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Abstract

Let X = {X(t), t ∈ RN} be a multiparameter fractional Brownian motion of index α

(0 < α < 1) in Rd. We prove that if N < αd , then there exist positive finite constants K1

and K2 such that with probability 1,

K1 ≤ ϕ-p(X([0, 1]N )) ≤ ϕ-p(GrX([0, 1]N )) ≤ K2

where ϕ(s) = sN/α/(log log 1/s)N/(2α), ϕ-p(E) is the ϕ-packing measure of E, X([0, 1]N ) is
the image and GrX([0, 1]N ) = {(t,X(t)); t ∈ [0, 1]N} is the graph of X, respectively. We
also establish liminf and limsup type laws of the iterated logarithm for the sojourn measure
of X.
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1 Introduction

For a fixed α ∈ (0, 1), an N -parameter fractional Brownian motion of index α in R is a centered,
real-valued Gaussian random field Y = {Y (t), t ∈ RN} with Y (0) = 0 and covariance function

E(Y (t)Y (s)) =
1
2

(
|t|2α + |s|2α − |t− s|2α

)
,

where | · | is the Euclidean norm in RN which is endowed with the usual inner product 〈t, x〉.
There is a very useful stochastic integral representation for Y . Such a representation is based
upon the fact that for each t ∈ RN

|t|2α = c2

∫

RN

(
1− cos〈t, x〉

) dx

|x|2α+N
,

where c = c(α,N) > 0 is a normalizing constant depending on α and N only. Let m be a
scattered Gaussian random measure on RN with Lebesgue measure λN as its control measure,
that is, {m(A), A ∈ E} is a centered Gaussian process on E = {E ⊂ RN : λN (E) < ∞} with
covariance function

E
(
m(E)m(F )

)
= λN (E ∩ F ).

Let m′ be an independent copy of m. Then it is easy to verify that Y = {Y (t), t ∈ RN} has
the following stochastic integral representation

Y (t) =
c√
2

∫

RN

(1− cos〈t, x〉) dm(x)

|x|α+N
2

+
c√
2

∫

RN

sin〈t, x〉dm′(x)

|x|α+N
2

, t ∈ RN . (1.1)

We refer to Samorodnitsky and Taqqu [17] for other representations and more properties of
fractional Brownian motion.

Associated with the real-valued Gaussian field Y , we define a Gaussian random field X =
{X(t), t ∈ RN} in Rd by

X(t) = (X1(t), . . . , Xd(t)),

where X1, · · · , Xd are independent copies of Y . Using the terminology of Kahane ([4], chapter
18), we call X the (N, d, α) process or an N -parameter fractional Brownian motion of index α

in Rd. It is easy to see that X is self-similar with exponent α in the sense that for any a > 0,

X(a ·) d= aαX(·), (1.2)

and has stationary increments, that is, for every b ∈ RN

X(·+ b)−X(b) d= X(·)−X(0), (1.3)
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where X
d= Y means that the two processes X and Y have the same finite dimensional distri-

butions.

For any Borel set E ⊆ RN , the image X(E) = {X(t); t ∈ E} and graph set GrX(E) =
{(t,X(t)); t ∈ E} of fractional Brownian motion are random fractals. It is well known that
with probability one,

dimPX([0, 1]N ) = min{d;
N

α
},

dimPGrX([0, 1]N ) =

{
min

{
d; N

α

}
, if N ≤ αd,

N + (1− α)d, if N > αd.

where dimPE is the packing dimension of E (See Section 2 for definition and basic properties).

There has been a lot of interest in studying the exact packing measure of the image and
graph of Brownian motion. See Taylor and Tricot [22], LeGall and Taylor [7], Rezakhanlou
and Taylor [15]. Many of these results have been extended to Lévy processes by Taylor [20],
Fristedt and Taylor [2]. Their methods rely heavily on special properties of Lévy processes
such as the independence of increments, hence can not be applied to calculate the packing
measure of the sample paths of non-Markovian processes. Taylor ([21], p.392) raised the
question of finding the exact packing measure for the sample paths of fractional Brownian
motion. By applying general Gaussian methods and by direct conditioning, Xiao [23] solved the
exact packing measure problem for the image of one-parameter transient fractional Brownian
motion. However, some key arguments in Xiao [23] such as the proofs of Theorem 3.2, Lemma
4.1 and Theorem 4.1 depend on the fact that t is one-dimensional and they do not work in
the multiparameter case. Hence the packing measure problems for the image and graph of
multiparameter fractional Brownian motion had remained open. The main objective of this
paper is to prove that, in the transient case (that is, N < αd), there exist positive constants
K1 and K2, such that

K1 ≤ ϕ-p(X([0, 1]N )) ≤ ϕ-p(GrX([0, 1]N )) ≤ K2, a.s. (1.4)

where ϕ(s) = sN/α/(log log 1/s)N/(2α) and ϕ-p is the ϕ-packing measure. For this purpose, we
develop a more general conditioning argument which may also be useful in other circumstances.

The following are some remarks about the other cases that are not addressed in this paper.
If N > αd , then X is recurrent and it has a continuous local time (see Pitt [12], or Kahane
([4], Ch.18, Theorem 2). This implies that X([0, 1]N ) a.s. contains interior points, hence 0 <

sd-p(X([0, 1]N )) < ∞ a.s. However, for the graph set, we have dimPGrX([0, 1]N ) = N+(1−α)d
a.s.. It would be interesting to determine the exact packing measure function for GrX([0, 1]N ).
In the critical case of N = αd, the problems of finding the packing measure of X([0, 1]N ) and
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GrX([0, 1]N ) are both open in general. The only known result is due to LeGall and Taylor [7]
who proved that if X is planar Brownian motion, then ϕ-p(X([0, 1])) is either zero or infinite.

The rest of the paper is organized as follows. In Section 2, we collect some definitions and
lemmas which will be useful to our calculations. In Section 3, we prove liminf and limsup
type laws of the iterated logarithm for the sojourn time of a transient fractional Brownian
motion. Besides of their applications in determining the fractal measures of the sample paths
of fractional Brownian motion, these results also suggest that the sojourn measure of fractional
Brownian motion has a non-trivial logarithmic multifractal structure. It would be interesting
to determine its multifractal spectrum. In Section 4, we consider the packing measure of the
image and graph of fractional Brownian motion and prove (1.4).

We will use K to denote unspecified positive and finite constants whose value may be
different in each occurrence. Constants that are referred to in the sequel will be denoted by
K1,K2, . . . , K20.

2 Preliminaries

We start by recalling the definitions of packing measure and packing dimension which were
introduced by Taylor and Tricot [22] as dual concepts to Hausdorff measure and Hausdorff
dimension. See also Falconer [1] or Mattila [11] for more information. Let Φ be the class of
functions ϕ : (0, δ) → (0, 1) which are right continuous, monotone increasing with ϕ(0+) = 0
and such that there exists a finite constant K3 > 0 for which

ϕ(2s)
ϕ(s)

≤ K3 for 0 < s < δ/2. (2.1)

For ϕ ∈ Φ, define the ϕ-packing premeasure ϕ-P (E) on RN by

ϕ-P (E) = lim
ε→0

sup
{∑

i

ϕ(2ri) : B(xi, ri) are disjoint, xi ∈ E, ri < ε
}

, (2.2)

where B(x, r) denotes the open ball of radius r centered at x and B(x, r) is its closure. A
sequence of closed balls satisfying the conditions in the right hand side of (2.2) is called an
ε-packing of E. The ϕ-packing measure, denoted by ϕ-p, on RN is defined by

ϕ-p(E) = inf
{∑

n

ϕ-P (En) : E ⊆
⋃
n

En

}
. (2.3)

It is known that ϕ-p is a metric outer measure and hence every Borel set in RN is ϕ-p mea-
surable. If ϕ(s) = sα, sα-p(E) is called the α-dimensional packing measure of E. The packing
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dimension of E is defined by

dimPE = inf{α > 0 : sα-p(E) = 0}.

