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Markov Models for Directional Field and
Singularity Extraction in Fingerprint Images

Sarat C. Dass�, Member, IEEE

Abstract— A Bayesian formulation is proposed for reliable and
robust extraction of the directional field in fingerprint images
using a class of spatially smooth priors. The spatial smoothness
allows for robust directional field estimation in the presence of
moderate noise levels. Parametric template models are suggested
as candidate singularity models for singularity detection. The
parametric models enable joint extraction of the directional
field and the singularities in fingerprint impressions by dynamic
updating of feature information. This allows for the detection of
singularities that may have previously been missed, as well as
better aligning the directional field around detected singularities.
A criteria is presented for selecting an optimal block size to
reduce the number of spurious singularity detections. The best
rates of spurious detection and missed singularities given by the
algorithm are 4.9% and 7.1%, respectively, based on the NIST
4 database.

Index Terms— Directional field estimation, singularity detec-
tion, Markov random field models, Bayesian statistics.

EDICS Category: 2-OTHB, 2-NFLT, 2-REST

I. INTRODUCTION

F IGURE 1 shows a fingerprint impression, of size 512�
512, consisting of smoothly varying flow-like patterns

(termed as ridge structures), together with important singu-
larities (termed as cores and deltas). The direction of flow
of the ridge structures at each location in the image can be
represented as a two-dimensional orientation vector with unit
norm. The directional field is defined as the collection of
orientation vectors for all sites in the image. Singularities
(cores and deltas) are points of discontinuity of the flow
field. The two types of singularities are defined in terms of
the ridge structures [1]; the core is the end point of the
innermost curving ridge while the delta is the confluence point
of three different flow directions (see Figure 1). The directional
field and singularities represent two fundamental features of
fingerprint impressions that need to be extracted reliably for
subsequent processing [2].

Obtaining fast and reliable estimates of the directional field
has been the focus of many previous research efforts; they
include methods based on neural networks [3], filter-based
approaches [4] and gradient-based approaches [2], [5]–[8].
However, none of these methods explicitly model the inherent
spatial smoothness in the ridge structures. The detection of
singularities has been addressed in many previous work.
Finding regions of high curvature and subsequently classifying
a feature vector into either core, delta or none of these is
the approach taken in [9], [10]. In [11], geometric theory
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Fig. 1. Ridge structures and singularities in atypical fingerprint impression

of differential equations is used to derive signal-to-symbol
representations in the flow field domain for cores and deltas.
The local energy of the directional field in a neighborhood
of a site is used to measure how closely it resembles a flow
field around singularities in [12]. In [13], a ratio of two sines
of directional fields in two adjacent regions is used to detect
singularities while [2] uses a scheme for detecting singularities
based on the Poincare index of the squared directional field.
The present work addresses the estimation of the directional
field and the detection of singularities in a Bayesian frame-
work. A class of spatially smooth statistical models, having
a Markov random field structure, is proposed as priors for
the directional field. Markov random field models have been
used with great success for the solution of a number of
important image processing problems in which regularization
based on spatial proximity is critical; these include applica-
tions in image restoration [14]–[16], segmentation [17]–[20],
boundary detection [21], [22], and reconstruction in inverse
problems [23], [24]. See also [25] and [26] and references
therein. Other regularization techniques have also been used
for image restoration (see [27] and [28], for example). The
spatial smoothness induced through the Markov random field
prior models restrict random variations (for example, caused
by assignable noise factors such as fingertip pressure, skin
elasticity and random smudges during fingerprint sensing) of
directional field vectors that are spatially close, resulting in
a robust extraction algorithm. Based on the robust directional
field estimate, we also propose detecting singularities using
parametric template models. One advantage of the parametric
modelling is that a fewer number of spurious detections
will be made in presence of moderate noise levels due to
the restrictions placed on the directional field pattern around
singularities.

