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Continuous time random walks
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The CTRW is a random walk with jumps Xn separated by ran-

dom waiting times Jn. The random vectors (Xn, Jn) are i.i.d.
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Waiting time process

Jn’s are nonnegative iid.
Tn = J1 + J2 + · · ·+ Jn is the time of the nth jump.
N(t) = max{n ≥ 0 : Tn ≤ t} is the number of jumps by time
t > 0.
Suppose P(Jn > t) ≈ Ct−β for 0 < β < 1.
Scaling limit

c−1/βT[ct] =⇒ D(t)

is a β-stable subordinator.
Since {Tn ≤ t} = {N(t) ≥ n}

c−βN(ct) =⇒ E (t) = inf{u > 0 : D(u) > t}.

The self-similar limit E (ct)
d
= cβE (t) is non-Markovian.
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Continuous time random walks (CTRW)

S(n) = X1 + · · ·+ Xn particle location after n jumps
has scaling limit c−1/2S([ct]) =⇒ B(t) a Brownian motion.
Number of jumps has scaling limit c−βN(ct) =⇒ E (t).
CTRW is a random walk time-changed by (a renewal process) N(t)

S(N(t)) = X1 + X2 + · · ·+ XN(t).

S(N(t)) is particle location at time t > 0.
CTRW scaling limit is a time-changed process:

c−β/2S(N(ct)) = (cβ)−1/2S(cβ · c−βN(ct))

≈ (cβ)−1/2S(cβE (t)) =⇒ B(E (t)).

The self-similar limit B(E (ct))
d
= cβ/2B(E (t)) is non-Markovian.
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Figure : Typical sample path of the time-changed process B(E (t)). Here
B(t) is a Brownian motion and E (t) is the inverse of a β = 0.8-stable
subordinator. Graph has dimension 1 + β/2 = 1 + 0.4. The limit process
retains long resting times.
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CTRW with serial dependence

Particle jumps Xn =
∑∞

j=0 cjZn−j with Zn IID.

Short range dependence:
∑∞

n=1 |E(XnX0)| <∞ =⇒ the usual
limit and PDE.

Long range dependence:
If Zn has light tails: time-changed fractional Brownian motion
limit BH(E (t)). Hahn, Kobayashi and Umarov (2010) established
a governing equation.

For heavy tails: time-changed linear fractional stable motion
Lα,H(E (t)).

Open problems: Governing equations, dependent waiting times.

Meerschaert, Nane and Xiao (2009).
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Hausdorff dimension

For any α > 0, the α-dimensional Hausdorff measure of F ⊆ Rd is
defined by

sα-m(F ) = lim
ϵ→0

inf

{∑
i

(2ri )
α : F ⊆

∞∪
i=1

B(xi , ri ), ri < ϵ

}
, (1)

where B(x , r) denotes the open ball of radius r centered at x .
It is well-known that sα-m is a metric outer measure and every
Borel set in Rd is sα-m measurable.
The Hausdorff dimension of F is defined by

dimHF = inf
{
α > 0 : sα-m(F ) = 0

}
= sup

{
α > 0 : sα-m(F ) = ∞

}
.

NSF/CBMS Conference on Analysis of SPDEs CTRW Limits: Governing Equations and Fractal Dimensions



Scaling limits
Fractal properties

Fractional Diffusion
Initial-Boundary value problems

Hausdorff dimension of image

Let Z = {Z (t) = Y (E (t)), t ≥ 0} be the time-changed process
with values in Rd where the processes Y and E independent and
E (t) is a nondecreasing continuous process. If E (1) > 0 a.s. and
there exist a constant c1 such that for all constants 0 < a <∞

dimHY ([0, a]) = c1, a.s. (2)

then almost surely
dimHZ ([0, 1]) = c1. (3)

Applying this result to the space-time process x 7→ (x ,Y (x)): If
there exist constants c2 such that for all constants 0 < a <∞,
dimHGrY ([0, a]) = c2 a.s., then
dimH

{
(E (t),Y (E (t))) : t ∈ [0, 1]

}
= dimHGrY ([0, 1]), a.s.
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Hausdorff dimension of graph

Let
A(x) = (D(x),Y (x)), ∀x ≥ 0, (4)

where D = {D(x), x ≥ 0} is defined by

D(x) = inf
{
t > 0 : E (t) > x

}
. (5)

If E (1) > 0 a.s. and there exist a constant c3 such that for all
constants 0 < a <∞

dimHA([0, a]) = c3 (6)

then

dimHGrZ ([0, 1]) = dimH{(t,Z (t)) : t ∈ [0, 1]}
= max

{
1, dimHA([0, 1])

}
, a.s.