By (2.3), we see that, for any E ⊂ RN ,

ϕ-p(E) ≤ ϕ-P (E), (2.4)

which gives a way to determine the upper bound for ϕ-p(E). The following density theorem for
packing measures (see Taylor and Tricot [22] and Saint Raymond and Tricot [16] for a proof)
is very useful in determining the lower bound of ϕ-p(E).

Lemma 2.1 Let µ be a Borel measure on RN and ϕ ∈ Φ. Then for any Borel set E ⊆ RN ,

ϕ-p(E) ≥ K−3
3 µ(E) inf

x∈E
{Dϕ

µ(x)}−1,

where K3 is the constant in (2.1) and

Dϕ
µ(x) = lim inf

r→0

µ(B(x, r))
ϕ(2r)

is the lower ϕ-density of µ at x.

Now we collect some general facts about Gaussian processes. Let Y = {Y (t), t ∈ S} be a
centered Gaussian process. We define a pseudo-metric d on S by

d(s, t) = ‖Y (s)− Y (t)‖2 := (E(Y (s)− Y (t))2)1/2.

Denote by Nd(S, ε) the smallest number of open d-balls of radius ε needed to cover S, and
write D = sup{d(s, t); s, t ∈ S} for the d-diameter of S.

Lemma 2.2 below is well known. It is a consequence of the Gaussian isoperimetric inequality
and Dudley’s entropy bound (cf. Ledoux and Talagrand [6], or Talagrand [18]).

Lemma 2.2 There exists an absolute constant K > 0 such that for any u > 0, we have

P
{

sup
s,t∈S

|Y (s)− Y (t)| ≥ K
(
u +

∫ D

0

√
log Nd(S, ε) dε

)}
≤ exp

(
− u2

D2

)
.

The first part of the following lemma is a corollary of Lemma 2.2 and the second part was
proved by Marcus [9] for N = 1. Extension to the case of N > 1 is immediate.
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Lemma 2.3 Let Y = {Y (t), t ∈ RN} be a real-valued, centered Gaussian random field with
Y (0) = 0. If there exist constants 0 < α < 1 and σ > 0 such that

E(Y (t)− Y (s))2 ≤ σ2|t− s|2α,

then there exist finite constants K, K4 > 0 such that for any r > 0, any hypercube I ⊂ RN

with edge length r and any u ≥ Krα, we have

P
{

sup
s,t∈I

|Y (t)− Y (s)| ≥ σu
}
≤ exp

(
− u2

K4r2α

)
(2.5)

and
lim sup

h→0
sup

t,t+s∈[0,1]N

|s|≤h

|Y (t + s)− Y (t)|
σhα(log 1/h)1/2

≤
√

K4, a.s.. (2.6)

The following delayed hitting probability estimate for multiparameter fractional Brownian
motion is a special case of Theorem 5.2 of Mason and Xiao [10], which extends the corre-
sponding result of Xiao [23] in the one-parameter case. A similar lower bound follows from the
arguments in Xiao [26].

Lemma 2.4 Let X = {X(t), t ∈ RN} be a d-dimensional fractional Brownian motion of
index α (0 < α < 1) with N < αd. Then for any T > 0 and any 0 < r < Tα, we have

P
{
∃ t ∈ RN such that |t| > T and |X(t)| < r

}
≤ K

(
r

Tα

)d−N/α

,

where K > 0 is a constant depending on α, N and d only.

Remark 2.5 It is an open problem to estimate the hitting probability for fractional Brownian
motion in the case of N = αd. Classical results for planar Brownian motion can be found in
Port and Stone [14].

We end this section with the following Borel-Cantelli lemma. Part (i) is well known and
Part (ii) in this form is from Talagrand [19]. See also Marcus [9].

Lemma 2.6 Let {Ak} be a sequence of events in a probability space.

(i) if
∑∞

k=1 P(Ak) < ∞, then P(lim supk→∞Ak) = 0.
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(ii) if there exist positive constants K, ε and positive integers k0, J such that for k0 ≤ k < J ,

J∑

j=k+1

P(Ak ∩Aj) ≤ P(Ak)
(
K + (1 + ε)

J∑

j=k+1

P(Aj)
)

(2.7)

and
J∑

k=k0

P(Ak) ≥ 1 + 2K

ε
, (2.8)

then

P
{ J⋃

k=k0

Ak

}
≥ 1

1 + 2ε
.

Remark 2.7 If
∑

k P(Ak) = ∞, then for any ε > 0 and any fixed integer k0 ≥ 1, we can take
J large enough so that (2.8) holds. Hence only (2.7) needs to be verified.

3 Limit Theorems for the Sojourn Time

Let X = {X(t), t ∈ RN} be a fractional Brownian motion in Rd with index α ∈ (0, 1). We
assume N < αd, hence X is transient in the sense that limt→∞ |X(t)| = ∞ a.s. (cf. Kôno [5],
Theorem 10). For any r > 0 and any y ∈ Rd, let

Ty(r) =
∫

RN

1lB(y,r)(X(t))dt

be the sojourn time of X(t) (t ∈ RN ) in B(y, r). If y = 0, we denote Ty(r) by T (r). It follows
from the self-similarity of X(t) (cf. (1.2)) that T (r) has the following scaling property: for any
a > 0 and r > 0

T (ar) d= aN/αT (r). (3.1)

We also need to make use of the “truncated” sojourn time

T (b, τ) =
∫

|t|≤τ
1lB(0,b)(X(t))dt. (3.2)

In this section, we prove liminf and limsup type laws of the iterated logarithm for the sojourn
time T (r). Combined with Lemma 2.1, the liminf theorem will be applied in Section 4 to prove
the lower bound in (1.4). The limsup result is related to the Hausdorff measure of the sample
paths of fractional Brownian motion. See Talagrand [18] or Xiao [24].

We will first prove some hitting probability estimates for Gaussian random fields under
more general conditions than those in Xiao [23].
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Let Z0 = {Z0(t), t ∈ RN} be a real valued Gaussian random field with Z0(0) = 0. Denote

σ2(t, s) = E(Z0(t)− Z0(s))2 , σ2(t) = E(Z0(t))2.

We consider an Rd-valued Gaussian field Z = {Z(t), t ∈ RN} defined by

Z(t) = (Z1(t), · · · , Zd(t)),

where Z1, . . . , Zd are independent copies of Z0.