In all previous work, the detection of singularities assumed
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that a reliable directional field had already been extracted.
One disadvantage of this approach is that the detection of a
singularity does not have any impact for subsequent molding
of the directional field; thus, information about singularities is
not used for updating the values of the orientation vectors. We
show that dynamic updating of the directional field using infor-
mation on extracted singularities help detect other singularities
that may have been missed previously. Our approach here
will be to extract both the directional field and singularities
simultaneously in fingerprint impressions. Thus, information
on the flow field and singularities are utilized simultaneously
for feature extraction resulting in improved performance. We
also investigate the appropriateness of different block sizes for
extracting the flow field and singularities.

II. ROBUST MODELS FOR DIRECTIONAL FIELD

EXTRACTION

Several difficulties arise during the estimation of the direc-
tional field: (i) the gradient of the image intensity fluctuates
in sign due to the presence of alternating ridges and furrows
although the flow direction remains the same, and (ii) it is not
possible to distinguish between opposite flow directions (flow
at angle � to the horizontal axis is the same as the flow along
angle �+�). Our aim in this section is to propose models that
capture the inherent spatial smoothness of the directional field
while taking (i) and (ii) into account.

Consider a lattice domain D 2 R2 consisting of r rows
and c columns. An image of size r � c will be represented
by its gray intensity values I(x; y) for each point (x; y) 2 D.
Denote by C = fl 2 R2 : jjljj = 1 g to be the unit circle in
R2. Let �s = ( @I

@x
; @I
@y

)
T

be the (discrete) gradient vector at
site s = (x; y), and �s be the normalized version of �s (so
that �s 2 C). Let ls = (cos(�s); sin(�s))T 2 C be a unit vector
at site s = (x; y) 2 R2 representing the principal gradient
direction at site s. The directional field at site s, DFs, will be
taken to be the direction orthogonal to ls, namely

DFs = l?s : (1)

Also, let l = f ls : s 2 Dg , DF = fDFs : s 2 Dg and
� = f �s : s 2 Dg denote, respectively, the site-wise principal
gradient, directional field and observed gradient vectors.

For two orientation vectors l and � in C, the function

d(�; l) = (�T l)2 (2)

measures the degree of similarity between two orientation
vectors with 0 � d � 1. The maximum (minimum) value
D = 1 (D = 0) is achieved when l = �� (l and � are
orthogonal to each other). Given ls, the distribution of �s is
given by the density

�s(�s j ls) = C(�s) � exp
�
�2s d(�s; ls)

	
; (3)

where � 2s � 0 is the (known) precision constant, and C(�s) is
the appropriate normalization (independent of l s) so that the
density in (3) integrates to unity. Thus, the density in (3) is a
monotonic function of the similarity measure d with modes at
�s = �ls.

Assuming independence, the expression

�(� j l) =
Y
s2D

exp
�
�2s d(�s; ls)

	
(4)

represents the joint density (likelihood) of � given l. In (4),
we take �2s = �2 � ws (with

PN

s=1 ws = 1), so that � 2

represents the overall precision and each ws measures the
relative precision weights attributed to site s.

It is common in fingerprint analysis to compute a single
value of the directional field for blocks of sites of size b� b,
say, by grouping the sites in D. Blocking results in a spatial
lattice arrangement of blocks, fB(i;j); 1 � i � r(b) and 1 �
j � c(b)g, of size r(b) � c(b). We denote the collection of
block indices in the reduced lattice arrangement, f(i; j) : 1 �
i � r(b) and 1 � j � c(b)g, by D(b). Blocking assumes that
the principal gradient directions ls are constant in every block
of pixels. Thus, for u 2 D(b), we assume that ls = lu and
ws = wu for all pixels s 2 Bu. With blocking, the joint
density (likelihood) in (4) reduces to

�(� j l) =
Y

u2D(b)

Y
s2Bu

�s(�s j lu)

= C0

Y
u2D(b)

exp
�
�2wu(l

T
uAulu)

	
; (5)

where
Au =

X
s2Bu

�s�
T
s (6)

and wu represents the relative precision of block Bu with
respect to the rest of the blocks, and C0 is the normalizing
constant arising from the C0(�s) in (4). A motivation for
using the density in (5) is given in the Appendix. Also, under
blocking, we have l = f lu : u 2 D(b)g and DF = fDFu :
u 2 D(b)g representing the collection of block-wise principal
gradient directions and directional field values, respectively.

