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Abstract

Let X = {X(t), t € RV} be a multiparameter fractional Brownian motion of index «
(0 < a < 1) in RY. We prove that if N < ad , then there exist positive finite constants K
and Ko such that with probability 1,

K1 < o-p(X([0,1]V)) < ¢-p(GrX([0,1]V)) < K>

where (s) = sV/*/(loglog 1/5)N/ %) o-p(E) is the p-packing measure of E, X ([0, 1]V) is
the image and GrX ([0,1]Y) = {(t, X(t)); t € [0,1]"} is the graph of X, respectively. We
also establish liminf and limsup type laws of the iterated logarithm for the sojourn measure
of X.
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1 Introduction

For a fixed a € (0, 1), an N-parameter fractional Brownian motion of index « in R is a centered,
real-valued Gaussian random field Y = {Y'(¢), t € R™} with Y(0) = 0 and covariance function

BV (Y (3)) = 5 (It 41512 — It = 5/*),

where | - | is the Euclidean norm in R which is endowed with the usual inner product (¢,z).
There is a very useful stochastic integral representation for Y. Such a representation is based
upon the fact that for each ¢t € RY

dx
|t‘2a = 62 /RN (1 — COS<t, $>>W,

where ¢ = ¢(a, N) > 0 is a normalizing constant depending on o and N only. Let m be a
scattered Gaussian random measure on RY with Lebesgue measure Ay as its control measure,
that is, {m(A), A € £} is a centered Gaussian process on & = {E C RV : Ay (FE) < oo} with
covariance function

]E(m(E)m(F)) —Av(ENF).

Let m' be an independent copy of m. Then it is easy to verify that Y = {Y(¢), t € RN} has

the following stochastic integral representation

(1 — cos(t, x)) dm(z) ¢ sin(t,a;)M, t e RV, (1.1)

&
Y(t)=— —
®) V2 Jrw |x|o‘+% V2 Jry ]a:|°‘+7

We refer to Samorodnitsky and Taqqu [17] for other representations and more properties of

fractional Brownian motion.

Associated with the real-valued Gaussian field Y, we define a Gaussian random field X =
{X(t),t € RV} in R? by
X(t) = (X1(t),...,Xq(t)),

where X1, -+, X4 are independent copies of Y. Using the terminology of Kahane ([4], chapter
18), we call X the (N, d, ) process or an N-parameter fractional Brownian motion of index «

in R?. Tt is easy to see that X is self-similar with exponent « in the sense that for any a > 0,
X(a) L a"x (), (1:2)
and has stationary increments, that is, for every b € RV

X(-+b)—X(b)=X(-)—X(0), (1.3)



where X £ Y means that the two processes X and Y have the same finite dimensional distri-

butions.

For any Borel set £ C RV the image X(E) = {X(t); t € E} and graph set GrX(E) =
{(t,X(t)); t € E} of fractional Brownian motion are random fractals. It is well known that
with probability one,

dimp X ([0, 1]V) = min{d; g},

min{d; g}, if N < ad,

dimpCrX ([0,1]") =
N+ (1 —a)d, if N> ad.

where dimp F is the packing dimension of E (See Section 2 for definition and basic properties).

There has been a lot of interest in studying the exact packing measure of the image and
graph of Brownian motion. See Taylor and Tricot [22], LeGall and Taylor [7], Rezakhanlou
and Taylor [15]. Many of these results have been extended to Lévy processes by Taylor [20],
Fristedt and Taylor [2]. Their methods rely heavily on special properties of Lévy processes
such as the independence of increments, hence can not be applied to calculate the packing
measure of the sample paths of non-Markovian processes. Taylor ([21], p.392) raised the
question of finding the exact packing measure for the sample paths of fractional Brownian
motion. By applying general Gaussian methods and by direct conditioning, Xiao [23] solved the
exact packing measure problem for the image of one-parameter transient fractional Brownian
motion. However, some key arguments in Xiao [23] such as the proofs of Theorem 3.2, Lemma
4.1 and Theorem 4.1 depend on the fact that ¢ is one-dimensional and they do not work in
the multiparameter case. Hence the packing measure problems for the image and graph of
multiparameter fractional Brownian motion had remained open. The main objective of this
paper is to prove that, in the transient case (that is, N < ad), there exist positive constants
K7 and Ko, such that

Ky < o-p(X([0,1]Y)) < -p(GrX([0,1]V)) < K»,  as. (1.4)

where ¢(s) = s™/*/(loglog 1/5)N/(2®) and o-p is the ¢-packing measure. For this purpose, we

develop a more general conditioning argument which may also be useful in other circumstances.

The following are some remarks about the other cases that are not addressed in this paper.
If N > ad , then X is recurrent and it has a continuous local time (see Pitt [12], or Kahane
([4], Ch.18, Theorem 2). This implies that X ([0,1]") a.s. contains interior points, hence 0 <
s%-p(X(]0,1]")) < oo a.s. However, for the graph set, we have dimpGrX ([0,1]V) = N+ (1—a)d
a.s.. It would be interesting to determine the exact packing measure function for GrX ([0, 1]V).

In the critical case of N = ad, the problems of finding the packing measure of X ([0,1]") and



GrX ([0,1]") are both open in general. The only known result is due to LeGall and Taylor [7]

who proved that if X is planar Brownian motion, then ¢-p(X ([0, 1])) is either zero or infinite.

The rest of the paper is organized as follows. In Section 2, we collect some definitions and
lemmas which will be useful to our calculations. In Section 3, we prove liminf and limsup
type laws of the iterated logarithm for the sojourn time of a transient fractional Brownian
motion. Besides of their applications in determining the fractal measures of the sample paths
of fractional Brownian motion, these results also suggest that the sojourn measure of fractional
Brownian motion has a non-trivial logarithmic multifractal structure. It would be interesting
to determine its multifractal spectrum. In Section 4, we consider the packing measure of the

image and graph of fractional Brownian motion and prove (1.4).

