A Phase Transition for Measure-valued SIR Epidemic Processes

Xinghua Zheng

Department of ISOM, HKUST

http://ihome.ust.hk/~xhzheng/

NSF/CBMS Conference on "Analysis of Stochastic Partial Differential Equations", Aug 2013

Based on Joint Work with Steve Lalley and Ed Perkins

(雪) (ヨ) (ヨ)

Outline

Discrete Spatial SIR and its Scaling Limit

Extinction-Survival Phase Transition

Local Extinction and its Consequences

Summary

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Each site $x \in \mathbb{Z}^d$ represents a village
- *N* individuals on each site *x N*: village size
- People can be susceptible, infected or recovered
- Recovery \Rightarrow immunity e.g., measles
- Infected recovers after one unit of time
- Infected infects *neighboring* susceptibles with certain probability p_N
- Critical case: $p_N = 1/((2d+1)N)$

(雪) (ヨ) (ヨ)

- Each site $x \in \mathbb{Z}^d$ represents a village
- *N* individuals on each site *x N*: village size
- People can be *susceptible*, *infected* or *recovered*
- Recovery \Rightarrow immunity e.g., measles
- Infected recovers after one unit of time
- Infected infects *neighboring* susceptibles with certain probability p_N
- Critical case: $p_N = 1/((2d+1)N)$

(日本) (日本) (日本)

- Each site $x \in \mathbb{Z}^d$ represents a village
- *N* individuals on each site *x N*: village size
- People can be *susceptible*, *infected* or *recovered*
- Recovery \Rightarrow immunity e.g., measles
- Infected recovers after one unit of time
- Infected infects *neighboring* susceptibles with certain probability p_N
- Critical case: $p_N = 1/((2d+1)N)$

(日本) (日本) (日本)

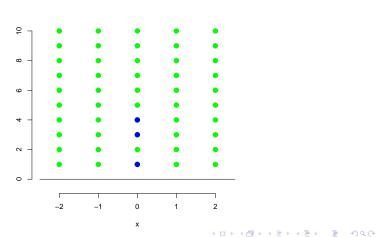
- Each site $x \in \mathbb{Z}^d$ represents a village
- *N* individuals on each site *x N*: village size
- People can be *susceptible, infected* or *recovered*
- Recovery \Rightarrow immunity e.g., measles
- Infected recovers after one unit of time
- Infected infects *neighboring* susceptibles with certain probability p_N
- Critical case: $p_N = 1/((2d+1)N)$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

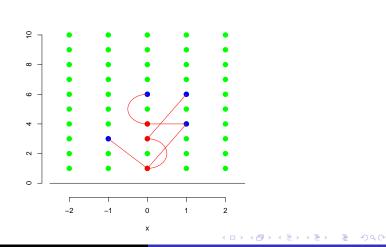
- Each site $x \in \mathbb{Z}^d$ represents a village
- *N* individuals on each site *x N*: village size
- People can be *susceptible*, *infected* or *recovered*
- Recovery \Rightarrow immunity e.g., measles
- Infected recovers after one unit of time
- Infected infects *neighboring* susceptibles with certain probability p_N
- Critical case: $p_N = 1/((2d + 1)N)$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

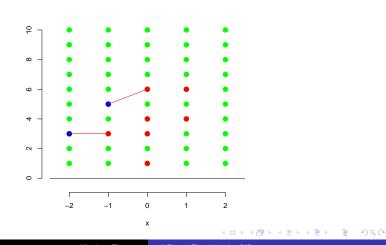
Village size N = 10: susceptible, infected or recovered



Village size N = 10: susceptible, infected or recovered



Village size N = 10: susceptible, infected or recovered



Village size N = 10: susceptible, infected or recovered



Convergence of SIR When $d \leq 3$

Theorem [Lalley(2009), Lalley and Zheng(2010)] If for $\alpha = 2/(6 - d)$, the initial infections $\mu^N := X_0^N$ are such that

$$\frac{\mu^{N}(\sqrt{N^{\alpha}}\cdot)}{N^{\alpha}} \Rightarrow \mu \text{ with compact support, } as N \to \infty,$$