For any a > 0, let S = {t ∈ RN : a ≤ |t| ≤ 2a}. We assume that the random field Z0

and a function c(t) : RN 7→ R satisfy the following conditions: there exist positive and finite
constants δ0, η and K such that for all t ∈ S,

K−1|t|2α ≤ σ2(t) ≤ K|t|2α, (3.3)

K−1 ≤ |c(t)| ≤ K (3.4)

and for all s, t ∈ S with |s− t| ≤ δ0,

K−1|t− s|2α ≤ σ2(t, s) ≤ K|t− s|2α, (3.5)

|c(t)− c(s)| ≤ K|t− s|α+η. (3.6)

Lemma 3.1 Suppose that the Gaussian random field Z and the function c(t) satisfy the con-
ditions (3.3)–(3.6) on S. If N < αd, then there exist positive constants K5, K6 and K7,
depending on α, d, N only, such that for all r > 0 and all y ∈ Rd with |y| ≥ K5r, we have

(i) if a ≥ r1/α, then

P
{
∃t ∈ S such that |Z(t)− c(t)y| < r

}
≤ K6 exp

(
− |y|2

K7a2α

) ( r

aα

)d−N/α
; (3.7)

(ii) if a ≤ r1/α, then

P
{
∃t ∈ S such that |Z(t)− c(t)y| < r

}
≤ K6 exp

(
− |y|2

K7a2α

)
. (3.8)

Remark 3.2 We note that the constants K5, K6 and K7 are independent of a. This is
important when we apply Lemma 3.1 to finish the proof of Lemma 3.4 below.
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Proof of Lemma 3.1 Even though the proof follows a similar line to that of Lemma 3.1 in
Xiao [23], several technical modifications have to be made. For the convenience of the reader,
we include it here.

We prove Part (i) first. Let a, r > 0 be fixed and a ≥ r1/α. Denote by N(S, r1/α) the
smallest number of open balls of radius r1/α that are needed to cover S. Then

N(S, r1/α) ≤ K aN r−N/α. (3.9)

Let {Sp, 1 ≤ p ≤ N(S, r1/α)} be a family of balls of radius r1/α that cover S. We define the
following events

A =
{

inf
t∈S

|Z(t)− c(t)y| < r
}

,

Ap =
{

inf
t∈Sp

|Z(t)− c(t)y| < r
}

.

Then

A ⊆
N(S,r1/α)⋃

p=1

Ap. (3.10)

Let b = max{2, aα, log(r1/α/δ0)} and, for every integer n ≥ 1, let

εn = r1/α exp(−bn+1).

Then εn ≤ δ0 for all n ≥ 0. Set
rn = β d εα

n b
n+1

2 ,

where β ≥ K4 +1 is a constant to be determined later (recall that K4 is the constant in (2.5)).
It is easy to verify that there is a constant K8 such that

r +
∞∑

k=n

rk ≤ K8 r.

Consequently, we can find a finite constant K5 with the following property: if y, u ∈ Rd,
|y| ≥ K5r and |u − c(t)y| ≤ K8r for some t ∈ S, then |u| ≥ 1

2 |y|. This fact will be used in
(3.19) and (3.20) below.

Now, we fix y ∈ Rd with |y| ≥ K5 r and define

n0 = inf{n ≥ 0 : Kεη
n |y| ≤ aα}, (3.11)

where K is the constant in (3.6). If no such n exists, we let n0 = 0.
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Let 1 ≤ p ≤ N(S, r1/α) be fixed. For every integer n ≥ 1, let Tn = {t(n)
i , 1 ≤ i ≤ N(Sp, εn)}

be a set of the centers of open balls with radius εn that cover Sp. Let

A(n0) =
N(Sp,εn0 )⋃

i=1

{
|Z(t(n0)

i )− c(t(n0)
i )y| < r +

∞∑

k=n0

rk

}
.

For every n > n0 and 1 ≤ i ≤ N(Sp, εn), we define the following events

A
(n)
i =

{
|Z(t(n)

i )− c(t(n)
i )y| < r +

∞∑

k=n

rk

}
(3.12)

and

A(n) = A(n−1)
⋃ N(Sp,εn)⋃

i=1

A
(n)
i . (3.13)

Clearly, {A(n)} is a sequence of increasing events. We claim that

P(Ap) ≤ lim
n→∞P(A(n)). (3.14)

To see this, we assume that for some s0 ∈ Sp, |Z(s0)− c(s0)y| < r. Then there is a sequence of
points {s(n)} such that s(n) ∈ Tn, s(n) → s0 and |s(n) − s(n+1)| ≤ 2εn. The triangle inequality
yields that for all n > n0,

|Z(s(n))− c(s(n))y| < r + |Z(s(n))− Z(s0)|+ |y| · |c(s(n))− c(s0)|.

Hence (3.14) follows from (2.5) in Lemma 2.3, (3.6), and the fact that εη
n |y| → 0 as n →∞.

It follows from (3.13) that

P(A(n)) ≤ P(A(n−1)) + P(A(n)\A(n−1)) (3.15)

and

P(A(n)\A(n−1)) ≤
N(Sp,εn)∑

i=1

P(A(n)
i \A(n−1)

i′ ), (3.16)

where i′ is chosen so that |t(n)
i − t

(n−1)
i′ | < εn−1. Note that

P(A(n)
i \A(n−1)

i′ ) = P
{
|Z(t(n)

i )− c(t(n)
i )y| < r +

∞∑

k=n

rk ,

|Z(t(n−1)
i′ )− c(t(n−1)

i′ )y| > r +
∞∑

k=n−1

rk

}

≤ P
{
|Z(t(n)

i )− c(t(n)
i )y| < r +

∞∑

k=n

rk ,

|Z(t(n)
i )− Z(t(n−1)

i′ ) + (c(t(n−1)
i′ )− c(t(n)

i )) y| ≥ rn−1

}
.
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By the elementary properties of Gaussian random variables, we can write

Z(t(n)
i )− Z(t(n−1)

i′ )

σ(t(n)
i , t

(n−1)
i′ )

= ρ
Z(t(n)

i )

σ(t(n)
i )

+
√

1− ρ2 Ξ, (3.17)

where

ρ =
E

[
(Z(t(n)

i )− Z(t(n−1)
i′ ))Z(t(n)

i )
]

σ(t(n)
i , t

(n−1)
i′ )σ(t(n)

i )

and where Ξ is a standard Gaussian vector and is independent of Z(t(n)
i ).

It follows from (3.17) and the triangle inequality that P(A(n)
i \A(n−1)

i′ ) is at most

P
{
|Z(t(n)

i )− c(t(n)
i )y| < K8 r, |Ξ| ≥ βd

2
b

n
2

}

+P
{
|Z(t(n)

i )− c(t(n)
i )y| < K8 r,

∣∣∣ρ Z(t(n)
i )

σ(t(n)
i )

− c(t(n−1)
i′ )− c(t(n)

i )

σ(t(n−1)
i′ , t

(n)
i )

· y
∣∣∣ ≥ βd

2
b

n
2

}

=̂I1 + I2. (3.18)

By the independence of Ξ and Z(t(n)
i ), we have

I1 = P
{
|Z(t(n)

i )− c(t(n)
i )y| ≤ K8r

}
· P

{
|Ξ| ≥ βd

2
b

n
2

}

=
∫

{|u−c(t
(n)
i )y|≤K8r}

1

(2π)d/2σd(t(n)
i )

exp
(
− |u|2

2σ2(t(n)
i )

)
du · P

{
|Ξ| ≥ βd

2
b

n
2

}

≤ K exp
(
− |y|2

Kσ2(t(n)
i )