(7)

Meerschaert, Nane and Xiao (2013) .
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Examples

Let Z = {Y (E (t)), t ≥ 0}, where Y = {Y (x) : x ≥ 0} is a stable
Lévy motion of index α ∈ (0, 2] with values in Rd and E (t) is the
inverse of a stable subordinator of index 0 < β < 1,
independent of Y . Then

dimHZ ([0, 1]) = dimHY ([0, 1]) = min{d , α}, a.s. (8)

dimHGrZ ([0, 1]) =

{
max{1, α} if α ≤ d ,
1 + β(1− 1

α) if α > d = 1,
a.s.

(9)

compare to

dimHGrY ([0, 1]) = dimH

{
(E (t),Y (E (t))) : t ∈ [0, 1]

}
=

{
max{1, α} if α ≤ d ,
2− 1

α = 1 + 1− 1
α if α > d = 1.

a.s.
(10)
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Let Z = {Y (E (t)), t ≥ 0}, where Y is a fractional Brownian
motion with values in Rd of index H ∈ (0, 1) and E (t) is the the
inverse of a β-stable subordinator D which is independent of Y .
Then

dimHZ ([0, 1]) = dimHY ([0, 1]) = min
{
d ,

1

H

}
, a.s. (11)

dimHGrZ ([0, 1]) =

{
1
H if 1 ≤ Hd ,
β + (1− Hβ)d = d + β(1− Hd) if 1 > Hd ,

a.s.

(12)

compare to

dimH

{
(E (t),Y (E (t))) : t ∈ [0, 1]

}
= dimHGrY ([0, 1])

=

{
1
H if 1 ≤ Hd ,
1 + (1− H)d = d + (1− Hd) if 1 > Hd ,

a.s.
(13)
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Fractional time derivative: Two approaches

I Riemann-Liouville fractional derivative of order 0 < β < 1;

Dβt g(t) =
1

Γ(1− β)

∂

∂t

[∫ t

0
g(s)

ds

(t − s)β

]
with Laplace transform sβ g̃(s), g̃(s) =

∫∞
0 e−stg(t)dt

denotes the usual Laplace transform of g .
I Caputo fractional derivative of order 0 < β < 1;

Dβ
t g(t) =

1

Γ(1− β)

∫ t

0

dg(s)

ds

ds

(t − s)β
(14)

was invented to properly handle initial values (Caputo 1967).

Laplace transform of Dβ
t g(t) is s

β g̃(s)− sβ−1g(0)
incorporates the initial value in the same way as the first
derivative.
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examples

I

Dβ
t (t

p) =
Γ(1 + p)

Γ(p + 1− β)
tp−β

I

Dβ
t (e

λt) = λβeλt − t−β

Γ(1− β)
?

I

Dβ
t (sin t) = sin(t +

πβ

2
)
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Diffusion

Let Lx be the generator of some continuous Markov process X (t).
Then p(t, x) = Ex [f (X (t))] is the unique solution of the heat-type
Cauchy problem

∂tp(t, x) = Lxp(t, x), t > 0, x ∈ Rd ; p(0, x) = f (x), x ∈ Rd

Examples:
X : Brownian motion then Lx = ∆x , BM is a stochastic solution of
the heat equation
X : Symmetric α-stable process then Lx = −(−∆)α/2
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Time-fractional model for Anamolous sub-diffusion

Let 0 < β < 1. Nigmatullin (1986) gave a physical derivation of
fractional diffusion

∂βt u(t, x) = Lxu(t, x); u(0, x) = f (x) (15)

Zaslavsky (1994) used this to model Hamiltonian chaos.
(??) has the unique solution

u(t, x) = Ex [f (X (E (t)))] =

∫ ∞

0
p(s, x)gE(t)(s)ds

where p(t, x) = Ex [f (X (t))] and E (t) = inf{τ > 0 : Dτ > t},
D(t) is a stable subordinator with index β and E(e−sD(t)) = e−tsβ

(Baeumer and Meerschaert, 2002).
Ex(B(E (t)))

2 = E(E (t)) ≈ tβ.
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Heat equation in bounded domains

Denote the eigenvalues and the eigenfunctions of ∆ on a bounded
domain D with Dirichlet boundary conditions by {µn, ϕn}∞n=1;

∆ϕn(x) = −µnϕn(x), x ∈ D;ϕn(x) = 0, x ∈ ∂D.