Then under some regularity assumptions, as $N \to \infty$, (i)

$$\left(\frac{R_{N^{\alpha}t}^{N}(\sqrt{N^{\alpha}}\cdot)}{N^{(4-d)/(6-d)}}\right) \Longrightarrow (L_{t}(\cdot)) \text{ in } D([0,\infty); C(\mathbb{R}^{d})),$$

where $R_k^N(y)$ stands for the number of recovered individuals at site y at time k;

▲冊▶▲≣▶▲≣▶ ≣ のQ@

Convergence of SIR When $d \leq 3$

Theorem [Lalley(2009), Lalley and Zheng(2010)] If for $\alpha = 2/(6 - d)$, the initial infections $\mu^N := X_0^N$ are such that

$$\frac{\mu^{N}(\sqrt{N^{\alpha}}\cdot)}{N^{\alpha}} \Rightarrow \mu \text{ with compact support, } \text{ as } N \to \infty,$$

Then under some regularity assumptions, as $N \to \infty$, (i)

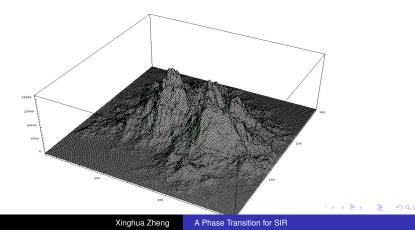
$$\left(\frac{R_{N^{\alpha}t}^{N}(\sqrt{N^{\alpha}}\cdot)}{N^{(4-d)/(6-d)}}\right) \Longrightarrow (L_{t}(\cdot)) \text{ in } D([0,\infty); C(\mathbb{R}^{d})),$$

where $R_k^N(y)$ stands for the number of recovered individuals at site *y* at time *k*;

▲冊▶ ▲目▶ ▲目▶ 目 ののの

What the $L_t(\cdot)$ Looks Like: the Distribution of Recovered Individuals

Village size $N = 10^8$, IC = one infected individual/site in $[-50, 50]^2$. Distribution of recovered at time = 10^4 : number of recovered per site is of order $10^4 = \sqrt{N}$



Theorem [Lalley(2009), Lalley and Zheng(2010)] (ii) Moreover,

$$\frac{X_{N^{\alpha}t}^{N}(\sqrt{N^{\alpha}}\cdot)}{N^{\alpha}} \Longrightarrow X_{t} \text{ in } D([0,\infty); \mathcal{M}_{F}(\mathbb{R}^{d})),$$

where X_t satisfies that for each $\varphi \in C_b^2(\mathbb{R}^d)$,

$$X_t(\varphi) - \mu(\varphi) = rac{1}{2} \int_0^t X_s(\Delta \varphi) \, ds - \int_0^t X_s(L_s \varphi) \, ds + M_t(\varphi);$$

(iii) $L_t(\cdot)$ is the local time density of X_t , i.e., the density of $\int_0^t X_s \, ds$, and $M_t(\varphi)$ is a martingale with quadratic variation $[M(\varphi)]_t = \int_0^t X_s(\varphi^2) \, ds$.

Theorem [Lalley(2009), Lalley and Zheng(2010)] (ii) Moreover,

$$\frac{X^N_{N^{\alpha}t}(\sqrt{N^{\alpha}}\cdot)}{N^{\alpha}} \Longrightarrow X_t \text{ in } D([0,\infty);\mathcal{M}_F(\mathbb{R}^d)),$$

where X_t satisfies that for each $\varphi \in C_b^2(\mathbb{R}^d)$,

$$X_t(\varphi) - \mu(\varphi) = rac{1}{2} \int_0^t X_s(\Delta \varphi) \, ds - \int_0^t X_s(L_s \varphi) \, ds + M_t(\varphi);$$

(iii) $L_t(\cdot)$ is the local time density of X_t , i.e., the density of $\int_0^t X_s \, ds$, and $M_t(\varphi)$ is a martingale with quadratic variation $[M(\varphi)]_t = \int_0^t X_s(\varphi^2) \, ds$.

Theorem [Lalley(2009), Lalley and Zheng(2010)] (ii) Moreover,

$$\frac{X^N_{N^{\alpha}t}(\sqrt{N^{\alpha}}\cdot)}{N^{\alpha}} \Longrightarrow X_t \text{ in } D([0,\infty);\mathcal{M}_F(\mathbb{R}^d)),$$

where X_t satisfies that for each $\varphi \in C_b^2(\mathbb{R}^d)$,

$$X_t(\varphi) - \mu(\varphi) = rac{1}{2} \int_0^t X_s(\Delta arphi) \, ds - \int_0^t X_s(L_s arphi) \, ds + M_t(arphi);$$

(iii) $L_t(\cdot)$ is the local time density of X_t , i.e., the density of $\int_0^t X_s ds$, and $M_t(\varphi)$ is a martingale with quadratic variation $[M(\varphi)]_t = \int_0^t X_s(\varphi^2) ds$.

