correlated, the
FNIG limit can emerge, under a fairly general set of conditions. To connect these continuous time processes with time series
models often used in finance, we also demonstrate how the FNIG process represents the continuum limit of a fractional
ARIMA process. Finally, we apply fractional calculus theory to show that the probability densities of the NIG process solve a
relativistic diffusion equation from statistical physics.

The inverse Gaussian (IG) process is defined by

G(t) = inf{s > 0; B(s) + γ s = δt}, (1.1)

where B(t) is a standard Brownian motion, δ > 0 and γ > 0 (e.g., see Applebaum (2009)). Since B(s) + γ s has continuous
sample paths, it follows from the strong Markov property that G(t) is a subordinator, i.e., a non-decreasing Lévy process.
Note also that G(t) ∼ IG(δt, γ ), the IG distribution (with parameters δt and γ ) having density

h(x, t) = (2π)−1/2(δt)x−3/2eδγ t− 1
2 (δ2t2x−1

+γ 2x), x > 0. (1.2)

The NIG process is defined by

N(t) = B(G(t)) + βG(t) + µt, (1.3)
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whereG(t) is an IGprocess and B(t) is an independent Brownianmotion. TheNIGdistribution tails are heavier thanGaussian,
but lighter than power law, the so-called ‘‘semi-heavy’’ tails frequently used in finance (see Barndorff-Nielsen (1998)).
Since the IG subordinator is a Lévy process, the NIG is also a Lévy process, with independent increments. However, many
applications to finance require dependent increments (e.g., see Shephard (1995)). Semi-heavy tails also occur in geophysics.
For example, Molz and Bowman (1993) show that increments in hydraulic conductivity in a borehole exhibit semi-heavy
tails and long-range dependence.

To provide a simple alternative to the NIG process, but with correlated increments, Kumar and Vellaisamy (2009)
proposed FNIG process defined by

X(t) = BH(G(t)), (1.4)

whereG(t) is an IG process and BH(t) is an independent fractional Brownianmotion (FBM)withHurst parameter 0 < H < 1.
Recall that BH(t) is a zero mean Gaussian process with covariance function

E[BH(t)BH(s)] =
σ 2

2
[t2H + s2H − |t − s|2H ] (1.5)

for t, s ≥ 0 (e.g., see Mandelbrot and Van Ness (1968)).
In this paper, we will show that the NIG process is the scaling limit of a random walk with i.i.d. jumps having zero mean

and finite variance, separated by i.i.d. waiting times with positive mean (since the waiting times are positive) and finite
variance. This justifies the NIG model as a late-time approximation for tick-by-tick financial data (see Scalas (2004) and
the references therein for more applications of CTRWs), in the special case where price returns are i.i.d. Then we extend
this model to allow correlations between jumps, leading to the FNIG scaling limit. We also show how the FNIG process can
emerge as the limit of a fractional ARIMA time series. Finally, we use tools of fractional calculus to prove that the densities
of the NIG process solve an anomalous diffusion equation that has a connection with statistical physics.

2. FNIG process as a random walk limit

Continuous time random walks (CTRW) were introduced as a model in statistical physics by Montroll and Weiss (1965)
and Scher and Lax (1973). Given i.i.d. random variables Yn representing the random jumps of a particle, the simple random
walk Sn =

∑n
i=1 Yi gives the particle position after n steps. Impose i.i.d. waiting times Xn ≥ 0 between particle jumps, so

that another random walk Tn =
∑n

i=1 Xi gives the time of the nth jump. The renewal process

Nt = max{n ≥ 0 : Tn ≤ t} (2.1)

counts the number of jumps by time t , and the CTRW (also called the renewal reward process)

SNt =

Nt−
i=1

Yi, (2.2)

gives the particle position at time t . The CTRW is commonly used to model a wide variety of phenomena connected
with anomalous diffusion (Metzler and Klafter, 2000, 2004). The densities of CTRW scaling limits solve fractional diffusion
equations. Heavy tail jumps lead to superdiffusion, described by fractional derivatives in space, and heavy tail waiting times
code anomalous subdiffusion,modeled by fractional timederivatives (Barkai et al. (2000);Meerschaert and Scheffler (2004)).