τD(X ) = inf{t ≥ 0 : X (t) /∈ D} is the first exit time of a process
X , and let f̄ (n) =

∫
D f (x)ϕn(x)dx . The semigroup given by

TD(t)f (x) = Ex [f (B(t))I (τD(B) > t)] =
∞∑
n=1

e−µntϕn(x)f̄ (n)

solves the heat equation in D with Dirichlet boundary conditions:

∂tu(t, x) = ∆xu(t, x), x ∈ D, t > 0,

u(t, x) = 0, x ∈ ∂D; u(0, x) = f (x), x ∈ D.
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Fractional diffusion in bounded domains

∂βt u(t, x) = ∆xu(t, x); x ∈ D, t > 0 (16)

u(t, x) = 0, x ∈ ∂D, t > 0; u(0, x) = f (x), x ∈ D.

has the unique (classical) solution

u(t, x) =
∞∑
n=1

f̄ (n)ϕn(x)Mβ(−µntβ) =
∫ ∞

0
TD(l)f (x)gE(t)(l)dl

= Ex [f (B(E (t)))I (τD(B) > E (t))]

= Ex [f (B(E (t)))I (τD(B(E )) > t)]

Meerschaert, Nane and Vellaisamy (2009).
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Corollary

Mittag-Leffler function is defined by

Mβ(z) =
∞∑
k=0

zk

Γ(1 + βk)
.

||u(t, ·)||L2 ∼ CMβ(−µ1tβ) ∼
C

µ1tβ

In the Heat-equation case, since β = 1 we have
Mβ(−µ1tβ) = e−µ1t so

||u(t, ·)||L2 ∼ CM1(−µ1t) = Ce−µ1t
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New time operators

Laplace symbol: ψ(s) inverse subordinator time operator∫∞
0 (1− e−sy )ν(dy) Eψ(t) ψ(∂t)− δ(0)ν(t,∞)

sβ E (t) ∂βt , Caputo∫ 1
0 sβΓ(1− β)µ(dβ) Eµ(t)

∫ 1
0 ∂

β
t Γ(1− β)µ(dβ)

(s + λ)β − λβ Eλ(t) ∂β,λt in (17)

∂β,λt g(t) = ψλ(∂t)g(t)− g(0)ϕλ(t,∞)

= e−λt
1

Γ(1− β)
dt

[ ∫ t

0

eλsg(s) ds

(t − s)β

]
− λβg(t)

− g(0)

Γ(1− β)

∫ ∞

t
e−λrβr−β−1 dr .

(17)
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Subdiffusion: 0 < β < 1, Ex(B(E (t)))
2 = E(E (t)) ≈ tβ.

Ultraslow diffusion: For special µ ∈ RV0(θ − 1) for some θ > 0:
Ex(B(Eµ(t)))

2 = E(Eµ(t)) ≈ (log t)θ for some θ > 0.
Intermediate between subdiffusion and diffusion: Tempered
fractional diffusion

Ex(B(Eλ(t)))
2 ≈

{
tβ/Γ(1 + β), t << 1
t/β, t >> 1.

B(Eλ(t)) occupies an intermediate place between subdiffusion and
diffusion (Stanislavsky et al., 2008)
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New space operators

Laplace exp.: ψ(s) subord. process Generator∫∞
0 (1− e−sy )ν(dy) Dψ(t) B(Dψ(t)) −ψ(−∆)

sβ D(t) B(D(t)) −(−∆)β

(s +m1/β)β −m Tβ(t,m) B(Tβ(t,m)) −[(−∆+m1/β)β −m]

log(1 + sβ) Dlog(t) B(Dlog(t)) − log(1 + (−∆)β)
B(t), Brownian motion
B(D(t)), symmetric stable process
B(Tβ(t,m)), relativistic stable process
B(Dlog(t)), geometric stable process
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Space-time fractional diffusion in bounded domains