We will use K to denote unspecified positive and finite constants whose value may be
different in each occurrence. Constants that are referred to in the sequel will be denoted by
K17K27 s 7K20'

2 Preliminaries

We start by recalling the definitions of packing measure and packing dimension which were
introduced by Taylor and Tricot [22] as dual concepts to Hausdorff measure and Hausdorff
dimension. See also Falconer [1] or Mattila [11] for more information. Let ® be the class of
functions ¢ : (0,0) — (0,1) which are right continuous, monotone increasing with ¢(04+) =0

and such that there exists a finite constant K3 > 0 for which

p(2s)
2(5) < K3 for 0 < s <d/2. (2.1)

For ¢ € ®, define the p-packing premeasure ¢-P(E) on RY by
p-P(E) = lir% sup{z ©(2r;) : B(xi,7;) are disjoint, z; € E, 7; < e}, (2.2)
€— -
7
where B(x,7) denotes the open ball of radius r centered at z and B(w,r) is its closure. A

sequence of closed balls satisfying the conditions in the right hand side of (2.2) is called an

e-packing of E. The ¢-packing measure, denoted by ¢-p, on RY is defined by
o-p(E) = inf{z o-P(E,): EC UEn} (2.3)
n n

It is known that ¢-p is a metric outer measure and hence every Borel set in RY is ¢-p mea-

surable. If ¢(s) = s, s%p(F) is called the a-dimensional packing measure of E. The packing



dimension of F is defined by
dimpFE = inf{a > 0: s*p(E)=0}.
By (2.3), we see that, for any F C RV,
¢-p(E) < ¢-P(E), (2.4)

which gives a way to determine the upper bound for ¢-p(E). The following density theorem for
packing measures (see Taylor and Tricot [22] and Saint Raymond and Tricot [16] for a proof)

is very useful in determining the lower bound of ¢-p(F).

Lemma 2.1 Let i be a Borel measure on RY and ¢ € ®. Then for any Borel set E C RY,
-p(E) > Ky u(E) inf {Df(x)} ™,

where K3 is the constant in (2.1) and

i B T))
D (z) = 11£1L161f o)

is the lower @-density of p at x.

Now we collect some general facts about Gaussian processes. Let Y = {Y (), t € S} be a

centered Gaussian process. We define a pseudo-metric d on S by

d(s,t) = [V (s) = Y (1)]|2 == (B(Y (5) = Y (£)))"/*.
Denote by Ny(S,€) the smallest number of open d-balls of radius € needed to cover S, and
write D = sup{d(s,t); s, t € S} for the d-diameter of S.

Lemma 2.2 below is well known. It is a consequence of the Gaussian isoperimetric inequality

and Dudley’s entropy bound (cf. Ledoux and Talagrand [6], or Talagrand [18]).

Lemma 2.2 There exists an absolute constant K > 0 such that for any u > 0, we have

2

P{sup [¥(5) - V0l 2 K (u+ [ ViogNa(S. ) } < exv( ).

s,teS

The first part of the following lemma is a corollary of Lemma 2.2 and the second part was

proved by Marcus [9] for N = 1. Extension to the case of N > 1 is immediate.



Lemma 2.3 Let Y = {Y(t), t € RN} be a real-valued, centered Gaussian random field with
Y (0) = 0. If there exist constants 0 < o < 1 and o > 0 such that

E(Y (1) - Y(s)* < ot — 5™,

then there exist finite constants K, K, > 0 such that for any r > 0, any hypercube I C RN
with edge length v and any v > Kr®, we have

2

U
P{Su Y(t) —Y(s Zau}gex (—7> 2.5
s,t€p1'| (t) =Y (s)] P~ %, (2.5)
e Vit +s)- Y(t)
s) —
limsup sup < VK4, a.s. 2.6
h—0 ¢ t4sefo, 1N Uho‘(logl/h)l/2 ! ( )
[s|<h

The following delayed hitting probability estimate for multiparameter fractional Brownian
motion is a special case of Theorem 5.2 of Mason and Xiao [10], which extends the corre-
sponding result of Xiao [23] in the one-parameter case. A similar lower bound follows from the

arguments in Xiao [26].

Lemma 2.4 Let X = {X(t), t € RN} be a d-dimensional fractional Brownian motion of
index o (0 < v < 1) with N < ad. Then for any T > 0 and any 0 < r < T, we have

d—N/a
P{EI t € RN such that |t| > T and |X(t)| < r} < K(;;) ’

where K > 0 s a constant depending on «, N and d only.

Remark 2.5 It is an open problem to estimate the hitting probability for fractional Brownian
motion in the case of N = ad. Classical results for planar Brownian motion can be found in
Port and Stone [14].

We end this section with the following Borel-Cantelli lemma. Part (i) is well known and

Part (ii) in this form is from Talagrand [19]. See also Marcus [9].
Lemma 2.6 Let {Ax} be a sequence of events in a probability space.

(i) if > pe i P(Ax) < 00, then P(limsup,_,., A) = 0.



(ii) if there exist positive constants K, € and positive integers ko, J such that for ko < k < J,

J J
3 P4 N4 < P(Ak)(K+ (1+e Y ]P’(Aj)) (2.7)
j=k+1 j=k+1
and y
1+2K
S Py > (2.8)
k=kg €
then
J 1
pl| ] 4.} > .
{kLJk k} 142
=ko

Remark 2.7 If )", P(A;) = oo, then for any € > 0 and any fixed integer ky > 1, we can take
J large enough so that (2.8) holds. Hence only (2.7) needs to be verified.