Theorem [Lalley(2009), Lalley and Zheng(2010)] (ii) Moreover,

$$\frac{X^N_{N^{\alpha}t}(\sqrt{N^{\alpha}}\cdot)}{N^{\alpha}} \Longrightarrow X_t \text{ in } D([0,\infty);\mathcal{M}_F(\mathbb{R}^d)),$$

where X_t satisfies that for each $\varphi \in C_b^2(\mathbb{R}^d)$,

$$X_t(\varphi) - \mu(\varphi) = rac{1}{2} \int_0^t X_s(\Delta \varphi) \, ds - \int_0^t X_s(L_s \varphi) \, ds + M_t(\varphi);$$

(iii) $L_t(\cdot)$ is the local time density of X_t , i.e., the density of $\int_0^t X_s \, ds$, and $M_t(\varphi)$ is a martingale with quadratic variation $[M(\varphi)]_t = \int_0^t X_s(\varphi^2) \, ds$.

$$X_t(\varphi) - \mu(\varphi) = rac{1}{2} \int_0^t X_s(\Delta \varphi) \, ds - \int_0^t X_s(L_s \varphi) \, ds + M_t(\varphi),$$

• <u>Q</u>: Can the process survive forever?

- Total mass bounded by a drift-less Feller diffusion \Rightarrow almost sure extinction
- If the infection probability were slightly bigger,

 $= (1 + \theta / N^{2/(6-d)}) / ((2d + 1)N)$ for some $\theta > 0$, then the limit process would be

$$X_t(\varphi) - \mu(\varphi)$$

$$=\frac{1}{2}\int_0^t X_s(\Delta\varphi)\,ds + \theta\int_0^t X_s(\varphi)\,ds - \int_0^t X_s(L_s\varphi)\,ds + M_t(\varphi)$$

 Also arises as a scaling limit of certain stochastic reaction-diffusion systems [Mueller and Tribe(2011)]

Will there be survival if θ is large enough?
 → < @→ < ≅→ < ≅→ < ≅→ < ≅→ < ∞

$$X_t(\varphi) - \mu(\varphi) = rac{1}{2} \int_0^t X_s(\Delta \varphi) \, ds - \int_0^t X_s(L_s \varphi) \, ds + M_t(\varphi),$$

- <u>Q</u>: Can the process survive forever?
- Total mass bounded by a drift-less Feller diffusion \Rightarrow almost sure extinction
- If the infection probability were slightly bigger,
 - $= (1 + \theta/N^{2/(6-d)})/((2d+1)N)$ for some $\theta > 0$, then the limit process would be

$$X_t(\varphi) - \mu(\varphi)$$

$$=\frac{1}{2}\int_0^t X_s(\Delta\varphi)\,ds + \theta\int_0^t X_s(\varphi)\,ds - \int_0^t X_s(L_s\varphi)\,ds + M_t(\varphi)$$

• Also arises as a scaling limit of certain stochastic reaction-diffusion systems [Mueller and Tribe(2011)]

Will there be survival if θ is large enough?

$$X_t(\varphi) - \mu(\varphi) = rac{1}{2} \int_0^t X_s(\Delta \varphi) \, ds - \int_0^t X_s(L_s \varphi) \, ds + M_t(\varphi),$$

- <u>Q</u>: Can the process survive forever?
- Total mass bounded by a drift-less Feller diffusion \Rightarrow almost sure extinction
- If the infection probability were slightly bigger,

 $= (1 + \theta/N^{2/(6-d)})/((2d+1)N)$ for some $\theta > 0$, then the limit process would be $X_t(\varphi) = u(\varphi)$

$$=\frac{1}{2}\int_0^t X_s(\Delta\varphi)\,ds + \theta\int_0^t X_s(\varphi)\,ds - \int_0^t X_s(L_s\varphi)\,ds + M_t(\varphi)$$

 Also arises as a scaling limit of certain stochastic reaction-diffusion systems [Mueller and Tribe(2011)]