[ψ1(∂t)− δ(0)ν(t,∞)]u(t, x) = −ψ2(−∆x)u(t, x); x ∈ D, t > 0

u(t, x) = 0, x ∈ ∂D (or x ∈ DC ), t > 0;

u(0, x) = f (x), x ∈ D.

has the unique (classical) solution

u(t, x) =
∞∑
n=1

f̄ (n)ϕn(x)hψ1(t, λn)

= Ex [f (B(Dψ2(Eψ1(t))))I (τD(B(Dψ2(Eψ1))) > t)]

hψ1(t, λ) = E(e−λEψ1 (t)) is the solution of

[ψ1(∂t)− δ(0)ν(t,∞)]hψ1(t, λ) = −λhψ1(t, λ); hψ1(0, λ) = 1;

−ψ2(−∆x)ϕn(x) = −λnϕn(x); ϕn(x) = 0, x ∈ ∂D (or x ∈ DC ).
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ψ2(s) = s with

I ψ1(s) = sβ: subdiffusion

I ψ1(s) =
∫ 1
0 sβΓ(1− β)µ(dβ): Ultraslow diffusion

I ψ1(s) = (s + λ)β − λβ: tempered fractional diffusion.

ψ2(s) = sβ2 with the three ψ1s: space-time fractional diffusion,
(−∆)β2

Joint work with Meerschaert, Vellaisamy and Chen (2009,2010, 2012).
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Time fractional models in Manifolds

Let (M, µ) be a smooth connected Riemannian manifold of
dimension n ≥ 1 with Riemannian metric g . The associated
Laplace-Beltrami operator △ = △M in M is an elliptic, second
order, differential operator defined in the space C∞

0 (M). In local
coordinates, this operator is written as

△ =
1
√
g

n∑
i ,j=1

∂

∂xi

(
g ij√g

∂

∂xj

)
(18)

where {gij} is the matrix of the Riemannian metric, {g ij} and g
are respectively the inverse and the determinant of {gij}.
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Let M be a connected and compact manifold. The unique strong
solution to the fractional Cauchy problem{

∂βt u(m, t) = △u(m, t), m ∈ M, t > 0
u(m, 0) = f (m), m ∈ M, f ∈ Hs(M)

(19)

is given by

u(m, t) = Ef (Bm
Et
) =

∞∑
j=1

Mβ(−tβλj)ϕj(m)

∫
M
ϕj(y)f (y)µ(dy)

(20)

where Bm
t is a Brownian motion in M and Et = Eβt is inverse to a

stable subordinator with index 0 < β < 1.

D’Ovidio and Nane (2013) .

NSF/CBMS Conference on Analysis of SPDEs CTRW Limits: Governing Equations and Fractal Dimensions



Scaling limits
Fractal properties

Fractional Diffusion
Initial-Boundary value problems

Fractional Diffusion in the sphere

In the sphere: x ∈ S2r can be represented as

x = (r sinϑ cosφ, r sinϑ sinφ, r cosϑ).

The spherical Laplacian is defined by

△S2r =
1

r2

[
1

sin2 ϑ

∂2

∂φ2
+

1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)]
, ϑ ∈ [0, π], φ ∈ [0, 2π].

Sometimes △S2r is called Laplace operator on the sphere. In this
case the eigenfunctions of the spherical Laplacian are called
Spherical harmonics obtained from Legendre polynomials.
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We can use Bm(Et) as a process to introduce time dependence in
a Gaussian random field T to model ”Cosmic Microwave
Background (CMB) radiation”. CMB radiation is thermal radiation
filling the observable universe almost uniformly and is well
explained as radiation associated with an early stage in the
development of the universe.
A further remarkable feature is that the new random field
T (Bm(Et)) has short-range dependence for β → 1 and long-range
dependence for β ∈ (0, 1).
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Further research

I Work in progress for other Subordinated Brownian motions,
e.g. relativistic stable process as the outer process....
corresponding to the operator (−∆+m1/β)β −m for
0 < α ≤ 2, m ≥ 0.

I Extension to Neumann boundary conditions...

I Extensions to anisotropic/nonsymmetric space operators..

I Fractal properties of B(E (t)) and other time-changed
processes

I Applications-interdisciplinary research

I solutions to the spde with space time white noise ξ:

∂βt u(t, x) = ∂2xu(t, x) + ξ; x ∈ R, t > 0; u(0, x) = f (x), x ∈ R.
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Thank You!
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