3 Limit Theorems for the Sojourn Time

Let X = {X(¢),t € RN} be a fractional Brownian motion in R? with index o € (0,1). We
assume N < ad, hence X is transient in the sense that lim; . | X ()| = 0o a.s. (cf. Koéno [5],
Theorem 10). For any » > 0 and any y € R?, let

7,(6) = | Daun (X (0

be the sojourn time of X (t) (t € RY) in B(y,r). If y = 0, we denote Ty (r) by T(r). It follows
from the self-similarity of X (¢) (cf. (1.2)) that T'(r) has the following scaling property: for any
a>0andr >0

T(ar) £ a™/*T(r). (3.1)

We also need to make use of the “truncated” sojourn time
T(b,7) = / 0. (X (1))t (3.2)
[tI<t

In this section, we prove liminf and limsup type laws of the iterated logarithm for the sojourn
time 7'(r). Combined with Lemma 2.1, the liminf theorem will be applied in Section 4 to prove
the lower bound in (1.4). The limsup result is related to the Hausdorff measure of the sample

paths of fractional Brownian motion. See Talagrand [18] or Xiao [24].

We will first prove some hitting probability estimates for Gaussian random fields under

more general conditions than those in Xiao [23].



Let Zo = {Zo(t), t € RV} be a real valued Gaussian random field with Zy(0) = 0. Denote
o2(t,5) = B(Zo(t) — Zo(s)* , 02(t) = E(Zo(t))?.
We consider an R%valued Gaussian field Z = {Z(t),t € RV} defined by
Z(t) = (Z1(t),- -, Za(1)),

where Z1, ..., Z; are independent copies of Zj.

For any a > 0, let S = {t € RY : a < [t| < 2a}. We assume that the random field Z
and a function c(t) : RV +— R satisfy the following conditions: there exist positive and finite
constants dg, n and K such that for all t € S,

K7t < o®(1) < K|t (3:3)

K1 <|e(t)| < K (3.4)

and for all s, t € S with |s — | < do,
K7t — s> < o?(t,s) < K|t — s]*, (3.5)

le(t) — c(s)| < K|t — s|*. (3.6)

Lemma 3.1 Suppose that the Gaussian random field Z and the function c(t) satisfy the con-
ditions (3.3)-(3.6) on S. If N < ad, then there exist positive constants K5, K¢ and Kz,
depending on o, d, N only, such that for all v > 0 and all y € R? with |y| > Ksr, we have

(i) if a > 1", then

IP’{EIt €S such that |Z(t) — c(t)y] < 7"} < Ks exp<_l("f(|122a> ((;)d—N/a; (37)

(i) if a < r'/*, then

P{HteS b that |Z(t) — c(t < K, i 38
such that120) eyl < r} < Koen(~20). )

Remark 3.2 We note that the constants K5, K¢ and K7 are independent of a. This is

important when we apply Lemma 3.1 to finish the proof of Lemma 3.4 below.



Proof of Lemma 3.1 Even though the proof follows a similar line to that of Lemma 3.1 in
Xiao [23], several technical modifications have to be made. For the convenience of the reader,

we include it here.

We prove Part (i) first. Let a, 7 > 0 be fixed and a > /%, Denote by N(S, /%) the

1/a

smallest number of open balls of radius /% that are needed to cover S. Then

N(S, 7Yy < K aV N/, (3.9)

Let {S,, 1 <p< N(S,7/%)} be a family of balls of radius 7/ that cover S. We define the

following events

A= {int|2() - eltyl <},
A, = {tiensfp 1Z(t) — ety < 7‘}.

Then
N(S,rt/=)

Ac | 4. (3.10)
p=1

Let b = max{2, a®,log(r'/*/8y)} and, for every integer n > 1, let

en = /% exp(—b"1).
Then ¢, < §p for all n > 0. Set
rn=Bdeb s,

where 3 > K4+ 1 is a constant to be determined later (recall that K4 is the constant in (2.5)).
It is easy to verify that there is a constant Kg such that

00
T—i-ZTk SKgT.
k=n

Consequently, we can find a finite constant K5 with the following property: if y, u € RY,
lyl > Ksr and |u — c(t)y| < Kgr for some t € S, then |u| > %|y|. This fact will be used in
(3.19) and (3.20) below.

Now, we fix y € R? with |y| > K57 and define
no =inf{n > 0: Ke] |y| < a®}, (3.11)

where K is the constant in (3.6). If no such n exists, we let ng = 0.



Let 1 < p < N(S, /%) be fixed. For every integer n > 1, let T}, = {tg"), 1 <i< N(Spen)}

be a set of the centers of open balls with radius ¢, that cover S,. Let

N(Spve’ﬂo)

A = | {\Z(tl(m)) — ot )yl <7+ i ’“’f}‘

=1 k=ng

For every n > ng and 1 < i < N(S), €,), we define the following events

A _ {yZ(tE”)) PO <r+zrk} (3.12)
k=n
and
N(Sp.en)

Clearly, {A(”)} is a sequence of increasing events. We claim that
P(4,) < lim P(A™). (3.14)

To see this, we assume that for some sg € Sy, |Z(s0) —c(s0)y| < r. Then there is a sequence of
points {s(™} such that s € T}, s(® — sy and |5 — s("*1)| < 2¢,,. The triangle inequality
yields that for all n > ng,

1Z(s™) = e(s™)yl < r+12(s™) = Z(s0)| + Iy] - le(s™) = e(s0)]-
Hence (3.14) follows from (2.5) in Lemma 2.3, (3.6), and the fact that €, |y| — 0 as n — oc.

It follows from (3.13) that

P(A™) < P(A™D) 4 P(AM\ A1) (3.15)
and
N(Sp,en)
P(AMN\ A1) Z P(AM\ ATy, (3.16)

where ¢’ is chosen so that ]tz(n) - tg,n_l)] < €p—1. Note that

PAM\ATY) = }P’{\Z(tz(”)) — ety <+,

k=n

|Z(t§,n 1)—c( DNyl >r+ Z rk}
k=n—1

o0
< P{IZ(") = eyl <r+ >,

k=n
1Z2(E™) = 2Py + () = @) y| > Tn,l}.



By the elementary properties of Gaussian random variables, we can write

(n) ( (n)
Z(t"y — Z(t) Z(t;
(t; ") - Z(, ):p (1)+ﬂ5, (3.17)

where

and where E is a standard Gaussian vector and is independent of Z (tl(n)).