Will there be survival if θ is large enough?

$$X_t(\varphi) - \mu(\varphi) = rac{1}{2} \int_0^t X_s(\Delta \varphi) \, ds - \int_0^t X_s(L_s \varphi) \, ds + M_t(\varphi),$$

- <u>Q</u>: Can the process survive forever?
- Total mass bounded by a drift-less Feller diffusion \Rightarrow almost sure extinction
- If the infection probability were slightly bigger,

 $= (1 + \theta/N^{2/(6-d)})/((2d+1)N)$ for some $\theta > 0$, then the limit process would be $X_t(\varphi) = u(\varphi)$

$$=\frac{1}{2}\int_{0}^{t}X_{s}(\Delta\varphi)\,ds+\theta\int_{0}^{t}X_{s}(\varphi)\,ds-\int_{0}^{t}X_{s}(L_{s}\varphi)\,ds+M_{t}(\varphi)$$

 Also arises as a scaling limit of certain stochastic reaction-diffusion systems [Mueller and Tribe(2011)]

Will there be survival if θ is large enough?
 < Φ < Ξ > < Ξ < Φ <

$$X_t(\varphi) - \mu(\varphi) = rac{1}{2} \int_0^t X_s(\Delta \varphi) \, ds - \int_0^t X_s(L_s \varphi) \, ds + M_t(\varphi),$$

- <u>Q</u>: Can the process survive forever?
- Total mass bounded by a drift-less Feller diffusion \Rightarrow almost sure extinction
- If the infection probability were slightly bigger,

 $= (1 + \theta/N^{2/(6-d)})/((2d+1)N)$ for some $\theta > 0$, then the limit process would be $X_t(\varphi) = u(\varphi)$

$$=\frac{1}{2}\int_{0}^{t}X_{s}(\Delta\varphi)\,ds+\theta\int_{0}^{t}X_{s}(\varphi)\,ds-\int_{0}^{t}X_{s}(L_{s}\varphi)\,ds+M_{t}(\varphi)$$

 Also arises as a scaling limit of certain stochastic reaction-diffusion systems [Mueller and Tribe(2011)]

A More Careful Look at the Process

$$X_{t}(\varphi) - \mu(\varphi) = \frac{1}{2} \int_{0}^{t} X_{s}(\Delta \varphi) \, ds + \theta \int_{0}^{t} X_{s}(\varphi) \, ds - \int_{0}^{t} X_{s}(L_{s}\varphi) \, ds + M_{t}(\varphi),$$

- Constant drift term: θ
- Increasing killing term: Lt
 - Recall L_t is the density of $\int_0^t X_s ds$
- Bigger *θ* gives bigger drift term, but also *accelerates the accumulation of the killing term!*
- Not a priori clear increasing $\boldsymbol{\theta}$ will necessarily increase the chance of survival

通 と く ヨ と く ヨ と

A More Careful Look at the Process

$$X_{t}(\varphi) - \mu(\varphi) = \frac{1}{2} \int_{0}^{t} X_{s}(\Delta \varphi) \, ds + \theta \int_{0}^{t} X_{s}(\varphi) \, ds - \int_{0}^{t} X_{s}(L_{s}\varphi) \, ds + M_{t}(\varphi),$$

- Constant drift term: θ
- Increasing killing term: Lt
 - Recall L_t is the density of $\int_0^t X_s ds$
- Bigger *θ* gives bigger drift term, but also *accelerates the accumulation of the killing term!*
- Not a priori clear increasing $\boldsymbol{\theta}$ will necessarily increase the chance of survival

(過) (ヨ) (ヨ)

A More Careful Look at the Process

$$X_{t}(\varphi) - \mu(\varphi) = \frac{1}{2} \int_{0}^{t} X_{s}(\Delta \varphi) \, ds + \theta \int_{0}^{t} X_{s}(\varphi) \, ds - \int_{0}^{t} X_{s}(L_{s}\varphi) \, ds + M_{t}(\varphi),$$

- Constant drift term: θ
- Increasing killing term: Lt
 - Recall L_t is the density of $\int_0^t X_s ds$
- Bigger *θ* gives bigger drift term, but also *accelerates the accumulation of the killing term!*
- Not a priori clear increasing $\boldsymbol{\theta}$ will necessarily increase the chance of survival

伺 とくき とくき とう

A Phase Transition

Theorem [Lalley, Perkins, and Zheng(2013+)] For d = 2 or 3, there exist critical values $\theta_c = \theta_c(d) > 0$ such that the following holds. (i) if $\theta > \theta_c$, then

P(X survives forever) > 0.