Given EXn = µ > 0, Var(Xn) = σ 2 < ∞ and for any timescale c > 0, we define the rescaled random walk

T (c)
n =

n−
i=1


1

√
c
(Xi − µ) +

µ

c


, (2.3)

where n ≥ 1. Let D = D([0, ∞), R) denote the space of right continuous R-valued functions on [0, ∞) with left limits,
endowed with the Skorokhod J1 topology (see e.g., Billingsley (1968)). It follows easily from Donsker’s Theorem (e.g., see
Whitt (2002), Theorem 4.3.2) and continuous mapping that

T (c)
[ct] ⇒ σB(t) + µt (2.4)

in this space. Note that the mapping g : D × D → D defined by g(x, y) = x + y is continuous if at least one of x or y are
continuous (e.g., see Jacod and Shiryaev (2002), Proposition 1.23). In our case, both components of the limit have continuous
sample paths a.s. It is well known that Donsker’s Theorem alone is insufficient to obtain Brownian motion with drift in the
limit, since two scales are needed. The mean has to be rescaled by a linear factor, and the deviation from the mean follows
square root scaling (e.g., see Ross (2003), Exercise 10.8).

Since the renewal process Nt in (2.1) is the process inverse of the random walk Tn of jump times, the CTRW scaling limit
will depend on the first passage time or process inverse of T (c)

n . Because of the two-scale setup in (2.3), it is possible that
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T (c)
n+1 ≤ T (c)

n . Since the first passage time of a stochastic process and that of the corresponding supremum process are same,
it is convenient to consider the maximum (supremum) process of T (c)

n , as in Becker-Kern et al. (2004). Let

L(c)
n = sup{T (c)

j : 0 ≤ j ≤ n}.

Then

F (c)
t = min{n ≥ 0 : L(c)

n ≥ t} (2.5)

is the first passage time of the process L(c)
n . Obviously L(c)

n ≤ L(c)
n+1, so F (c)

t has non-decreasing sample paths. Let D(t) =

σB(t)+µt . Although D(t) is not monotone, D(t) → ∞ a.s. as t → ∞ by the strong law of large numbers for Lévy processes
(e.g., see Sato (1999), Theorem 36.5). Hence, the supremum process M(t) = sup{D(u) : 0 ≤ u ≤ t} and the first passage
time G(t) = inf{x ≥ 0 : M(x) ≥ t} are well defined. Note that almost all sample paths of G(t) are strictly increasing, with
jumps, since the sample paths of M(t) are continuous and non-decreasing, with intervals of constancy. Clearly the hitting
time of D(t) andM(t) are the same, i.e., we also have G(t) = inf{x ≥ 0 : D(x) ≥ t}. From Lemma 13.6.3 of Whitt (2002), we
have

{G(t) ≤ x} = {M(x) ≥ t} and {F (c)
t ≤ x} = {L(c)

[x] ≥ t}. (2.6)

The next result establishes the scaling limit for the inner process in the FNIG model.

Proposition 2.1. As c → ∞, we have

c−1F (c)
t ⇒ G(t) (2.7)

in the J1 topology on D, where G(t) is IG.

Proof. It follows from (2.4) along with Theorem 13.4.1 in Whitt (2002) that

L(c)
[ct] = sup

0≤s≤t
T (c)
[cs] ⇒ sup

0≤s≤t
D(s) = M(t) (2.8)

in the space D. Then

{L(c)
[ct], t ≥ 0}

fdd
H⇒ {M(t), t ≥ 0}, (2.9)

as c → ∞, where
fdd

H⇒ means convergence of all finite dimensional distributions. Here we get convergence of all finite
dimensional distributions because M(t) has continuous sample paths, while in general it follows only for almost all t (see
Proposition 3.14, Jacod and Shiryaev (2002), p. 349). Let 0 < t1 < · · · < tm and x1, x2, . . . , xm ≥ 0. Then, as c → ∞,

P{c−1F (c)
ti ≤ xi, i = 1, . . . ,m} = P{F (c)

ti ≤ cxi, i = 1, . . . ,m}

= P{L(c)
[cxi]

≥ ti, i = 1, . . . ,m} (by (2.6))

→ P{M(xi) ≥ ti, i = 1, . . . ,m} (by (2.9))
= P{G(ti) ≤ xi, i = 1, . . . ,m},

using (2.6) again. Note that sample paths of F (c)
t are monotone, and G(t) is a Lévy process, and hence continuous in

probability. Then (2.7) follows by virtue of Theorem 3 in Bingham (1971). Since D(t) is a Brownian motion with drift, its
inverse process G(t) is IG. �

Next we prove that the NIG process is the scaling limit of a CTRW. One special case was proven by Pacheco-Gonzalez
(2009) using Bernoulli jumps. Here, we establish the NIG process limit for an arbitrary CTRW with finite second moments
and mean zero jumps. This shows that the NIG provides a very flexible model for late-time behavior of tick-by-tick data
with independent price returns.