)( r

σ(t(n)
i )

)d
· P

{
|Ξ| ≥ βd

2
b

n
2

}
( recall |y| ≥ K5r)

≤ K exp
(
− |y|2

K(2a)2α

)( r

aα

)d
· exp

(
−(βd)2

16
bn

)
, (3.19)

where the last inequality follows from (3.3) and the tail probability of the standard Gaussian
vector. On the other hand, noting that (3.5), (3.6) and (3.11) imply for n ≥ n0 + 1,

|c(t(n−1)
i′ )− c(t(n)

i )|
σ(t(n−1)

i′ , t
(n)
i )

· |y| ≤ K
|c(t(n−1)

i′ )− c(t(n)
i )|

|t(n−1)
i′ − t

(n)
i |α

· |y|

≤ K εη
n−1 |y| ≤ aα,

we have

I2 ≤ P
{
|Z(t(n)

i )− c(t(n)
i )y| < K8 r,

∣∣∣Z(t(n)
i )

σ(t(n)
i )

∣∣∣ ≥ βd

2
b

n
2

}
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=
∫

{|u−c(t
(n)
i )y|≤K8r, |u|≥βd

2
bn/2σ(t

(n)
i )}

( 1
2π

) d
2 1

σd(t(n)
i )

exp
(
− |u|2

2σ2(t(n)
i )

)
du

≤ K

∫

{|u−c(t
(n)
i )y|≤K8r}

1

σd(t(n)
i )

exp
(
− |u|2

4σ2(t(n)
i )

)
du · exp

(
−(βd)2

16
bn

)

≤ K exp
(
− |y|2

8σ2(t(n)
i )

)( r

σ(t(n)
i )

)d
· exp

(
−(βd)2

16
bn

)
(if |y| ≥ K5r)

≤ K exp
(
− |y|2

K(2a)2α

) ( r

aα

)d
· exp

(
−(βd)2

16
bn

)
. (3.20)

Combining (3.19) and (3.20), we obtain that for |y| ≥ K5 r,

P(A(n)
i \A(n−1)

i′ ) ≤ K9 exp
(
− |y|2

K10 a2α

) ( r

aα

)d
· exp

(
−(βd)2

16
bn

)
, (3.21)

where K9 and K10 are positive and finite constants.

We choose the constant β ≥ K4 +1 such that (βd)2/16 > bN +1. Inequalities (3.15), (3.16)
and (3.21) imply

P(A(n)) ≤ P(A(n0)) +
n∑

k=n0+1

P
(
A(k)\A(k−1)

)

≤ K9

[
N(Sp, εn0) +

∞∑

k=n0+1

N(Sp, εk) exp
(
−(βd)2

16
bk

)]
· exp

(
− |y|2

K10a2α

)( r

aα

)d

≤ K11 exp
(
− |y|2

K12a2α

)( r

aα

)d
. (3.22)

In the above, we have used the fact that by (3.11),

N(Sp, εn0) ≤ K
( |y|

aα

)2N/η

which can be absorbed by the exponential factor. Finally, (3.7) follows from (3.9), (3.10),
(3.14) and (3.22).

The proof of Part (ii) is simpler. Since a ≤ r1/α, there is a constant K such that S can be
covered by at most K balls of radius r1/α. The rest of the proof is almost the same as that of
Part (i), we only need to note that in this case,

P
{
|Z(t(n)

i )− c(t(n)
i )y| ≤ K8r

}
≤ K exp

(
− |y|2

16σ2(t(n)
i )

)
.

This finishes the proof of Lemma 3.1.
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Lemma 3.3 There exists a positive and finite constant K13 such that for any t ∈ RN\{0} and
any a > 0,

K−1
13 a2α ≤

∫

|x|≥a−1

(1− cos〈t, x〉) dx

|x|2α+N
≤ K13a

2α. (3.23)

Proof Since 1 − cos〈t, x〉 ≤ 2, the right inequality in (3.23) is immediate. To prove the left
inequality, we consider the case N = 1 first. By a change of variables, we see that it is sufficient
to show that there exists a constant K > 0 such that for 0 < a < 1,

∫

|x|≥a−1

(1− cosx)
dx

|x|2α+1
≥ Ka2α. (3.24)

Denote n1 = min{n ∈ N+ : 2nπ +π/3 ≥ a−1}. Since on each interval [2nπ +π/3, 2(n+1)π−
π/3], 1− cosx ≥ 1/2, we see that the left-hand side of (3.24) is at least

1
2

∞∑
n=n1

∫ 2(n+1)π−π/3

2nπ+π/3

dx

|x|2α+1
≥ K

∞∑
n=n1

1
[2(n + 1)π − π/3]2α+1

≥
∞∑

n=n1

∫ 2(n+1)π+5π/3

2nπ+5π/3

dx

x2α+1
≥ Ka2α.

This proves (3.24). Now consider the case that N > 1. We write
∫

|x|≥a−1

(1− cos〈t, x〉) dx

|x|2α+N
= cN

∫

SN−1

∫ ∞

a−1

[1− cos(〈t, θ〉ρ)]
dρ

ρ2α+1
µ(dθ),

where µ is the normalized surface area on the unit sphere SN−1 in RN and cN is a positive
finite constant depending on N only. The desired inequality follows from the inequality for
N = 1.

The following lemma will play an important role in the proof of Theorem 3.1.

Lemma 3.4 Assume that N < αd. Then there exists a positive and finite constant K14,
depending only on α, N and d such that for any 0 < u < 1,

exp
(
− K14

u2α/N

)
≤ P{T (1) < u} ≤ exp

(
− 1

K14u2α/N

)
. (3.25)

Remark 3.5 When X is an ordinary Brownian motion in Rd with d ≥ 3, Gruet and Shi [3]
showed that

P(T (1) < u) ∼ γ(d)uβ exp
(
− 2

u

)
as u → 0, (3.26)
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where

β =
7
2
− d, γ(d) =

(8π)1/2

(Γ(d/2− 1))2
.

Their proof of (3.26) depends heavily on the relationship between the sojourn time of Brownian
motion in Rd and a Bessel process of dimension d, hence can not be used to study the similar
problem for fractional Brownian motion. Nevertheless, it is natural to conjecture that

lim
u→0

u2α/N logP{T (1) < u} exists.

This problem is also about the small ball probability of the self-similar process T = {T (r), r ≥
0}. For an extensive survey of results and techniques for estimating small ball probability of
Gaussian processes, we refer to Li and Shao [8].

Proof of Lemma 3.4 The right inequality in (3.25) is easy to prove. By the self-similarity
of X, cf. (1.2), and Lemma 2.3 , we have

P{T (1) < u} ≤ P
{

max
t∈[0,u1/N ]N

|X(t)| ≥ 1
}

= P
{

max
t∈[0,1]N

|X(t)| ≥ u−α/N
}

≤ exp
(
− 1

Ku2α/N

)
.

In order to prove the left inequality in (3.25), for any 0 < u < 1, we consider the Gaus-
sian random vector ξ = (ξ1, · · · , ξd), where ξ1, . . . , ξd are independent and each has the same
distribution as

ξ0 =
∫

|x|≥1

dm(x)
|x|α+N/2

.