(ii) if $\theta < \theta_c$, then

P(X dies out) = 1.

For d = 1, for any θ , X dies out almost surely.

A Phase Transition

Theorem [Lalley, Perkins, and Zheng(2013+)] For d = 2 or 3, there exist critical values $\theta_c = \theta_c(d) > 0$ such that the following holds. (i) if $\theta > \theta_c$, then P(X survives forever) > 0.(ii) if $\theta < \theta_c$, then P(X is new) = 1

P(X dies out) = 1.

For d = 1, for any θ , X dies out almost surely.

Strong Local Extinction

Theorem [Lalley, Perkins, and Zheng(2013+)] For any dimension $d \le 3$, for any θ , for any compact set $K \subset \mathbb{R}^d$, with probability one,

 $X_t(K) = 0$ eventually.

 \Rightarrow The only way to survive is to explore new world without looking back

Strong Local Extinction

Theorem [Lalley, Perkins, and Zheng(2013+)] For any dimension $d \le 3$, for any θ , for any compact set $K \subset \mathbb{R}^d$, with probability one,

 $X_t(K) = 0$ eventually.

 \Rightarrow The only way to survive is to explore new world without looking back

- In dimensions d = 2, 3, the critical values θ_c do not depend on the initial mass μ
- Usually this follows from the Markov property, and the absolute continuity of laws of X₁ under different P^μ's
- In our case the Markov property only holds for (*X*_t, *L*_t):

$$X_{t}(\varphi) - \mu(\varphi) = \frac{1}{2} \int_{0}^{t} X_{s}(\Delta \varphi) \, ds + \theta \int_{0}^{t} X_{s}(\varphi) \, ds - \int_{0}^{t} X_{s}(L_{s}\varphi) \, ds + M_{t}(\varphi),$$

whose law is *not* absolutely continuous under different P^{μ} 's

- To see this, consider the supports of L₁ and X₀
- Alternatives?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- In dimensions d = 2, 3, the critical values θ_c do not depend on the initial mass μ
- Usually this follows from the Markov property, and the absolute continuity of laws of X₁ under different P^μ's
- In our case the Markov property only holds for (*X*_t, *L*_t):

$$X_{t}(\varphi) - \mu(\varphi) = \frac{1}{2} \int_{0}^{t} X_{s}(\Delta \varphi) \, ds + \theta \int_{0}^{t} X_{s}(\varphi) \, ds - \int_{0}^{t} X_{s}(L_{s}\varphi) \, ds + M_{t}(\varphi),$$

whose law is *not* absolutely continuous under different P^{μ} 's

- To see this, consider the supports of L₁ and X₀
- Alternatives?

- In dimensions d = 2, 3, the critical values θ_c do not depend on the initial mass μ
- Usually this follows from the Markov property, and the absolute continuity of laws of X₁ under different P^μ's
- In our case the Markov property only holds for (X_t, L_t) :

$$X_{t}(\varphi) - \mu(\varphi) = \frac{1}{2} \int_{0}^{t} X_{s}(\Delta \varphi) \, ds + \theta \int_{0}^{t} X_{s}(\varphi) \, ds - \int_{0}^{t} X_{s}(L_{s}\varphi) \, ds + M_{t}(\varphi),$$

whose law is *not* absolutely continuous under different P^{μ} 's

- To see this, consider the supports of L₁ and X₀
- Alternatives?

- In dimensions d = 2, 3, the critical values θ_c do not depend on the initial mass μ
- Usually this follows from the Markov property, and the absolute continuity of laws of X₁ under different P^μ's
- In our case the Markov property only holds for (X_t, L_t):

$$X_{t}(\varphi) - \mu(\varphi) = \frac{1}{2} \int_{0}^{t} X_{s}(\Delta \varphi) \, ds + \theta \int_{0}^{t} X_{s}(\varphi) \, ds - \int_{0}^{t} X_{s}(L_{s}\varphi) \, ds + M_{t}(\varphi),$$

whose law is *not* absolutely continuous under different P^{μ} 's

- To see this, consider the supports of L₁ and X₀
- Alternatives?