The block-wise maximum likelihood estimate of lu in (5)
given the observed normalized gradients, �, is given by the
eigenvector corresponding to the maximum eigenvalue of
Au. Consequently, the estimated directional field corresponds
to the direction orthogonal to the principal eigenvector (or,
equivalently, the minimum eigenvalue of Au). This is precisely
the estimate of the directional field in [2], [5]. The relative pre-
cision weights wu correspond to weighting the contributions
of each block Bu in the joint density formula. We choose the
weights

wu = Cohu �
�1 � �2
�1 + �2

; (7)

where Cohu is the coherence measure of block Bu, and �1
(�2) is the maximum (minimum) eigenvalue of Au. We have
0 � Cohu � 1 with Cohu = 1 indicating that the gradient
vectors in block Bu all point in the same direction as opposed
to being uniformly distributed (Cohu = 0). Thus, blocks with
higher (lower) values of coherence will be more (less) favored
in the overall likelihood, thus providing a strong argument for
this choice of wu.

The likelihood specified in (5) does not incorporate the
spatial dependence of the principal gradient vectors (and
hence, the directional field) on values in neighboring blocks.
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We model the inherent spatial dependence of neighboring
blocks using a Markovian prior distribution on l with a given
neighborhood structure. Let N = fNu : u 2 D(b)g denote a
neighborhood structure on D(b), with each Nu denoting the
neighboring blocks of Bu. The class of spatial Markov models
(indexed by �) for l is given by

�(l) = C(�) � exp

(
�
X
u�v

wuv d�(lu; lv)

)
; (8)

where
d�(l;m) = jlTmj

�
; (9)

with � > 0 and � � 0; the notation
P

u�v stands for the
sum over all u; v 2 D(b) that are neighbors of each other,
wuv are non-negative weights with

P
v2Nu

wuv = 1, and
C(�) is the appropriate normalizing constant. The parameter
� � 0 measures the degree of spatial smoothness (large (small)
values of � indicate that neighboring l values are similar
(dissimilar)).

For fixed � 2 and �, the posterior density function of l is
given by

�(l j �) / exp

8<
:�2

X
u2D(b)

wu(l
T
uAulu) + �

X
u�v

wuv d�(lu; lv)

9=
; :

(10)
The Maximum-a-Posteriori (MAP) estimate of l is obtained

by maximizing the posterior density function in (10) with re-
spect to l. For fixed � 2 and �, this is equivalent to maximizing
the objective function

�2
X

u2D(b)

wu(l
T
uAulu) + �

X
u�v

wuv d�(lu; lv): (11)

We describe an algorithm to find the MAP estimator of l.
The posterior distribution of l is Markovian in nature. The

conditional distribution (or, local characteristics) of lu given
its neighbors lv; v 2 Nu is

�(lu j lv; v 2 Nu; �)

/ exp
�
�2wu(l

T
uAulu) + �

P
v2Nu

wuvd�(lu; lv)
	
: (12)

.
We propose to maximize the posterior distribution of l in

(10) using the Iterative Conditional Modes (ICM) algorithm
[29], [30]. Briefly, the ICM algorithm is an iterative procedure
that maximizes the conditional distribution of lu given its
neighbors and cycles through all sites u 2 D(b) until conver-
gence. Each update of the ICM algorithm increases the value
of the posterior distribution in (10), and hence, convergence is
guaranteed to a local maximum. The ICM algorithm is easily
applicable in this case due to the Markovian nature of the
posterior distribution of l. Starting from an initial estimate of
l, l0, the ICM algorithm updates each lu by maximizing the
local characteristic in (12) using the most current values of
the remaining lvs where v 6= u.