It is clear that ξ0 is a mean zero Gaussian random variable with

E(ξ2
0) =

∫

|x|≥1

dx

|x|2α+N
. (3.27)

Using conditional expectation, we can write the R-valued fractional Brownian motion Y as

Y (t) = Y 1(t) + c(t)ξ0, t ∈ RN (3.28)

where the R-valued Gaussian random field Y 1 is independent of ξ0 and

c(t) =
E(Y (t)ξ0)
E(ξ2

0)
.

It follows from the integral representation (1.1) that

E(Y (t)ξ0) =
∫

|x|≥1
(1− cos〈t, x〉) dx

|x|2α+N
.
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Thus Lemma 3.3 and (3.27) imply that there exists a positive and finite constant K such that

K−1 ≤ c(t) ≤ 2 for all t ∈ RN\{0}. (3.29)

Furthermore, some elementary computations show that for some finite constant K > 0 and for
all s, t ∈ RN ,

|c(s)− c(t)| ≤ K





|s− t|2α if 0 < α < 1/2,

|s− t| log |t− s|−1 if α = 1/2,

|s− t| if 1/2 < α < 1.

(3.30)

Hence the function c(t) satisfies conditions (3.4) and (3.6) on RN\{0}. On the other hand, we
have

E(Y 1(s)− Y 1(t))2 = |s− t|2α − [c(s)− c(t)]2E(ξ2
0).

By (3.30), we see that there exists a constant δ0 > 0 such that for all s, t ∈ RN with |s−t| < δ0,

1
2
|s− t|2α ≤ E

(
Y 1(s)− Y 1(t)

)2
≤ |s− t|2α. (3.31)

Also, it follows from (3.28) that there is a finite constant K15 > 0 such that for all t ∈ RN

with |t| ≥ K15,
1
2
|t|2α ≤ E[(Y 1(t))2] ≤ |t|2α. (3.32)

We note that

P{T (1) < u} ≥ P
{

for any t ∈ RN\
(
− u1/N

2
,
u1/N

2

)N
, we have |X(t)| > 1

}

= 1− P
{
∃ t ∈ RN\

(
− u1/N

2
,
u1/N

2

)N
such that |X(t)| ≤ 1

}

= 1− P
{
∃ t ∈ RN\(−K15,K15)N such that |X(t)| ≤ K16u

−α/N
}

,(3.33)

where K16 = (2K15)α by the scaling property (1.2).

Let X1 be the Rd-valued Gaussian random field whose components are independent copies
of Y 1. By (3.28), we can decompose X into

X(t) = X1(t) + c(t)ξ, (3.34)

where X1 is independent of ξ.

Using conditioning and Eq. (3.34), the last probability in (3.33) can be written as
∫

Rd

P
{
∃ t ∈ RN\(−K15,K15)N such that |X(t)| ≤ K16u

−α/N
∣∣∣ξ = y

}
pξ(y)dy

=
∫

Rd

P
{
∃ t ∈ RN\(−K15,K15)N such that |X1(t) + c(t)y| ≤ K16u

−α/N
}

pξ(y)dy.

(3.35)
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In the above, pξ(y) is the density function of the Gaussian random vector ξ. In order to
estimate the probability in (3.35), we set

Sn =
{

t ∈ RN : 2nK15 ≤ |t| ≤ 2n+1K15

}
.

For simplicity of notations, we do not distinguish balls and cubes and write

RN\(−K15,K15)N =
∞⋃

n=0

Sn.

Let n2 = max{n : 2n ≤ u−1/N}. Then the probability in (3.35) is bounded by

P
{
∃ t ∈

n2⋃

n=0

Sn such that |X1(t) + c(t)y| ≤ K16u
−α/N

}

+
∞∑

n=n2+1

P
{
∃ t ∈ Sn such that |X1(t) + c(t)y| ≤ K16u

−α/N
}

=̂ I3 + I4.

Now, we apply Lemma 3.1 to each Sn. Inequalities (3.29) – (3.32) show that the Gaussian
random field X1(t) and the function c(t) satisfy the conditions of Lemma 3.1 on each Sn.
Hence it follows from Lemma 3.1 that for all y ∈ RN with |y| ≥ K17u

−α/N , we have

I4 ≤ K
∞∑

n=n2+1

exp
(
− |y|2

K22nα

) (u−α/N

2nα

)d−N/α

≤ Ku1−αd/N

∫ ∞

0
exp

(
− |y|2

Kx2α

) 1
xαd−N+1

dx

≤ K
(u−α/N

|y|
)d−N/α

.

On the other hand, Part (ii) of Lemma 3.1 or its proof implies

I3 ≤ K exp
(
− |y|2

K 22n2α

)
≤ K exp

(
− |y|2

K u−2α/N

)
.

Consequently, for all y ∈ RN with |y| ≥ K17u
−α/N ,

P
{
∃ t ∈ RN\(−K15,K15)N such that |X1(t) + c(t)y| ≤ K16u

−α/N
}

≤ K18

(u−α/N

|y|
)d−N/α

, (3.36)

where K17 and K18 are positive and finite constants depending on N, α and d only.
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Putting things together we see that for all 0 < u < 1,

P{T (1) < u} ≥
∫

|y|≥K17u−α/N

[
1−K18

(u−α/N

|y|
)d−N/α]

pξ(y)dy

≥ exp
(
− K

u2α/N

)
.

This completes the proof of (3.25).

We need one more technical lemma from Xiao [23]. It gives some information about the
local density of an arbitrary probability measure.

Lemma 3.6 Given any constant λ0 > 0 , there exists a positive and finite constant K = K(λ0)
with the following property: for any Borel probability measure µ on R, there exists x ∈ [λ0, 2λ0]
such that

µ((x− δ, x + δ)) ≤ K δ
1
2 for every 0 < δ <

1
8
.

We are ready to prove the following Chung-type law of the iterated logarithm for the
sojourn measure T (·).

Theorem 3.1 Let X = {X(t), t ∈ RN} be a fractional Brownian motion of index α in Rd

and N < αd. Then with probability one,

lim inf
r→0

T (r)
ϕ(r)

= γ, (3.37)

where ϕ(s) = sN/α/(log log 1/s)N/(2α) and 0 < γ < ∞ is a constant depending on α, N and d

only.

Proof We first prove that there exists a constant γ1 > 0 such that

lim inf
r→0

T (r)
ϕ(r)

≥ γ1 a.s. (3.38)

For k = 1, 2, · · · , let ak = exp(−k/ log k) and consider the events

Ak = {ω : T (ak) ≤ λϕ(ak)},
where λ > 0 is a constant to be determined later. Then by the scaling property (3.1) of T (r)
and Lemma 3.4, we have, for k large enough,

P(Ak) = P
{

T (1) ≤ λ

(log log 1/ak)N/2α

}

≤ exp
(
− 1

Kλ2α/N
log log

1
ak

)

≤ k
− 1

Kλ2α/N .
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Take λ = γ1 > 0 such that Kγ
2α/N
1 < 1 . Then

∑∞
k=1 P(Ak) < ∞. It follows from the Borel-

Cantelli lemma that
lim inf
k→∞

T (ak)
ϕ(ak)

≥ γ1 a.s. (3.39)

A standard monotonicity argument and (3.39) yield (3.38).