- In dimensions d = 2, 3, the critical values θ_c do not depend on the initial mass μ
- Usually this follows from the Markov property, and the absolute continuity of laws of X₁ under different P^μ's
- In our case the Markov property only holds for (X_t, L_t) :

$$X_{t}(\varphi) - \mu(\varphi)$$

= $\frac{1}{2} \int_{0}^{t} X_{s}(\Delta \varphi) \, ds + \theta \int_{0}^{t} X_{s}(\varphi) \, ds - \int_{0}^{t} X_{s}(L_{s}\varphi) \, ds + M_{t}(\varphi),$

whose law is *not* absolutely continuous under different P^{μ} 's

- To see this, consider the supports of L₁ and X₀
- Alternatives?

- In dimensions *d* = 2, 3, the critical values θ_c do not depend on the initial mass μ
- Usually this follows from the Markov property, and the absolute continuity of laws of X₁ under different P^μ's
- In our case the Markov property only holds for (X_t, L_t) :

$$X_{t}(\varphi) - \mu(\varphi)$$

= $\frac{1}{2} \int_{0}^{t} X_{s}(\Delta \varphi) \, ds + \theta \int_{0}^{t} X_{s}(\varphi) \, ds - \int_{0}^{t} X_{s}(L_{s}\varphi) \, ds + M_{t}(\varphi),$

whose law is *not* absolutely continuous under different P^{μ} 's

- To see this, consider the supports of L_1 and X_0
- Alternatives?

Weak Local Extinction

Proposition

There exists $\kappa < \infty$ such that for any $\theta \in \mathbb{R}, \gamma > 0$, and any $R \ge 1$,

$$egin{aligned} E\langle L_\infty, \mathbf{1}_{B_R(0)}
angle &\leq rac{2|\mu|}{\kappa+2 heta^+} + V_d(\kappa+2 heta^+)(R+1)^d <\infty. \end{aligned}$$

In particular, $X_t(B_R(0)) \rightarrow 0$ almost surely.

Proof

$$\begin{aligned} X_t(\varphi) - \mu(\varphi) &= \frac{1}{2} \int_0^t X_s(\Delta \varphi) \, ds + \theta \int_0^t X_s(\varphi) \, ds - \int_0^t X_s(L_s \varphi) \, ds + M_t(\varphi) \Rightarrow \\ -\mu(\varphi) &\leq \frac{1}{2} E(L_t(\Delta \varphi)) + \theta E(L_t(\varphi)) - \frac{1}{2} E(L_t^2(\varphi)). \end{aligned}$$

There exists $\varphi = \varphi_R \in C^2$ such that

 $|\Delta \varphi| \leq \kappa \sqrt{\varphi} \quad \text{and} \quad \mathbf{1}_{B_R(0)} \leq \varphi \leq \mathbf{1}_{\mathcal{B}_{\mathbb{B}^+}(\mathbb{Q}_{\mathbb{B}^+}, \star \mathbb{B}^+, \star \mathbb{B}^+)} \quad \mathbb{B} \quad \mathfrak{I}_{\mathcal{B}_R(0)}$

Weak Local Extinction

Proposition

There exists $\kappa < \infty$ such that for any $\theta \in \mathbb{R}, \gamma > 0$, and any $R \ge 1$,

$$egin{aligned} E\langle L_\infty, \mathbf{1}_{B_R(0)}
angle &\leq rac{2|\mu|}{\kappa+2 heta^+} + V_d(\kappa+2 heta^+)(R+1)^d < \infty. \end{aligned}$$

In particular, $X_t(B_R(0)) \rightarrow 0$ almost surely. Proof.

$$\begin{aligned} X_t(\varphi) - \mu(\varphi) &= \frac{1}{2} \int_0^t X_s(\Delta \varphi) \, ds + \theta \int_0^t X_s(\varphi) \, ds - \int_0^t X_s(L_s \varphi) \, ds + M_t(\varphi) \Rightarrow \\ &- \mu(\varphi) \leq \frac{1}{2} E(L_t(\Delta \varphi)) + \theta E(L_t(\varphi)) - \frac{1}{2} E(L_t^2(\varphi)). \end{aligned}$$