We investigate the properties of the MAP estimator for
values of � ranging in (0; 2]. In the case when � = 2, each
conditional update entails maximizing the function

�2wu(l
T
uAulu) + �

X
v2Nu

wuvd(lu; lv) (13)

with respect to lu. In this case, the estimate of lu is given by
the unit eigenvector corresponding to the maximum eigenvalue
of the weighted matrix

�2wu

�2wu + �
Au +

�

�2wu + �

X
v2Nu

wuvlvl
T
v : (14)

For 0 < � < 2, we find the MAP estimator of l using the
optimization transfer algorithm described in [31]. The resulting
algorithm is similar to the case when � = 2 with an iterative
weighing scheme w�uv;n defined as

w�uv;n =
wuv

jlTu;nlv;nj
2��

; (15)

to be used in (13) instead of wuv at the n-th iteration.
The Markovian nature of the posterior distribution enables
simultaneous updates of disjoint coding sets (see [29], [30])
instead updating a single site each time. This entails significant
reduction in computational time.

III. DETECTION OF SINGULARITIES

Singularities will detected based on comparing the extracted
directional field (using the methodology presented in Section
II) with the directional field specified by parametric template
models. We use the template models for the directional field
in a neighborhood around singularities as given in [2] (see
Figure 2). The reason for using parametric template models is
two-fold: a fewer number of spurious detections are obtained
compared to non-template based methods, and parametric tem-
plates help mold the directional field values around detected
singularities.

Let Wu0 denote a w�w neighborhood of sites centered at
u0. For a singular point of type S = fcore; deltag � fC;Dg
centered at u0 = (x0; y0) and rotated � degrees with respect
to the horizontal axis, the directional field vector at a site
u = (x; y) 2 Wu0 is given by

DFu(S; �) �

�
cos(�) �sin(�)
sin(�) cos(�)

�
�DFu�(S); (16)

where u� = (x�; y�) 2 W(0;0) with x� = (x � x0)cos(�) +
(y � y0)sin(�) and y� = �(x� x0)sin(�) + (y � y0)cos(�),

DFu�(C) =

�
cos(��1=2)
sin(��1=2)

�
(17)

and

DFu�(D) =

�
cos(��2=2)
sin(��2=2)

�
; (18)

where (r�1 ; �
�
1) and (r�2 ; �

�
2) are the polar representations of

(�y�; x�) and (�y�;�x�), respectively.
A singularity is deemed present at site u0 if the value of

the function

f(S; �;u0) =
1

#Wu0

X
u2Wu0

d(DFu; DFu(S; �)) (19)

is large; in (19), DFu is the extracted directional field vector
at site u, DFu(S; �) is as defined in (16), #Wu0 is the number
of sites in Wu0 , and d is as defined in (2). Note that in practice,
the rotation angle � is not known and has to be estimated. We
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Fig. 2. The directional field for singularities based on templates: (a) core and (b) delta.

choose the estimate of �, �̂, that maximizes f(S; �;u0) for
each S-template model, that is,

�̂ = arg max� f(S; �;u0) (20)

and set
f̂(S;u0) = f(S; �̂;u0): (21)

The value of f̂(S;u0) represents the best value of similarity
of the extracted directional field with the directional field
specified by the S-template model rotated at angle �̂ with
respect to the horizontal axis. We evaluate f̂(S;u0) for all
sites u0 2 D(b) in a fingerprint image. The value of �̂ and
f̂(S;u0) are obtained for each S = fC;Dg. The maximum
of f̂(C;u0) and f̂(D;u0) is then determined, and compared to
a pre-specified threshold T0 where 0 < T0 < 1. A singularity
is said to be present at u0 if this maximum is greater than
T0, with singularity type and orientation taken to be the ones
corresponding to the maximum of f̂(C;u0) and f̂(D;u0). If
the maximum is less than T0, we say that no singularity is
detected at u0.