It follows from (3.17) and the triangle inequality that IP’(AEH)\AZ(.,”*D) is at most

P{126") — ) < K v, (2] 2 20 03 )

n n Z(t(”)) c(t(f“”) —c(t(.")) Bd n
+PLZ(EM) — c(t™M)y| < Ky 1, |p il - 2 Lyl > b
{ } U(tgn)) a(tl(-,n_l), tgn)) ’ }

S 4 D, (3.18)

By the independence of Z and Z (tz(.n)), we have

no= B{jze) - ety < Ker }op{iE = 003}

1 2 d n
- / oo~ | ‘<n> Jau-B{J= |>ﬁ v}
{fu—c(t{)y|<Ksr} (2m)4/ 200 (™) 202(t;")

< Kexp(— [yl* )( (r )d-IP’{|E|>@b2} (recall ly| > Ksr)

Ka2(t{") N (1)
< K ew(- ) (&) (-G, (3.19)

where the last inequality follows from (3.3) and the tail probability of the standard Gaussian
vector. On the other hand, noting that (3.5), (3.6) and (3.11) imply for n > ng + 1,

(™) = e(t™)]

(3 2

et ) — et
! Jy € K
AN t5D — 4{V)a

K 62—1 ’y| S aoz,

|yl

IN

we have

o< P{Z(") - ™)yl < Ksr,

10



J ()" iy 2 o )
flu—e(t )yl <Ksr, [ul> 520 (1)} N 2T/ gd (1) 202(t")

< K ;() exp (—
{|U7C(t(n))y|<K8T} o’d(t.n )

< e I el ) iz o

(2
[yl d
< K o) () e (-
Combining (3.19) and (3.20), we obtain that for |y| > K5,

P(AM\AY) < ngxp<— i ) ("")Cl.<a><1>(—(5‘l)2 b”), (3.21)

KlO azo‘ a® 16

2

b”). (3.20)

where Ky and K7 are positive and finite constants.

We choose the constant 3 > K4+ 1 such that (8d)?/16 > bN + 1. Inequalities (3.15), (3.16)
and (3.21) imply

P(A™) < P(AM) Z IP’(A R0\ Ak 1)

k=no+1
G 5 3G )] ) (1)
k=no+1
< Ku exp(—KLZ‘;a)(aTa)d. (3.22)

In the above, we have used the fact that by (3.11),

N(Spen) < ()"

which can be absorbed by the exponential factor. Finally, (3.7) follows from (3.9), (3.10),
(3.14) and (3.22).

The proof of Part (ii) is simpler. Since a < /@ there is a constant K such that S can be
covered by at most K balls of radius 71/®. The rest of the proof is almost the same as that of

Part (i), we only need to note that in this case,

{12064~ < Hor } = € oo )

This finishes the proof of Lemma 3.1.

11



Lemma 3.3 There exists a positive and finite constant K13 such that for any t € R¥\{0} and

any a > 0,

d
Kla® < / (1 —cos(t, z)) 2733“\, < Kj3a®. (3.23)
|z|>a—1 |$‘ “

Proof Since 1 — cos(t,z) < 2, the right inequality in (3.23) is immediate. To prove the left
inequality, we consider the case N = 1 first. By a change of variables, we see that it is sufficient
to show that there exists a constant K > 0 such that for 0 < a < 1,

dx
1—cosz) ——— > Ka**. 3.24
/Ml( ) G (3.24)

Denote nq = min{n € N} : 2nw+m/3 > a~'}. Since on each interval 2n7 +7/3, 2(n+1)7 —
m/3], 1 —cosx > 1/2, we see that the left-hand side of (3.24) is at least

1 & /2(n+1)7r7r/3 dx o0 1
- " > K
2 n;; onmimsz  |wfPert ,L;l 2(n + 1) — /324

o 2(n+1)m+5m/3
> / dx > Ka?“.

20+1 —
n=n, v 2nm+57/3 z

This proves (3.24). Now consider the case that N > 1. We write

dz *° dp
1 — cos(t —_— = 1-— t,0 —— u(db
[ oot gt =en [ [T costi ) S wian),

where p is the normalized surface area on the unit sphere Sy_; in RN and ¢y is a positive
finite constant depending on N only. The desired inequality follows from the inequality for
N =1.

The following lemma will play an important role in the proof of Theorem 3.1.

Lemma 3.4 Assume that N < ad. Then there exists a positive and finite constant K4,
depending only on o, N and d such that for any 0 < u < 1,

Ky 1
eXp(—uza/N) <P{T(1) < u} < eXp(—W)- (3.25)

Remark 3.5 When X is an ordinary Brownian motion in R? with d > 3, Gruet and Shi [3]
showed that 5
P(T(1) < u) ~ y(d)u® exp ( — 5) as u — 0, (3.26)

12



where
B (871')1/2

7
=—-—d d)=——"—".
Their proof of (3.26) depends heavily on the relationship between the sojourn time of Brownian
motion in R? and a Bessel process of dimension d, hence can not be used to study the similar

problem for fractional Brownian motion. Nevertheless, it is natural to conjecture that
hH(l) u?N1og P{T(1) < u} exists.
u—

This problem is also about the small ball probability of the self-similar process T' = {T'(r),r >
0}. For an extensive survey of results and techniques for estimating small ball probability of

Gaussian processes, we refer to Li and Shao [8].