Next we prove that there exists a finite constant γ2 > 0 such that

lim inf
r→0

T (r)
ϕ(r)

≤ γ2 a.s. (3.40)

Let bk = exp(−k2), τk = kθb
1/α
k , where θ = 3/(αd−N) and, again, let λ > 0 be a constant to

be determined later. Recall that

T (bk, τk) =
∫

|t|≤τk

1lB(0,bk)(X(t))dt.

Then by Lemma 2.4, we have

P
{

T (bk, τk) 6= T (bk)
}

≤ P
{
∃ t such that |t| > τk and |X(t)| < bk

}

≤ K
( bk

τα
k

)d−N/α

= Kk−3. (3.41)

Hence by the Borel-Cantelli lemma, with probability 1, there exists k1 = k1(ω) such that

T (bk, τk) = T (bk) for all k ≥ k1. (3.42)

For k ≥ 1, consider the event

Ek =
{

T (bk, τk) < λkϕ(bk)
}

,

where λ ≤ λk ≤ 2λ will be chosen later. By (3.42), we see that, in order to prove (3.40), it is
sufficient to show

P
{

lim sup
k→∞

Ek

}
= 1. (3.43)

By (3.1) and Lemma 3.4, we have

P(Ek) ≥ P
{

T (bk) < λkϕ(bk)
}

= P
{

T (1) <
λk

(log log 1/bk)
N
2α

}

≥ k
− K

λ2α/N . (3.44)
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Thus, if we select λ = λ0 such that K/λ
2α/N
0 ≤ 1, then

∞∑

k=1

P(Ek) = ∞. (3.45)

By the second Borel-Cantelli lemma (Part (ii) of Lemma 2.6), (3.43) will follow after we show
that for any ε > 0, (2.5) is satisfied.

For this purpose, we fix a positive integer k. For j > k, we need to estimate

P(Ek ∩ Ej) = P
{

T (bk, τk) < λkϕ(bk), T (bj , τj) < λjϕ(bj)
}

.

We denote this probability by Q. In order to create independence, we make use of the stochastic
integral representation (1.1) and decompose X(t) in the following way. Set v = (√τkτj)−1 and
consider the following two Gaussian random fields

X1(t) = (Y 1
1 (t), · · · , Y 1

d (t)),

and
X2(t) = (Y 2

1 (t), · · · , Y 2
d (t)),

where Y 1
1 , . . . , Y 1

d are independent copies of

Z1(t) =
c√
2

∫

|x|≤v

(
1− cos〈t, x〉

) dm(x)
|x|α+N/2

+
c√
2

∫

|x|≤v
sin〈t, x〉 dm′(x)

|x|α+N/2
,

and Y 2
1 , . . . , Y 2

d are independent copies of

Z2(t) =
c√
2

∫

|x|>v

(
1− cos〈t, x〉

) dm(x)
|x|α+N/2

+
c√
2

∫

|x|>v
sin〈t, x〉 dm′(x)

|x|α+N/2
.

Note that the Gaussian random fields X1 and X2 are independent and, for every t ∈ RN ,
X(t) = X1(t) + X2(t).

We will also need to use some estimates for

P
{

max
|t|≤τj

|X1(t)| > ηbj

}
and P

{
max
|t|≤τk

|X2(t)| > ηbk

}
.

These estimates are obtained by applying Lemma 2.2.

Let Sj = {t ∈ RN : |t| ≤ τj} and Sk = {t ∈ RN : |t| ≤ τk}. We note that the pseudo-metric
d1 on Sj and d2 on Sk satisfy

d1(s, t) := ‖X1(s)−X1(s)‖2 ≤
√

d |s− t|α;
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d2(s, t) := ‖X2(s)−X2(s)‖2 ≤
√

d |s− t|α.

By using the elementary inequality 1− cos〈t, x〉 ≤ |t|2|x|2, we have

‖Z1(t)‖2
2 = c2

∫

|x|≤v

(
1− cos〈t, x〉

) dx

|x|2α+N

≤ K|t|2
∫

|x|≤v

dx

|x|2α+N−2

= K|t|2v2(1−α).

Hence for any |t| ≤ τj ,

‖Z1(t)‖2 ≤ Kτj ·
( 1√

τkτj

)1−α
= K

√
τj

τk
(τkτj)α/2. (3.46)

On the other hand, since 1− cos〈t, x〉 ≤ 2, we obtain

‖Z2(t)‖2
2 = c2

∫

|x|>v

(
1− cos〈t, x〉

) dx

|x|2α+N

≤ Kv−2α.

and hence for any |t| ≤ τk,
‖Z2(t)‖2 ≤ K(τkτj)α/2. (3.47)

It follows from (3.46) and (3.47) that the d1-diameter Dj of Sj and the d2-diameter Dk of Sk

satisfy

Dj ≤ K

√
τj

τk
(τkτj)α/2

and
Dk ≤ K(τkτj)α/2.

Straightforward computation shows that
∫ Dj

0

√
log Nd(Sj , ε) dε ≤ Kτα

j

( τj

τk

)(1−α)/2
√

log
τk

τj
,

∫ Dk

0

√
log Nd(Sk, ε) dε ≤ K(τkτj)

α/2
√

log
τk

τj
.

Applying Lemma 2.2, we obtain

P
{

max
|t|≤τj

|X1(t)| > ηbj

}
≤ exp

(
−η2

K
j−2θα

(τk

τj

)1−α)
(3.48)
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and

P
{

max
|t|≤τk

|X2(t)| > ηbk

}
≤ exp

(
−η2

K
k−2θα

(τk

τj

)α)
. (3.49)

The rest of the proof is quite similar to that of Theorem 4.1 in Xiao [23] with appropriate
modifications. For any 0 < δ < 1, let η > 0 be determined by

1
(1− 2η)N/α

= 1 + δ.

These numbers will be fixed for the moment. We note that η ≥ Kδ for some constant K > 0.

Since the inequalities |X1(t)| ≤ ηbj and |X2(t)| ≤ (1− η)bj together imply |X(t)| ≤ bj , we
see that, on the event {max|t|≤τj

|X1(t)| ≤ ηbj},
∫

|t|≤τj

1lB(0,(1−η)bj)(X
2(t))dt ≤ T (bj , τj).

Hence,

{T (bj , τj) < λjϕ(bj)} ⊆
{∫

|t|≤τj

1lB(0,(1−η)bj)(X
2(t))dt < λjϕ(bj)

}

⋃ {
max
|t|≤τj

|X1(t)| > ηbj

}
. (3.50)

Similarly,

{T (bk, τk) < λkϕ(bk)} ⊆
{∫

|t|≤τk

1B(0,(1−η)bk)(X
1(t))dt < λkϕ(bk)

}

⋃ {
max
|t|≤τk

|X2(t)| > ηbk

}
. (3.51)

It follows from (3.50) and (3.51) that Q is less than

P
{∫

|t|≤τk

1lB(0,(1−η)bk)(X
1(t))dt < λkϕ(bk),

∫

|t|≤τj

1lB(0,(1−η)bj)(X
2(t))dt < λjϕ(bj)

}

+P
{

max
|t|≤τj

|X1(t)| > ηbj

}
+ P

{
max
|t|≤τk

|X2(t)| > ηbk

}
.