IV. SIMULTANEOUS EXTRACTION OF THE DIRECTIONAL

FIELD AND SINGULARITIES

For a fingerprint image with k singularities, denote by u i,
Si and �i to be the location, type (either core or delta) and
orientation of the i-th singularity, for i = 1; 2; : : : ; k. Singu-
larity information for the i-th singularity is denoted by the
triplet Si � (ui; Si; �i), and let S(k) � (S1;S2; : : : ;Sk). We
develop a joint feature extraction algorithm for the singularities
and the principal gradient directions, instead of the directional
field, by the equivalence in (1). Our approach will be based on
an iterative scheme that comprises of the following conditional
feature extraction steps: (i) extract the principal gradient direc-
tions given the information on singularities, and (ii) extract all

singularity information given the principal gradient directions.
We iterate steps (i) and (ii), and terminate when no change
is observed in the extracted features. An initial estimate of
the principal gradient direction, l0, followed by a singularity
extraction, S(k0), can be obtained using the methodology
described in Sections II and III. At the n-th iteration (n � 1),
we denote the extracted principal gradient directions and the
singularity information by ln and S(kn), respectively. Step (i)
at the (n+1)-st step entails updating the values of ln to l(n+1)

given S(kn). This is achieved conditionally by maximizing the
function

�2
X

u2D(b)

wu(l
T
uAulu)+�

X
u�v

wuv d�(lu; lv)+

knX
i=1

f(Si; �i;ui)

(22)
where f(S; �;u) is as defined in (19), and  > 0 is a pre-
specified constant. The parameter  represents the contribu-
tion of parametric directional field forms based on template
singularity models to the overall objective function in (22);
large values of  indicate that the extracted directional field
will closely follow the parametric forms specified by the
template models. One advantage of this approach is that the
detected singularities mold the directional field updates in
such a way so that other singularities may be detected at
subsequent iterations. We illustrate this fact in Section V. The
maximization of the function in (22) can be achieved using
the ICM algorithm as described in Section II. Given l (n+1),
the singularity information is updated using the methodology
presented in Section III, resulting in S(kn+1). Steps (i) and
(ii) are repeated until convergence.

V. EXPERIMENTAL RESULTS

The methodology presented in the previous sections were
validated on the NIST 4 fingerprint database [32]. The NIST
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Fig. 3. Effects of � and Nu, (a) � = 0, Nu = First Order, (b) � = 1, Nu = First Order (c) � = 1, Nu = 3 � 3 (d) � = 1, Nu = 5 � 5. Panel (a) is
Rao’s estimate of the directional field that is commonly used.
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Fig. 4. Effects of increasing � and b: (a) � = 1, b = 5 , (b) � = 1, b = 10, (c) � = 2, b = 5, (d) � = 2, b = 10.

4 database contains 2,000 8-bit gray scale fingerprint image
pairs. Each image is 512-by-512 pixels with 32 rows of
white space at the bottom and classified into one of the
following five classes: arch, left-loop, right-loop, tented arch
and whorl. The database is evenly distributed over each of the
five classifications with 400 fingerprint pairs from each class.

A. Robust Directional Field Extraction

We investigate the performance of the directional field
extraction algorithm presented in Section II. The value of � 2

was fixed at 1 and the initial estimates of l, l0, was taken
to be the MAP estimate for � = 0. This results in Rao’s
estimate of the directional field [5]. Figures 3 (a)-(d) illustrate
the smoothness introduced in the directional field estimates
when � and Nu are increased. Three choices of Nu are taken:
the first order (east, west, north and south neighbors), 3 � 3
and 5 � 5 neighborhood structures. A smoother and more
robust directional field estimate is obtained as either � or
the neighborhood size or both are increased (compare (b)-
(d) to Rao’s estimate of the directional field in (a) of Figure
3). We also investigated the effect of different � values on
the extracted directional field. In general, when the blocking
size b is held fixed, smaller � values tend to preserve curvature
information of the ridge structures compared to larger � values
(see Figures 4 (a)-(d)).