Proof of Lemma 3.4 The right inequality in (3.25) is easy to prove. By the self-similarity
of X, cf. (1.2), and Lemma 2.3 , we have

P{T(1) <u} < IP{ max ]X(t)\ZI}

te[0,ul /NN

— > —a/N
P{te%% X(8)] > u }

1
< exp(—iKum/N)

In order to prove the left inequality in (3.25), for any 0 < u < 1, we consider the Gaus-

sian random vector & = (&1,--+,&4), where &1, ..., &, are independent and each has the same

s _/ dm(x)
U 251 ||t N2

It is clear that &y is a mean zero Gaussian random variable with

d
E(¢5) = /x|>1 7‘%”25%. (3.27)

Using conditional expectation, we can write the R-valued fractional Brownian motion Y as

distribution as

Y(t) =Yt) +c(t)é, teRN (3.28)

where the R-valued Gaussian random field Y'! is independent of & and

E(Y (£)€0)
(&)
It follows from the integral representation (1.1) that
dx
E(Y (t)& :/ 1 —cos(t,r)) ——.
0te) = [ (1 —eostt ) ey

13



Thus Lemma 3.3 and (3.27) imply that there exists a positive and finite constant K such that
K™l <e(t)<2 forall t e RV\{0}. (3.29)

Furthermore, some elementary computations show that for some finite constant K > 0 and for
all s,t € RV,

|s — t[2@ if 0<a<1/2,
le(s) —c(t)| < K |s—t|log|t —s|7t if a=1/2, (3.30)
|s — t| if 1/2<a<l.

Hence the function c(t) satisfies conditions (3.4) and (3.6) on RV\{0}. On the other hand, we
have
E(Y!(s) = Y ()" = |s — 1™ — [e(s) — c()E(&).

By (3.30), we see that there exists a constant dy > 0 such that for all s,¢ € RY with [s—t| < &,
1 2
Sls =t < E(Yl(s) - Yl(t)) < |s — t]2. (3.31)

Also, it follows from (3.28) that there is a finite constant Kj5 > 0 such that for all ¢ € RY
with ’t‘ Z K15,

1
P < B[ )7 < [ (3.32)
We note that
1/N ,1/N{ N
P{T(1) <u} > IP’{ for any t € RN\(— “ ,u—> , we have | X (t)| > 1}
2 2
YN UN

_ 1—P{3teRN\(— )N such that \X(t)|§1}

2 72
- 1- P{a t € RM\(— K15, K15)V such that |X(1)] < KlGu’O‘/N},(&?)S)
where K16 = (2K35)“ by the scaling property (1.2).

Let X' be the R%valued Gaussian random field whose components are independent copies

of Y!. By (3.28), we can decompose X into
X(t) = XMt) + c(b)€, (3.34)
where X! is independent of &.

Using conditioning and Eq. (3.34), the last probability in (3.33) can be written as
/ IP’{H t € RV\(=K5, K15)" such that | X (t)| < Klgu_o‘/N‘g = y}pg(y)dy
R4

- / IP’{EI t € RN\(= K15, K15)V such that [X1(t) + c(t)y| < Klﬁu_o‘/N} pe(y)dy.
Rd
(3.35)
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In the above, p¢(y) is the density function of the Gaussian random vector . In order to

estimate the probability in (3.35), we set
Sn = {t S RN : 2nK15 < ‘t’ < 2n+1K15}.

For simplicity of notations, we do not distinguish balls and cubes and write
oo
R\ (= K15, K15)" = | Sn.
n=0
Let ng = max{n : 2" < u~'/N}. Then the probability in (3.35) is bounded by
no
IP’{EI te U S, such that | X1 () + c(t)y| < KlGU*Q/N}
n=0

o
+ Z IP{EI t € S, such that | X1(t) + ¢(t)y| < Klﬁu_o‘/N}
n=ng+1

= I3+ Iy.

Now, we apply Lemma 3.1 to each S,,. Inequalities (3.29) — (3.32) show that the Gaussian
random field X!(¢) and the function c(t) satisfy the conditions of Lemma 3.1 on each S,,.
Hence it follows from Lemma 3.1 that for all y € RN with |y| > Ki7u~*N, we have

u—/N ) d—N/o

- [yl
K Z eXp<_K22na> ( ona
+

o L
P\~ Jr 20 ) pad—N+1

1y

IN

IN
=
:H
g
N
2 =
S

On the other hand, Part (ii) of Lemma 3.1 or its proof implies

I ool Y ¢ g (WP
3= exp K 22n2a ) — exp K u—2a/N)’

Consequently, for all y € RV with |y| > Kizu=/N,

]P’{H t € RN\ (K15, K15)V such that | X1(t) + c(t)y| < Kwu*a/N}
—a/N | d-N/a
)

< K18<7‘y|

: (3.36)

where K17 and Kig are positive and finite constants depending on N, « and d only.
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Putting things together we see that for all 0 < u < 1,

u=/N\ d-N/a
P{T(1) <u} > / N )
{ ( ) } ly|>Kiru—a/N |: 18( ’y‘ ) ] pﬁ(y) Yy

> e)(p

We need one more technical lemma from Xiao [23]. It gives some information about the

local density of an arbitrary probability measure.

Lemma 3.6 Given any constant Ao > 0 , there exists a positive and finite constant K = K (o)
with the following property: for any Borel probability measure 1 on R, there ezists x € [\, 2]
such that

u((x—é,x—#—é))SK&% for every0<5<%.

We are ready to prove the following Chung-type law of the iterated logarithm for the

sojourn measure 7'(-).

Theorem 3.1 Let X = {X(t), t € RN} be a fractional Brownian motion of index o in RY
and N < ad. Then with probability one,

e T(r)
lim inf =7, 3.37
minf 205 =7 (3.37)

where @(s) = sV /(loglog 1/s)N/ %) and 0 < v < oo is a constant depending on o, N and d
only.

Proof We first prove that there exists a constant v; > 0 such that

. T(r)
liminf —= > as. 3.38
o) (3:35)
For k =1,2,---, let ax = exp(—k/logk) and consider the events

Ay = {w : T(ax) < Ap(ar)},

where A > 0 is a constant to be determined later. Then by the scaling property (3.1) of T'(r)

and Lemma 3.4, we have, for k large enough,

A
P(Ax) = PiT(1) <
(4e) { (0= (loglogl/ak)N/Q"‘}
1 1
< exp((~gryar loglo )

1
S k K\2a/N .
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Take A = 1 > 0 such that K’yfa/N < 1. Then Y 2, P(A;) < co. It follows from the Borel-

Cantelli lemma that

T
lim inf (ax) >~ as. (3.39)
k—oo  @(ag)

A standard monotonicity argument and (3.39) yield (3.38).