By the independence of X1 and X2, we have

P
{∫

|t|≤τk

1lB(0,(1−η)bk)(X
1(t))dt < λkϕ(bk),

∫

|t|≤τj

1lB(0,(1−η)bj)(X
2(t))dt < λjϕ(bj)

}

= P
{∫

|t|≤τk

1lB(0,(1−η)bk)(X
1(t))dt < λkϕ(bk)

}

·P
{∫

|t|≤τj

1lB(0,(1−η)bj)(X
2(t))dt < λjϕ(bj)

}
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≤ P
{∫

|t|≤τk

1lB(0,(1−2η)bk)(X(t))dt < λkϕ(bk)
}

·P
{∫

|t|≤τj

1lB(0,(1−2η)bj)(X(t))dt < λkϕ(bj)
}

+P
{

max
|t|≤τj

|X1(t)| > ηbj

}
+ P

{
max
|t|≤τk

|X2(t)| > ηbk

}

:= Q1 + Q2 + Q3.

Consequently, we have derived
Q ≤ Q1 + 2Q2 + 2Q3. (3.52)

Since upper bounds for Q2 and Q3 have been obtained in (3.48) and (3.49), we only need
to estimate Q1. Note

P
{∫

|t|≤τj

1lB(0,(1−2η)bj)(X(t))dt < λjϕ(bj)
}

≤ P
{

T ((1− 2η)bj) < λjϕ(bj)
}

+ P
{

T ((1− 2η)bj) 6= T ((1− 2η)bj , τj)
}

≤ P
{

T (1) <
1

(1− 2η)N/α
· λjϕ(bj)

b
N/α
j

}
+ Kj−3, (3.53)

where the last inequality follows from scaling property (3.1) and (3.41). By applying Lemma
3.6 to the distribution of T (1)(log log 1/bj)N/(2α), we can choose λj ∈ [λ0, 2λ0] such that

P
{

λj ≤ T (1)(log log
1
bj

)N/(2α) < (1 + δ)λj

}
≤ Kδ1/2 for all 0 < δ < 1/8. (3.54)

Hence, by Lemma 3.4 and (3.54), the probability in (3.53) is less than

P
{

T (1) <
λjϕ(bj)

b
N/α
j

}
·
(
1 +

P{λjb
−N/α
j ϕ(bj) ≤ T (1) < (1 + δ)λjb

−N/α
j ϕ(bj)}

P{T (1) < λjb
−N/α
j ϕ(bj)}

)

≤ P{T (bj) < λjϕ(bj)} · (1 + Kj δ1/2). (3.55)

Note that, in the above, we have also used (3.44). Combining (3.53) and (3.55), we have

P
{∫

|t|≤τj

1lB(0,(1−2η)bj)(X(t))dt < λjϕ(bj)
}

≤ P{T (bj) < λjϕ(bj)} · (1 + Kj δ1/2) + Kj−3

≤ P
{

T (bj , τj) < λjϕ(bj)
}(

1 + Kj δ1/2 + Kj−2
)
. (3.56)

Similarly, we have

P
{∫

|t|≤τk

1lB(0,(1−2η)bk)(X(t))dt < λkϕ(bk)
}

≤ P
{

T (bk, τk) < λkϕ(bk)
}(

1 + Kk δ1/2 + Kk−2
)
. (3.57)
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It follows from (3.56) and (3.57) that

Q1 ≤ P
{

T (bj , τj) < λjϕ(bj)
}
P
{

T (bk, τk) < λkϕ(bk)
}

·
(
1 + Kj δ1/2 + Kj−2

)(
1 + Kk δ1/2 + Kk−2

)
. (3.58)

Putting (3.52), (3.58), (3.48), (3.44) and (3.49) together, we have

P(Ek ∩ Ej) ≤ P(Ek)P(Ej)
(
1 + Kj δ1/2 + Kj−2

)(
1 + Kk δ1/2 + Kk−2

)

+ 2P(Ek)
{

k exp
(
−K δ2j−2θα

(τk

τj

)1−α)

+k exp
(
−K δ2k−2θα

(τk

τj

)α)}
. (3.59)

We now select
0 < β < min

{α

3
,

1− α

3

}
and δ =

( τj

τk

)β
.

Note that
τk

τj
=

(k

j

)θ
exp

( 1
α

(j2 − k2)
)
.

It follows from the above and (3.59) that, for any ε > 0, there exist a constant K > 0 and a
positive integer k0 such that for any k ≥ k0 and any J > k, we have

J∑

j=k+1

P(Ek ∩ Ej) ≤ P(Ek)
(
K + (1 + ε)

J∑

j=k+1

P(Ej)
)
. (3.60)

Consequently, by (3.45), (3.60) and Lemma 2.6 we have

P
{

lim sup
k→∞

Ek

}
≥ 1

1 + 2ε
.

Since ε > 0 is arbitrary, we conclude

P
{

T (bk) < λkϕ(bk) infinitely often
}

= 1.

Therefore, (3.40) holds almost surely with γ2 = 2λ0. Combining (3.38), (3.40) and the zero-
one law of Pitt and Tran ([13], Theorem 2.1), we obtain (3.37). This completes the proof of
Theorem 3.1.

Since for any t0 ∈ RN , the random field {X(t + t0) −X(t0), t ∈ RN} is also a fractional
Brownian motion in Rd of index α, we have the following corollary.

22



Corollary 3.1 Let X = {X(t), t ∈ RN} be a fractional Brownian motion of index α in Rd

and N < αd. Then for any t0 ∈ RN , with probability one,

lim inf
r→0

TX(t0)(r)
ϕ(r)

= γ.

The following is a limsup theorem for the sojourn measure of fractional Brownian motion.

Theorem 3.2 Let X = {X(t), t ∈ RN} be a fractional Brownian motion of index α in Rd

and N < αd. Then for any t0 ∈ RN , with probability one,

lim sup
r→0

TX(t0)(r)
ψ(r)

= γ′, (3.61)

where ψ(r) = rN/α log log 1/r and γ′ is a positive and finite constant.

Proof It is sufficient to prove (3.61) for t0 = 0. It has been proved in Talagrand [18] (see also
Xiao [24]) that there exists a finite constant K > 0 such that

lim sup
r→0

T (r)
ψ(r)

≤ K, a.s. (3.62)

Hence (3.61) will follow from (3.62) and the zero-one law of Pitt and Tran ([13], Theorem 2.1)
after we prove that there exists a constant K > 0 such that

lim sup
r→0

T (r)
ψ(r)

≥ K, a.s. (3.63)

By the following Chung-type law of iterated logarithm for multiparameter fractional Brownian
motion, see Xiao ([25], p.147), or Li and Shao ([8], Theorem 7.2),

lim inf
h→0

sup
s∈B(0,h)

|X(s)|
hα/(log log 1/h)α/N

= K, a.s.

we see that there exists a sequence decreasing {hn} of positive numbers such that hn ↓ 0 and

sup
s∈B(0,hn)

|X(s)| ≤ Kψ1(hn),

where ψ1(h) = hα/(log log 1/h)α/N . Hence we have

T (rn) ≥ KhN
n , where rn = Kψ1(hn). (3.64)

Observing that ψ2(r) = r1/α(log log 1/r)1/N is an asymptotic inverse function of ψ1(h), we see
that (3.63) follows from (3.64). This completes the proof.
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Remark 3.7 Using the moment estimates (see Xiao [24] ) and the result on small ball
probabilities for fractional Brownian motion (Talagrand, [18]), it is easy to derive the following
estimates on the tail probability of T (1): if N < αd, then for some constant K ≥ 1,

exp (−Ku) ≤ P{T (1) > u} ≤ exp (−K−1u).