B. Singularity Detection

Figure 5 illustrates the extraction of singularities in a
fingerprint impression based on the methodology presented in

Section III. The directional field used to evaluate the function
f̂(S;u0) in (21) is obtained as in Section II, using the (3�3)
neighborhood structure with (�; b) = (2; 10). The window
Wu0 is taken to be a 11 � 11 neighborhood around u0, and
T0 is taken to be 0.85. Figure III (a) shows the original
fingerprint impression with two singularities (core and delta at
(row,column) = (230,300) and (370,390), respectively). Apply-
ing f̂(S;u0) successively for each point u0 in the image results
in a smooth surface with local maximums whose locations
correspond to detected singularities of type S (see Figures III
(c) and (d)). Thresholding results in a spatial clustering of
points whose centers correspond to locations of singularities.
Separate hierarchical clustering for S = fC;Dg is performed
to determine the center of each cluster as the location of the
singular points. Figure III (b) shows the extracted core and
delta with estimated orientation angles �28:3o and �0:48o,
respectively, with respect to the horizontal axis.

C. Simultaneous directional field and singularity extraction

Obtaining directional field and singularity information si-
multaneously offers the additional advantage of dynamic up-
dating of features. The directional field can be dynamically
molded based on current singularity information to detect other
singularities in the fingerprint impression. We present two
examples here to illustrate the performance improvement of
the joint feature extraction algorithm compared to extraction of
the directional field followed by singularity detection. Figure
6 (a) gives the results when the directional field is estimated
first followed by singularity detection. The singularities are
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Fig. 5. Detection of singularities in fingerprint images based on template models: (a) Original image, (b) Detected singularities (2 represents a core and Æ

represents a delta), (c) contour map of f̂(C; �), and (d) contour map of f̂(D; �).

detected using the filters f(S; �) with T0 fixed at 0.86. Note
that one core point (at (row,column) = (180,290)) is missed.
Figure 6 (b) shows the detected singularities based on simulta-
neous directional field and singularity extraction (Section IV)
using the directional field and singularity information of Figure
6 (a) as the initial estimates (l0 and S(k0), respectively).
Table I (second column) gives the value of f̂(C; (180; 290))
for 3 successive iterations, with the missed core successfully
detected after the first iteration.

The singularities in Figures 6 (c) and (d) were detected
using a different threshold, T0 = 0:96. Note that the core at
(row,column) = (250,260) is missed when joint extraction is
not performed (Figure 6 (c)). Figure 6 (d) shows all singulari-
ties that are successfully detected when using the joint feature
extraction algorithm. Note the increase in f̂(C; (250; 260))
above T0 after the first iteration in Table I (third column).

TABLE I

TABLE SHOWING THE INCREASE IN THE CORE FILTER f̂(C; �) VALUES

Iteration f̂(C; (180; 290)) f̂(C; (250; 260))
1 0.8314 0.9587
2 0.8825 0.9689
3 0.9184 0.9836

D. Effect of the blocking size, b

Figure 8 give examples of joint feature extraction based
on different block sizes b. Values of b that are small cause
spurious patterns to appear (see top rows of Figures 7 and 8)
while large b values large (bottom rows of Figures 7 and 8)
level out important ridge singularity information. Therefore,
it is important to select a block size for optimal extraction of
features for each fingerprint image. We present a criteria for
selecting the optimal block size based on similarity measures
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Fig. 6. A comparison of feature extraction based on two methods: one step directional field extraction followed by singularity detection ((a) and (c)), and
iterative updating of the directional field and singularities ((b) and (d)).

of the extracted directional field with the true image gradients
at singularity locations as well as at pre-specified locations in
the fingerprint image. Denoting the locations of singularities
by u1; u2; : : : ; uk (for k detected singularities) and the loca-
tion of M pre-specified points on the fingerprint image by
r1; r2; : : : ; rM , the similarity measure with block sizes b � b
is given by

Sim(b) = Sim1(b) + Sim2(b)�R1 � k �R2 � b; (23)

where

Sim1(b) =
1

k

kX
i=1

ai
1

#Wui

X
u2Wui

X
s2Bu

d(lu; �s) (24)

and

Sim2(b) =
1

M

MX
j=1

bj
1

#Wrj

X
u2Wrj

X
s2Bu

d(lu; �s); (25)

where R1; R2 > 0 are constants representing the penalty
terms for spurious detection and oversmoothing, respectively,
ai; i = 1; 2; : : : ; k and bj ; j = 1; 2; : : : ;M are pre-determined
weights, and all other symbols are as described before. The
optimal block size bopt is chosen to maximize (23).