Next we prove that there exists a finite constant s > 0 such that

T(r)

lirrn_%lf 20 <7 as. (3.40)

Let b, = exp(—k?), 1 = kebi/a, where 6 = 3/(ad — N) and, again, let A > 0 be a constant to
be determined later. Recall that

T(by, ) = / Ip(0,5,) (X (1))dt.
[t <74,

Then by Lemma 2.4, we have

]P’{T(bk,v-k) ” T(bk)} < IP’{H t such that |¢| > and |X(t)] < bk}

K(Z;>dN/a

= Kk3. (3.41)

IN

Hence by the Borel-Cantelli lemma, with probability 1, there exists k1 = k1(w) such that
T(bg, 1) = T(bg) forall k> k. (3.42)
For k > 1, consider the event

Ey = {T(bk,Tk) < /\W(bk)},

where A < A\ < 2) will be chosen later. By (3.42), we see that, in order to prove (3.40), it is
sufficient to show
P{limsup Ek} =1. (3.43)

k—o00

By (3.1) and Lemma 3.4, we have

P(Ey) > P{T(bk) <>\k90(bk:)}

B P{T(l) - (log log 1/bk)21\£v}

K
> kNN (3.44)




Thus, if we select A = \g such that K//\ga/N < 1, then

> P(Ey) = . (3.45)
k=1

By the second Borel-Cantelli lemma (Part (ii) of Lemma 2.6), (3.43) will follow after we show
that for any € > 0, (2.5) is satisfied.

For this purpose, we fix a positive integer k. For j > k, we need to estimate
P(Ey N Ej) = P{T(bkaTk) < Akp(bg), T(bj, ) < )‘jSO(bj)}

We denote this probability by Q. In order to create independence, we make use of the stochastic

1

integral representation (1.1) and decompose X (t) in the following way. Set v = (\/757;) ™" and

consider the following two Gaussian random fields

XUty = (Y (1), Yq (1),

and
Xz(t) - (Y12(t)7 o 7Yd2<t))7
where Y, . .. >Yd1 are independent copies of
dm(z) c ) dm/(x)
ZNt - (1—cost,x>7+— sin{t, x) ————-,
0= T8 Jae ') einn + 75 Je, M fapeia
and Y2, ... 7Yd2 are independent copies of
c dm(z) c , dm/(z)
Z2t) = — (1—Cost,x)7+— sin{t, ) ————>.
=78 Juo \1 7 ooz ¥ g f, S fapeene

Note that the Gaussian random fields X' and X? are independent and, for every t € RY,
X(t) = XHt) + X2(1).

We will also need to use some estimates for

P{max IX1(t)| > nbj} and IP’{ max | X?(t)| > nbk}.

It|<7; [t <7
These estimates are obtained by applying Lemma 2.2.

Let S; = {t € RV : [t| < 7;} and Sy, = {t € RV : |¢| < 7;,}. We note that the pseudo-metric
dy on S; and da on S}, satisfy

di(s,t) = || X1 (s) = X' (s)ll2 < Vd |5 — 1]

18



da(s,1) = [|X*(s) — X3(s)l|2 < Vi |s — 1]*.

By using the elementary inequality 1 — cos(t,z) < [t|?|z|?, we have

dx
120 = [ (1 eost. ) e

dzx
< Kltl2/ e NS
al<o |z [2otN -2

_ K|t|2U2(1_a).
Hence for any |t| < 75,
) 1 l-a Tj o2
12 (t)||2 < K - (W) =K - (ThT5) 7. (3.46)
J

On the other hand, since 1 — cos(t,z) < 2, we obtain

dx
120 = ¢ [ (1 eostt ) e

< Kv 2«
and hence for any |t| < 7y,
1Z2 (D)2 < K (). (3.47)
It follows from (3.46) and (3.47) that the di-diameter D; of S; and the dp-diameter Dy, of Sy,
satisfy
[T o
D; <K - (TrT}) /2
Tk
and

Dk S K(Tij)a/Q.

Straightforward computation shows that

(1 )
/ \/log N4(Sj, €) de < K}* ,/logﬁ

/ V/10g Ny(Sk, €) de < K (1475) O‘/z‘/ :

Applying Lemma 2.2, we obtain

P{max X)) > nbj} < exp(—ﬁj_%a(:j)la) (3.48)

[tI<7;
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and
P{max 1X2(t)] > nbk} < exp(—"K2 20 (E)a). (3.49)

[t]| <7k Tj
The rest of the proof is quite similar to that of Theorem 4.1 in Xiao [23] with appropriate
modifications. For any 0 < § < 1, let n > 0 be determined by

1

———=1+40.
(o =
These numbers will be fixed for the moment. We note that n > Kd for some constant K > 0.

Since the inequalities | X!(t)| < nb; and | X2(¢)| < (1 —7)b; together imply |X ()| < bj, we
see that, on the event {maxi<,, | X1 (t)| < nbj},

t<7;
Hence,
0esm) <ot} € {[ T L0 < 100}
<7y
U {|1t1‘1<ax 1X1(t)] > nbj}. (3.50)
Similarly,

{T(bg, 1) < Mp(br)} C {/t|< 150, (1—mbe) (X (£))dt < Ak@(bk)}
U {max 1X2(t)| > nbk}. (3.51)

[t <74,

It follows from (3.50) and (3.51) that @ is less than

P{/K L300, (1)) (X (1)t < Aep(b), /
<1y

[t|<T;

1(0,(1—nyp,) (X(2))dt < )\j‘P(bj)}
—l—IP’{max IX1(8)] > nbj} —l—IP’{ér'l?j}i IX2(1)] > nbk}.