Theorem 2.1. Given T (c)
n as in (2.3), take Yn i.i.d. independent of {Xn} with E(Yi) = β and Var(Yi) = 1. Then the rescaled CTRW

S(c)

F (c)
t

+

[ct]−
i=1

ρ

c
⇒ W (G(t)) + ρt, ρ ∈ R, (2.10)

in D, where W (t) = B(t) + βt is a Brownian motion with drift, and G(t) is IG, so that the limit W (G(t)) is NIG.
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Proof. By the same argument as (2.4), we have S(c)
[ct] ⇒ W (t) in D. Proposition 2.1 shows that c−1F (c)

t ⇒ G(t) in D, where
G(t) is IG. Note that W (t) has continuous sample paths, and that G(t) is a Lévy subordinator. Since the sequences {Xn} and
{Yn} are independent, (S(c)

[ct], c
−1F (c)

t ) ⇒ (B(t) + βt,G(t)) in D × D. Now the continuous mapping theorem, along with
Theorem 13.2.2 of Whitt (2002), yields S(c)

F (c)
t

⇒ W (G(t)) in the J1 topology. Theorem 13.2.2 of Whitt (2002) is applicable

here since the sample paths of W (t) are continuous. Also,
∑

[ct]
i=1 ρ/c ⇒ ρt in the J1 topology. The result now follows using

Proposition 1.23 of Jacod and Shiryaev (2002) and the continuous mapping theorem. �

Theorem 2.1 shows that the NIG process provides a universal model for the long-time behavior of tick-by-tick financial
data, in the case where the price returns are uncorrelated. More generally, any random walk with mean zero and finite
variance jumps, separated by finite variance waiting times, can be approximated by the NIG process in the continuum limit.
However, most financial data exhibits strongly correlated price jumps. Therefore, we now extend Theorem 2.1 to allow
correlated jumps. This leads to a subordinated process limit in which the outer process exhibits long-range dependence.
Some general results on correlated CTRW are contained in Meerschaert et al. (2009). However, they did not consider the
case of finite variance waiting times presented here.

A stationary linear process is defined by

Yn =

∞−
j=0

cjZn−j, (2.11)

where Zn are i.i.d. and cj are real constants such that
∑

∞

j=0 c
2
j < ∞. When

∑
∞

j=0 |cj| = ∞ we say that the sequence {Yn}

exhibits long-range dependence (LRD). In this case, fractional Brownian motion (FBM) can emerge as the scaling limit of the
correlated random walk Sn =

∑n
i=1 Yi (Davydov (1970); Whitt (2002)). The next result shows that a CTRWwith LRD jumps

converges to the FNIG in the scaling limit. Thus, the FNIG process provides a universal model for tick-by-tick financial with
LRD price returns.

Theorem 2.2. Let Yn be a linear process with mean zero and finite variance, independent of the i.i.d. waiting times Xn. Suppose
the variance σ 2

n of the sum Sn =
∑n

j=1 Yj varies regularly at ∞ with index 2H for some 0 < H < 1, and

E(S2ρn ) ≤ K [E(Sn)2]ρ (2.12)

for some constants K > 0 and ρ > 1/H. Then

σ−1
[c] SF (c)

t
⇒ BH(G(t)) (2.13)

as c → ∞ in D, and the limit is an FNIG process.

Proof. Proposition 2.1 yields c−1F (c)
t ⇒ G(t), and Theorem 4.6.1 in Whitt (2002) implies σ−1

[c] S[ct] ⇒ BH(t). Then
(σ−1

[c] S[ct], c−1F (c)
t ) ⇒ (BH(t), G(t)) in D × D, since the underlying sequences {Xn} and {Zn} are independent. Then (2.13)

follows using Theorem 13.2.2 of Whitt (2002) along with the continuous mapping theorem, using the fact that BH(t) has a
modification with continuous sample paths (Embrechts and Maejima (2002), Theorem 4.1.1). Since G(t) is IG, the limit in
(2.13) is an FNIG process. �

To provide a concrete example of the general situation in Theorem 2.2, we now explicitly construct a sequence {Yn} in
(2.11) that satisfies those requirements. Let B(a, b) denote the beta function.