We applied our procedure to 1000 images from the NIST
4 database. Nine choices of b were made, namely, b =
5; 6; 8; 10; 12; 14; 16; 18; 20, and the criteria in (23) was evalu-
ated to find bopt for each fingerprint image. A total of M = 25
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Extraction of the directional field and singularities with different block sizes. Top, middle and bottom rows correspond to block sizes of 5, bopt and
20, respectively. The symbols 2 and Æ represents detected cores and deltas, respectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Extraction of the directional field and singularities with different block sizes. Top, middle and bottom rows correspond to block sizes of 5, bopt and
20, respectively. The symbols 2 and Æ represents detected cores and deltas, respectively.
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TABLE II

AVERAGE NUMBER OF SPURIOUS DETECTIONS AND MISSED

SINGULARITIES PER FINGERPRINT IMPRESSION.

Blocking size b Spurious detection Missed singularities
5 0.364 0.019

bopt 0.049 0.071
20 0.025 0.430

equally spaced points were chosen in the central portion of the
fingerprint image. These constituted the pre-specified points
bj for j = 1; 2; : : : ;M . We took R1 = R2 = 1, ai = 2:5
for i = 1; 2; : : : ; k and bj = 100 for i = 1; 2; : : : ;M , giving
more weight to the fit at the pre-specified locations. Middle
rows of Figures 7 and 8 show examples of the extracted direc-
tional field and singularities based on bopt. Several spurious
singularities were detected outside of the fingerprint image. We
performed a manual segmentation and recorded the number
of spurious and missed singularities within each fingerprint
impression for b = 5; bopt and 20. The results are presented in
Table II. The rate of spurious detection is significantly reduced
when using bopt although the rate of missed singularities is
increased slightly. Note that the rates of spurious detection
based on manual segmentation presented here is significantly
lower compared to those reported in [2]

Figure 9 presents the results of simultaneous directional
field and singularity extraction for 5 fingerprint classes [1]
based on bopt. The figures illustrate the robust extraction of
the directional field and the associated singularity detection
in the presence of noise. Note the robust estimation of the
directional field and detection of singularities at regions with
white patches in Figures 9 (a) and (c) particularly.

VI. CONCLUSION

A class of spatially smooth models are proposed for the ro-
bust extraction of the directional field, and parametric template
models are used for singularity extraction. Joint extraction
of the directional field and singularities has the advantage
of dynamic updating of features, and the ability to detect
previously missed singularities. A criteria is presented to select
an optimal block size for feature extraction on an image-by-
image basis. The resulting algorithm is shown to satisfactorily
extract the directional field and singularities in a variety of
fingerprints involving moderate noise levels.

APPENDIX I
A MOTIVATION FOR THE LIKELIHOOD MODELS OF l

In case of blocking with block sizes b � b, the likelihood
term for the observed normalized gradients in block Bu, �� =
f�s; : s 2 Bug is given by

�(�� j lu) =
Y
s2Bu

C(�2wu)
Y
s2Bu

expf� 2wu(�
T
s lu)

2g

= (C(�2wu))
b2 expf� 2wu

X
s2Bu

(�Ts lu)
2g

A single block Bu contains alternating ridge and valley
structures which cause the gradient vectors to fluctuate in sign.