[t <

By the independence of X' and X2, we have

P{/ I(0,(1-me) (X ()t < App(br), / BO,(1—np,) (X2 (1) dt < )\j‘P(bj)}
o= [t|<7j
= IP’{/t|< 15(0,(1—n)p) (X () dt < App(by) }

Tk

L[ A0 (K0 < ot}
7j
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<P{ Lo (XO)E < Ap(br)}
It <7

{002 (X< holt)}
STy

+]P>{max 1X1(1)] > nbj} + P{lﬁ%ﬁ 1X2(8)] > nbk}

[t <7;

= Q1+ Q2 + Q3.

Consequently, we have derived
Q < Q1 +2Q2+2Qs. (3.52)

Since upper bounds for @2 and @3 have been obtained in (3.48) and (3.49), we only need
to estimate ()1. Note

P{ Boa02 (K@) < ot}
<7

< P{T((1 = 2mb;) < Ajplby) b+ P{T((1 = 20)b) # T((1 = 2m)b,75) }
PV ()
(L—2n)N/e " N/

< IP’{T(I) < } +Kj3, (3.53)

where the last inequality follows from scaling property (3.1) and (3.41). By applying Lemma
3.6 to the distribution of T(1)(loglog 1/b;)N/(2%) e can choose \; € [Ag, 2\g] such that

IP’{)\]- < T(1)(loglog bi)N/@a) <1+ 5)Aj} < K62 forall 0<6<1/8. (3.54)
J

Hence, by Lemma 3.4 and (3.54), the probability in (3.53) is less than
Nio(bs POV (0:) < T(1) < (14 0)A:b: N % o(b;
P{T(l) _ Jﬁsaj)}(pr {Ab; () <T(1) —Z(V/a A0 e( J>}>
b PT(1) < Ajb, V(b))
< B{T(b) < Ajeby)} - (1+ Kj 61/2). (3.55)

Note that, in the above, we have also used (3.44). Combining (3.53) and (3.55), we have

P tnioaam) (X0t < Aje(t)}
[t|<7;

<P{T(b;) < Njp(by)} - (1 + Kj 6'/%) + Kj~°
< P{T(b;,75) < Nolby) } (1+ Kj 672 + Kj72). (3.56)

Similarly, we have

P o (XO)E < Ap(b)}
[t <7k

< P{T(bk, ) < )\kgo(bk)} (1 Kk Y2 1 Kk‘2>. (3.57)
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It follows from (3.56) and (3.57) that

Qi < B{T(b;,7) < Aplby) [B{T (b, ) < Aep(be) |
-(1 Y Kj Y24 Kj_2> (1 + Kk oY ¢ Kk‘Q). (3.58)
Putting (3.52), (3.58), (3.48), (3.44) and (3.49) together, we have
P(E,NE;) < P(E,)P(E)) (1 K 6V? g Kj‘2> (1 Kk §Y2 4 Kk:_Q)
+ 2[F’(Ek){k:exp(—K62j296‘(:};)1&)
+kexp (—K 52k—290(ﬁ)a) } (3.59)

7

We now select

0<ﬁ<min{%, FTQ} and 52(2)5.

Note that " )
(¢ el )

Tj a
It follows from the above and (3.59) that, for any ¢ > 0, there exist a constant K > 0 and a
positive integer kg such that for any k > kg and any J > k, we have

J J
3 PENE) < P(Ek)(K +l+e Y P(Ej)>. (3.60)
Jj=k+1 Jj=k+1

Consequently, by (3.45), (3.60) and Lemma 2.6 we have

1
]P’{limsup Ek} > .
k00 14 2¢

Since € > 0 is arbitrary, we conclude
P{T(bk) < Arp(br) infinitely often } =1.

Therefore, (3.40) holds almost surely with y2 = 2)\g. Combining (3.38), (3.40) and the zero-
one law of Pitt and Tran ([13], Theorem 2.1), we obtain (3.37). This completes the proof of
Theorem 3.1.

Since for any to € RY, the random field {X (t + to) — X (t9), t € RV} is also a fractional

Brownian motion in R¢ of index «, we have the following corollary.
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Corollary 3.1 Let X = {X(t), t € RN} be a fractional Brownian motion of index o in RY
and N < ad. Then for any to € RN, with probability one,

T
lim inf M =
r=0 o(r)

The following is a limsup theorem for the sojourn measure of fractional Brownian motion.
Theorem 3.2 Let X = {X(t), t € RN} be a fractional Brownian motion of index o in RY
and N < ad. Then for any tg € RY, with probability one,

T
lim sup X(to)(r) =~

R LT (S R

where (r) = rN/*loglog 1/r and ~' is a positive and finite constant.

(3.61)

Proof It is sufficient to prove (3.61) for ¢y = 0. It has been proved in Talagrand [18] (see also
Xiao [24]) that there exists a finite constant K > 0 such that

lirrnjgp iE:; <K, as. (3.62)

Hence (3.61) will follow from (3.62) and the zero-one law of Pitt and Tran ([13], Theorem 2.1)

after we prove that there exists a constant K > 0 such that

T
lim sup i) > K, as. (3.63)

r—0 ¢(T)

By the following Chung-type law of iterated logarithm for multiparameter fractional Brownian
motion, see Xiao ([25], p.147), or Li and Shao ([8], Theorem 7.2),

X
liminf sup [X(s)

=K, as.
h=0" sep(o,n) he/(loglog1/h)*/N

we see that there exists a sequence decreasing {h,} of positive numbers such that h,, | 0 and

sup | X(s)| < Ktp1(hy),
s€B(0,hn)

where 11 (h) = h*/(loglog 1/h)*/N. Hence we have
T(rp) > KhY, where 7, = Kt (hy). (3.64)

Observing that 1 (r) = r/*(loglog 1/r)'/N is an asymptotic inverse function of v, (h), we see
that (3.63) follows from (3.64). This completes the proof.
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Remark 3.7 Using the moment estimates (see Xiao [24] ) and the result on small ball
probabilities for fractional Brownian motion (Talagrand, [18]), it is easy to derive the following
estimates on the tail probability of T'(1): if N < ad, then for some constant K > 1,

exp (— Ku) <P{T(1) > u} < exp(— K 'u).