Corollary 2.1. Suppose H ∈ ( 1
2 , 1), E|Zn|4 < ∞, and cj = j−γ , where γ = ( 3

2 − H). Then

[c]−HSF (c)
t

⇒


AHBH(G(t)),

in the J1 topology, where AH is a positive constant defined by

AH = 8H2B

H −

1
2
, 2 − 2H


. (2.14)

Proof. Lemma 4 in Davydov (1970) implies that, if E|Zj|2k < ∞ for some integer k, then

E|Sn|2k ≤ A(Var Sn)k (2.15)

for some A > 0. For cj = j−γ , we have from Eq. (6.11) of Whitt (2002, p. 124) that

Var(Sn) ∼ Cn3−2γ , as n → ∞ (2.16)

where C = 2B(1 − γ , 2γ − 1) (3 − 2γ )2. For γ =
3
2 − H , (2.16) becomes Var(Sn) ∼ AHn2H , as n → ∞. Also, when

E|Zj|4 < ∞, (2.15) implies E|Sn|4 ≤ K(Var(Sn))2, and hence (2.12) holds with ρ = 2, since 1
2 < H < 1. �
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Next we show that the FNIG also emerges as the continuum limit of a time series with LRD. An ARIMA (0, d, 0) process,
the discrete-time analogue of fractional Gaussian noise, is defined by

(1 − B)dYn = Zn, (2.17)

where B is the backward shift operator, and {Zn} is a white noise (uncorrelated sequence) with mean 0 and finite variance
(e.g., see Brockwell and Davis (2002)). The fractional difference operator

(1 − B)d =

∞−
j=0

Γ (d + 1)
Γ (j + 1)Γ (d − j + 1)

(−B)j (2.18)

so that Yn is a stationary linear process.

Proposition 2.2. Let {Yn} be a zero mean ARIMA (0, d, 0) process (2.17) with −
1
2 < d < 1

2 (d ≠ 0) and E|Zj|2k < ∞ for some
integer k > [1/H], where H = d +

1
2 . Let Sn =

∑n
j=1 Yj denote the correlated random walk with these jumps. Then

[c]−HSF (c)
t

⇒


bHBH(G(t)), (2.19)

in D as c → ∞, and the limit is an FNIG process.

Proof. Since E|Zj|2k < ∞ with k > [1/H], it follows from Lemma 4 in Davydov (1970), that (2.12) is satisfied. Hosking
(1981) shows that

γk = Cov(Yn, Yn+k) = (−1)k
Γ (1 − 2d)

Γ (1 + k − d)Γ (1 − k − d)
, (2.20)

and then it follows using Euler’s reflection formula Γ (z)Γ (1 − z) = π/ sin(πz) and Stirling’s approximation that γk ∼

aHk2H−2, where d = H −
1
2 and

aH =
Γ (2 − 2H) sinπ


H −

1
2


π

, (2.21)

so that aH < 0 when 0 < H < 1/2 (negative dependence) and aH > 0 when 1/2 < H < 1 (LRD). Then Lemma 4.6.1 of
Whitt (2002) yields

Var(Sn) ∼ bHn2H , (2.22)

where bH = |
aH

H(1−2H)
|, so that Var(Sn) is regularly varying at infinity with index 2H . The result now follows from

Theorem 2.2. �

3. NIG diffusion

The NIG densities solve anomalous diffusion equations that can be useful to describe the long-time behavior of CTRW
models for tick-by-tick financial data. The governing equation for the NIG has also found applications in relativistic physics.
The simplest explication of these ideas relies on transform theory. Let ĥ(u, t) =


R e−iuxh(x, t) dx denote the Fourier

transform (FT) of a function h and h̄(u, s) =


∞

0 e−st ĥ(u, t) dt its Fourier–Laplace transform (FLT). Our first result gives
the governing equation for the IG.

Theorem 3.1. The densities h(x, t) of the IG process G(t) in (1.1) solve

∂2h
∂t2

− 2δγ
∂h
∂t

= 2δ2 ∂h
∂x

. (3.23)

Proof. The density (1.2) of G(t) has FT

ĥ(u, t) = e−δt(
√

γ 2+2iu−γ )

(e.g., see Applebaum (2009), p. 54). Then certainly

∂ ĥ
∂t

= −δ(


γ 2 + 2iu − γ )ĥ (3.24)

with ĥ(u, 0) ≡ 1. Recall that, if F(s) is the LT of f (t), then sF(s) − f (0) is the LT of f ′(t). Now apply the Laplace transform
(LT) to both sides of (3.24) to get

sh̄(u, s) − 1 = −δ(


γ 2 + 2iu − γ )h̄(u, s).
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Solve for h̄ and manipulate to obtain

h̄(u, s) =
1

s + δ(


γ 2 + 2iu − γ )

=
1

(s − δγ ) + δ


γ 2 + 2iu
·
(s − δγ ) − δ


γ 2 + 2iu

(s − δγ ) − δ


γ 2 + 2iu

=
(s − δγ ) − δ


γ 2 + 2iu

s2 − 2sδγ + δ2γ 2 − δ2(γ 2 + 2iu)
.