In order to study the multifractal structure of the sojourn measure, one needs to have more
precise tail asymptotics for the distribution of T (1). We have the following conjecture

If N < αd, then the limit limu→∞ u−1 logP{T (1) > u} exists.

When N ≥ αd, both small and large tail asymptotics for the truncated sojourn measure T (1, r),
say, are not known. It seems that even the correct rate functions are non-trivial to obtain.

For application in the next section, we state another result from Xiao ([25], Theorem 3.1).
Let X = {X(t), t ∈ RN} be a fractional Brownian motion of index α in Rd. Then for any
rectangle T ⊂ RN ,

lim inf
h→0

inf
t∈T

sup
s∈B(t,h)

|X(s)−X(t)|
hα/(log 1/h)α/N

≥ K, a.s. (3.65)

where K > 0 is a constant depending on N, d and α only.

4 Packing Measure of Fractional Brownian Motion

In this section, we consider the packing measure of the image and graph of a transient fractional
Brownian motion in Rd and prove (1.4).

Theorem 4.1 Let X = {X(t), t ∈ RN} be a fractional Brownian motion in Rd of index α.
If N < αd, then there exist positive constants K1 and K2 such that, with probability 1,

K1 ≤ ϕ-p(X([0, 1]N )) ≤ ϕ-p(GrX([0, 1]N )) ≤ K2, (4.1)

where ϕ(s) = sN/α/(log log 1/s)N/(2α).

Proof To prove the first inequality in (4.1), we define a random Borel measure µ on X([0, 1]N )
as follows. For any Borel set B ⊆ Rd, let

µ(B) = λN{t ∈ [0, 1]N , X(t) ∈ B}.
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Recall λN is Lebesgue’s measure in RN . Then µ(Rd) = µ(X([0, 1]N )) = 1. By Corollary 3.1,
for each fixed t0 ∈ [0, 1]N ,

lim inf
r→0

µ
(
B(X(t0), r)

)

ϕ(r)
≤ lim inf

r→0

TX(t0)(r)
ϕ(r)

= γ, a.s. (4.2)

Let E(ω) = {X(t0) : t0 ∈ [0, 1]N and (4.2) holds }. Then E(ω) ⊆ X([0, 1]N ). A Fubini
argument shows µ(E(ω)) = 1, a.s. Hence by Lemma 2.1, we have

ϕ-p(E(ω)) ≥ 2−3N/αγ−1 .

This proves the left hand inequality of (4.1) with K1 = 2−3N/αγ−1. The second inequality in
(4.1), i.e.

ϕ-p(X([0, 1]N )) ≤ ϕ-p(GrX([0, 1]N )),

follows from the definition of packing measure easily.

To prove the right hand inequality of (4.1), we only need to show ϕ-P (GrX([0, 1]N )) ≤ K

a.s., thanks to (2.4). Let Jk be the family of dyadic cubes of length 2−k in [0, 1]N . For each
τ ∈ [0, 1]N , let Ik(τ) denote the dyadic cube in Jk which contains τ and let

ak(τ) = sup
s, t∈Ik(τ)

|X(t)−X(s)|.

For any k ≥ 1 and any I ∈ Jk, by Lemma 2.3, we have for any u ≥ K,

P
{

sup
s, t∈I

|X(t)−X(s)| ≥ u2−kα
}
≤ exp

(
− u2

K4

)
.

Take u =
√

K4λ log k, where λ > 6 + N/(2α). The above inequality yields

P
{

sup
s, t∈I

|X(t)−X(s)| ≥
√

K4λ log k 2−kα
}
≤ 1

kλ
.

Denote
Mk = #

{
I ∈ Jk, sup

s, t∈I
|X(t)−X(s)| ≥

√
K4λ log k 2−kα

}
,

then
P
{

Mk ≥ 2kN · 1
kλ−5

}
≤ 1

k5
.

The Borel-Cantelli lemma implies that, with probability one,

Mk <
2kN

kλ−5
for all k large enough. (4.3)
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Let Ω0 be the event that (4.3) holds, and let Ω1 and Ω2 be the events that (2.6) and (3.65)
hold respectively. Then P (Ω0 ∩ Ω1 ∩ Ω2) = 1.

Fix an ω ∈ Ω0 ∩ Ω1 ∩ Ω2, let k0 = k0(ω) be a positive integer, such that k ≥ k0 implies
(4.3) and the following two inequalities

sup
t∈[0,1]N

ak(t) ≤ K
√

k 2−αk (4.4)

and
inf

t∈[0,1]N
ak(t) ≥ K2−αkk−α/N >

√
N 2−k. (4.5)

For any 0 < ε < 2−k0 and any ε-packing {B((ti, Xω(ti)), ri)} of GrXω([0, 1]N ), we will show
that for some absolute constant K2 > 0,

∑

i

ϕ(2ri) ≤ K2. (4.6)

From now on, we will suppress the subindex ω. For each i, let

ki = inf{k : ak(ti) ≤ ri/2}.

Then aki−1(ti) > ri/2. We claim that the dyadic cubes {Iki(ti)} are disjoint. In fact, if

t0 ∈ Iki(ti) ∩ Ikj (tj) for some i 6= j,

then the triangle inequality implies

|(ti, X(ti))− (tj , X(tj))| ≤ |(ti, X(ti))− (t0, X(t0))|+ |(t0, X(t0))− (tj , X(tj))|
≤

√
N2−ki +

√
N 2−kj + (ri + rj)/2

< ri + rj , (4.7)

where in deriving the last inequality we have used the fact that
√

N2−ki < aki(ti) ≤ ri/2,
which follows from (4.5). The inequality (4.7) contradicts the fact that B((ti, X(ti)), ri) ∩
B((tj , X(tj)), rj) = ∅. Summing up the volumes of Iki(ti), we have

∑

i

2−kiN ≤ 1. (4.8)

We divide the points {(ti, X(ti))} into two types: “good” points or “bad” points. (ti, X(ti)) is
called a good point if

aki−1(ti) ≤
√

K4λ log(ki − 1) 2−(ki−1)α;
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otherwise, it is called a bad point. Let G denote the set of the subscripts i of good points.

By (4.8), we obtain
∑

i∈G

ϕ(2ri) ≤
∑

i∈G

ϕ(4aki−1(ti))

≤ K
∑

i

2−kiN ≤ K19. (4.9)

In order to estimate
∑

i/∈G ϕ(2ri), we note that there are not many “bad” points and the
oscillation of X at such points are controlled by the modulus of continuity. It follows from
(4.3) and (4.4) that

∑

i/∈G

ϕ(2ri) ≤
∑

i/∈G

ϕ(4aki−1(ti))

≤
∑

i/∈G

2(ki−1)N

(ki − 1)λ−5
· ϕ

(
K

√
ki − 1 2−α(ki−1)

)
(4.10)

≤ K

∞∑

k=1

1
kλ−5−N/(2α)

= K20. (4.11)

Recall λ > 6 + N/(2α) in deriving the last equality.

Combining (4.9) and (4.10), we obtain (4.6). Thus, by (2.2), we see that

ϕ-P (GrX([0, 1]N )) ≤ K2,

where K2 = K19 + K20. This finished the proof of the upper bound in (4.1).
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