In order to study the multifractal structure of the sojourn measure, one needs to have more

precise tail asymptotics for the distribution of 7'(1). We have the following conjecture
If N < ad, then the limit lim, o u™! logP{T(1) > u} exists.

When N > ad, both small and large tail asymptotics for the truncated sojourn measure T7'(1, ),

say, are not known. It seems that even the correct rate functions are non-trivial to obtain.

For application in the next section, we state another result from Xiao ([25], Theorem 3.1).
Let X = {X(t), t € RN} be a fractional Brownian motion of index a in R¢. Then for any

rectangle T C RV,
X(s)— X
liminf inf sup X (s) Gl > K, as. (3.65)
h—0 LT sepppy h/(log 1/h)e/N

where K > 0 is a constant depending on N, d and « only.

4 Packing Measure of Fractional Brownian Motion

In this section, we consider the packing measure of the image and graph of a transient fractional

Brownian motion in R? and prove (1.4).

Theorem 4.1 Let X = {X(t), t € RN} be a fractional Brownian motion in R? of index a.
If N < ad, then there exist positive constants K1 and Ko such that, with probability 1,

K1 < o-p(X([0. 1Y) < o-p(GrX([0,1]V)) < Ko, (4.1)
where p(s) = s™//(loglog 1/s)NV/(2a)
Proof To prove the first inequality in (4.1), we define a random Borel measure z on X ([0, 1]V)
as follows. For any Borel set B C R, let

w(B) = An{t € [0,1]Y, X(t) € B}.
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Recall \y is Lebesgue’s measure in RV, Then u(R?) = u(X([0,1]")) = 1. By Corollary 3.1,
for each fixed ¢ € [0, 1],

M B(X(to), T) T
lim inf ( ) < lim inf M
r—0 o(r) =0 o(r)

=, as. (4.2)

Let E(w) = {X(t) : to € [0,1]Y and (4.2) holds }. Then E(w) C X([0,1]). A Fubini

argument shows u(E(w)) =1, a.s. Hence by Lemma 2.1, we have
p-p(B(w)) = 273Ny~

This proves the left hand inequality of (4.1) with K; = 273V /2~=1 The second inequality in
(4.1), i.e.
p-p(X([0,1]")) < -p(GrX ([0, 1]V)),

follows from the definition of packing measure easily.

To prove the right hand inequality of (4.1), we only need to show ¢-P (GrX([0,1]V)) < K
a.s., thanks to (2.4). Let Ji be the family of dyadic cubes of length 27% in [0,1]V. For each
7€ [0,1]V, let I(7) denote the dyadic cube in J; which contains 7 and let

ap(r) = sup [X(t) — X(s)].
S,telk(T)

For any k > 1 and any I € J, by Lemma 2.3, we have for any u > K,
2

]P’{S’sggl X (1) — X(s)| > uzf’m} < exp(—%).

Take u = /K4\logk, where A > 6 + N/(2a). The above inequality yields

1
1@{ sup | X (t) — X (s)| > v/Karlogk zf’m} <

s, tel
Denote
M, = #{I € Jr, sup |X(t) — X(s)| > VErlogk 2*’“},
s, tel
then ) )
kN
oz o)<

The Borel-Cantelli lemma implies that, with probability one,

kN

2
M, <

s for all k large enough. (4.3)
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Let Q be the event that (4.3) holds, and let ©; and Q9 be the events that (2.6) and (3.65)
hold respectively. Then P(29 N2 N Qo) = 1.

Fix an w € Qy N Q; N Qa, let kg = ko(w) be a positive integer, such that k& > ky implies

(4.3) and the following two inequalities

sup ay(t) < KVk 27 (4.4)
te[o,1]N
and
inf ag(t) > K2~k > /N 27F, (4.5)

te[0,1]N

For any 0 < € < 27% and any e-packing {B((t;, X, (t;)),7:)} of GrX,([0,1]"), we will show

that for some absolute constant Ko > 0,

Z%)@H) < Ko. (4.6)

7

From now on, we will suppress the subindex w. For each i, let
ki = inf{k : ap(t;) <r;/2}.
Then ag,—1(t;) > r;/2. We claim that the dyadic cubes {I,(t;)} are disjoint. In fact, if
to € Iy, (ti) N Iy, (t;)  for some i # j,
then the triangle inequality implies

|(ti, X (t:)) — (¢, X (t5))]

IN

(i, X (£:)) — (to, X (to))| + [(to, X (to)) — (¢;, X (;))]

< VN27R VN 27R 4 (r 1) /2

< 1+ 5, (47)
where in deriving the last inequality we have used the fact that VN27% < a4 (;) < r;/2,

which follows from (4.5). The inequality (4.7) contradicts the fact that B((t;, X(t;)), ;) N
B((tj, X (t;)),rj) = 0. Summing up the volumes of Iy, (¢;), we have

kN <, (4.8)

We divide the points {(¢;, X (¢;))} into two types: “good” points or “bad” points. (t;, X (t;)) is
called a good point if

ag,—1(t;) < /Ki\log(k; — 1) 27 k= De,
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otherwise, it is called a bad point. Let G denote the set of the subscripts i of good points.

By (4.8), we obtain

D er) <> e(dag, (k)
1€G i€G
< KDY 27RN < K. (4.9)

In order to estimate } ;4 ¢(2ri), we note that there are not many “bad” points and the
oscillation of X at such points are controlled by the modulus of continuity. It follows from
(4.3) and (4.4) that

> ) <> e(dag, (k)
i¢G i¢G
o(ki—1)N k1)
igG "
> 1
k=1

Recall A > 6 + N/(2a) in deriving the last equality.

Combining (4.9) and (4.10), we obtain (4.6). Thus, by (2.2), we see that
p-P(Grx ([0,1]V)) < Ko,

where K9 = K19 + Kgp. This finished the proof of the upper bound in (4.1).
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