Rearrange to get

s2h̄(u, s) − sĥ(u, 0) + δ(


γ 2 + 2iu − γ )ĥ(u, 0) − 2δγ (sh̄(u, s) − ĥ(u, 0)) = 2δ2(iu)h̄(u, s)

and use (3.24) to reduce to

s2h̄(u, s) − sĥ(u, 0) −
∂ ĥ
∂t

(u, 0) − 2δγ (sh̄(u, s) − ĥ(u, 0)) = 2δ2(iu)h̄(u, s). (3.25)

Use the fact that s2F(s) − sf (0) − f ′(0) is the LT of f ′′(t), and invert the LT in (3.25) to get

∂2ĥ
∂t2

− 2δγ
∂ ĥ
∂t

= 2δ2(iu)ĥ(u, t) (3.26)

and finally invert the FT to arrive at (3.23), since (iu)ĥ is the FT of ∂h/∂x. �

The IG governing equation (3.23) is closely related to the governing equation of the Brownian motion with drift in
definition (1.1). Note thatG(t) is the first passage time or process inverse of the Brownianmotionwith drift δ−1B(t)+δ−1γ t ,
whose densities g(x, t) solve the diffusion equation

∂g
∂t

= −
γ

δ

∂g
∂x

+
1

2δ2

∂2g
∂x2

.

Exchange the roles of t and x to arrive back at (3.23). Next we derive the FNIG governing equation (the NIG is a special case).

Theorem 3.2. The densities m(x, t) of the NIG process X(t) in (1.3) with β = µ = 0 solve

∂2m
∂t2

+ 2γ δ
∂m
∂t

= σ 2δ2 ∂2m
∂x2

. (3.27)

Proof. Since the inner and outer process in (1.3) are independent, the density function of B(G(t)) is

m(x, t) =

∫
∞

0
f (x, r)h(r, t) dr (3.28)

where f (x, t) is the density of the BM B(t), and h(r, t) is the density of the IG subordinator G(t). Since the FT f̂ (u, t) =

exp(− σ 2

2 tu2), we have

∂ f̂
∂t

=
σ 2

2
(iu)2 f̂ (3.29)

and hence

∂ f
∂t

=
σ 2

2
∂2f
∂x2

(3.30)

is the governing equation for BM, the usual difusion equation. Now write

σ 2

2
∂2

∂x2
m(x, t) =

∫
∞

0

σ 2

2
∂2

∂x2
f (x, r)h(r, t)dr

=

∫
∞

0

∂

∂r
f (x, r)h(r, t)dr

= −

∫
∞

0
f (x, r)

∂

∂r
h(r, t)dr
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=

∫
∞

0
f (x, r)


−

1
2δ2

∂2

∂t2
+

γ

δ

∂

∂t


h(r, t)dr

=


−

1
2δ2

∂2

∂t2
+

γ

δ

∂

∂t

∫
∞

0
f (x, r)h(r, t)dr

which is equivalent to (3.27). �

The NIG governing equation (3.27) can be considered as a variation on the usual diffusion equation, in which the second
time derivative term codes deviations from the mean waiting time. In this sense, the IG subordinator represents a second
order correction, just as the central limit theorem is a second order correction to the law of large numbers.

The connection between the NIG and relativistic diffusion was discussed in Baeumer et al. (2010). Taking FLT in (3.27)
and manipulating as in the proof of Theorem 3.1 shows that the NIG density has FT

m̂(u, t) = etδ(γ−

√
γ 2+σ 2u2)

which solves
∂

∂t
m̂(u, t) = δ(γ −


γ 2 + σ 2u2) m̂(u, t)

with boundary conditions m̂(u, 0) = 1 and m̂(u, ∞) = 0. Inverting the FT reveals the relativistic diffusion equation

∂

∂t
m(x, t) = δ


γ −


γ 2 − σ 2 ∂2

∂x2


m(x, t) (3.31)

which involves the fractional power of the shifted second derivative operator. The relativistic diffusion equation is derived
from the Schroedinger wave equation by analytic continuation, using the equation E2

= p2c2 + m2c4 for the relativistic
total energy. Eq. (3.31) provides an alternative governing equation for the NIG that uses fractional calculus.
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