Suppose that �s = esv with jjvjj = 1 and es = �1 for s 2 Bu.
Thus, we assume that the ridge structures have one common
underlying principal gradient direction (and hence one value
of the directional field) but the sign of the gradients fluctuates
due to the presence of alternating ridges and valleys. We haveX

s2Bu

(�Ts lu)
2 =

X
s2Bu

(�Ts lu)
2 =

X
s2Bu

(es � v
T lu)

2 � b2

with equality if and only if lu = �v. Thus, the maximum
likelihood estimate of lu, l̂u = �v, is independent of the sign
fluctuations, es. Also, note that l̂u is unique up to the sign
of v only. In other words, l̂u does not distinguish between
ridge directions that are opposite to each other. It follows that
each lu = (cos(�u); sin(�u))T is uniquely determined for �u 2
[��=2; �=2]. The same result would hold true if the function d
in (2) is replaced by the more general function d� in (9). Also,
the posterior of l given the observed gradients is a function
of d and d�, and hence neighboring but opposite l directions
will reinforce each other, instead of cancelling each other out.

APPENDIX II
FINDING f̂(S;u0) USING A LEAST SQUARES CRITERIA

For two directional field vectors at site u, DF
(i)
u =

(cos �(i)u ; sin �(i)u )T , the squared directional field (SDF) vector
is defined as

SDF (i)
u = (cos 2�(i)u ; sin 2�(i)u )T = (a(i)u ; b(i)u )T ; (26)

say, for i = 1; 2. The closeness of the two directional field
vectors can be measured using the d function in (2); we have

d(DF (1)
u ; DF (2)

u ) = cos2(�(1)u � �(2)u )

= 1�
(a

(1)
u � a

(2)
u )2 + (b

(1)
u � b

(2)
u )2

4
; (27)

from the identity cos2 � = (cos 2� + 1)=2 and (26). In other
words, the closeness of the two directional fields can also be
measured in terms of the closeness of the SDF vectors.

In order to detect a singularity at u0, we compare the SDF
values in a neighborhood of sites u 2 Wu0 with that of the
template models. For S = fC;Dg, the � rotated SDF template
at a point u = u0 + (rucos �u; rusin �u)T are given by

SDFu(C; �) = (�sin(�u + �); cos(�u + �))T (28)

and

SDFu(D; �) = (�sin(�u � 3�);�cos(�u � 3�))T ; (29)

respectively. Denote the extracted directional
field and the corresponding SDF at site u by
DFu;ext = (cos(�u;ext); sin(�u;ext))T and SDFu;ext =
(cos(2�u;ext); sin(2�u;ext))T = (au;ext; bu;ext), respectively.
To determine if a core is present at u0, we measure the
closeness of the extracted SDF with that of the template core
model (28) using the least squares criteria

g(�;u0) �
1

#Wu0

X
u2Wu0

�
(au;ext + sin(�u + �))2

+ (bu;ext � cos(�u + �))2
	
: (30)
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(a) (b)

(c) (d)

(e)

Fig. 9. Robust extraction of the directional field and singularities for noisy fingerprint impressions for the 5 fingerprint classes: (a) left loop, (b) right loop,
(c) whorl, (d) tented arch and (e) arch (fingerprints of class arch do not have any cores and deltas).
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In (30), the rotation angle � is unknown and can be chosen as
the value that minimizes (30) with respect to �. The solution
�̂ is given by

tan �̂ =

P
u2Wu0

(au;extcos(�u) + bu;extsin(�u))P
u2Wu0

(au;extsin(�u)� bu;extcos(�u))
: (31)

It follows from (27) that

f(C; �;u0) = (1� (g(�;u0)=4)); (32)

and so, �̂ in (31) also maximizes f(C; �;u0) with f̂(C;u0) =
f(C; �̂;u0).

Using similar arguments, the value of � that minimizes the
function g in (30) for a delta (from (29)) is given by

tan 3�̂ =

P
u2Wu0

(bu;extsin(�u)� au;extcos(�u))P
u2Wu0

(au;extsin(�u) + bu;extcos(�u))
; (33)

and we have f̂(D;u0) = f(D; �̂;u0).
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