There exists $\varphi = \varphi_R \in C^2$ such that

 $|\Delta \varphi| \leq \kappa \sqrt{\varphi} \quad \text{and} \quad \mathbf{1}_{B_R(0)} \leq \varphi \leq \mathbf{1}_{\mathcal{B}_{\mathrm{B}^{+}}(\mathbb{Q})} + \mathbb{R}^{+} + \mathbb{R}^{+}$

Weak Local Extinction

Proposition

There exists $\kappa < \infty$ such that for any $\theta \in \mathbb{R}, \gamma > 0$, and any $R \ge 1$,

$$egin{aligned} E\langle L_\infty, \mathbf{1}_{B_R(0)}
angle &\leq rac{2|\mu|}{\kappa+2 heta^+} + V_d(\kappa+2 heta^+)(R+1)^d < \infty. \end{aligned}$$

In particular, $X_t(B_R(0)) \rightarrow 0$ almost surely. Proof.

$$\begin{aligned} X_t(\varphi) - \mu(\varphi) &= \frac{1}{2} \int_0^t X_s(\Delta \varphi) \, ds + \theta \int_0^t X_s(\varphi) \, ds - \int_0^t X_s(L_s \varphi) \, ds + M_t(\varphi) \Rightarrow \\ &- \mu(\varphi) \leq \frac{1}{2} E(L_t(\Delta \varphi)) + \theta E(L_t(\varphi)) - \frac{1}{2} E(L_t^2(\varphi)). \end{aligned}$$

There exists $\varphi = \varphi_R \in C^2$ such that

$$|\Delta \varphi| \leq \kappa \sqrt{\varphi} \quad \text{and} \quad \mathbf{1}_{\mathcal{B}_{\mathcal{R}}(\mathbf{0})} \leq \varphi \leq \mathbf{1}_{\mathcal{B}_{\mathcal{R}+1}(\mathbf{0})_{\mathcal{D}}}, \text{ for a product of } \mathbb{R}^{+}$$

Proposition

The critical value $\theta_c = \theta_c(d, \mu)$ depends only on the dimension d and not on the choice of $0 \neq \mu$.

Proof.

- Local extinction ⇒ introducing a compactly supported killing term K won't affect survival or not:
 X_t(φ) = μ(φ) + ∫₀^t X_s (Δφ/2 + θφ Kφ L_s(X)φ) ds + M_t(φ)
- L_1 is compactly supported \Rightarrow survival only depends on X_1 , and is independent of L_1
- Absolute continuity of $\mathcal{L}(X_1)$ under different P^{μ} 's.

★週 ▶ ★ 注 ▶ ★ 注 ▶ …

Proposition

The critical value $\theta_c = \theta_c(d, \mu)$ depends only on the dimension d and not on the choice of $0 \neq \mu$.

Proof.

- Local extinction ⇒ introducing a compactly supported killing term K won't affect survival or not:
 X_t(φ) = μ(φ) + ∫₀^t X_s (Δφ/2 + θφ Kφ L_s(X)φ) ds + M_t(φ)
- L_1 is compactly supported \Rightarrow survival only depends on X_1 , and is independent of L_1
- Absolute continuity of $\mathcal{L}(X_1)$ under different P^{μ} 's.

<ロ> (四) (四) (三) (三) (三) (三)

Proposition

The critical value $\theta_c = \theta_c(d, \mu)$ depends only on the dimension d and not on the choice of $0 \neq \mu$.

Proof.

- Local extinction ⇒ introducing a compactly supported killing term K won't affect survival or not:
 X_t(φ) = μ(φ) + ∫₀^t X_s (Δφ/2 + θφ Kφ L_s(X)φ) ds + M_t(φ)
- L_1 is compactly supported \Rightarrow survival only depends on X_1 , and is independent of L_1
- Absolute continuity of $\mathcal{L}(X_1)$ under different P^{μ} 's.

<ロ> (四) (四) (三) (三) (三) (三)

Proposition

The critical value $\theta_c = \theta_c(d, \mu)$ depends only on the dimension d and not on the choice of $0 \neq \mu$.

Proof.

- Local extinction ⇒ introducing a compactly supported killing term K won't affect survival or not:
 X_t(φ) = μ(φ) + ∫₀^t X_s (Δφ/2 + θφ Kφ L_s(X)φ) ds + M_t(φ)
- L₁ is compactly supported ⇒ survival only depends on X₁, and is independent of L₁
- Absolute continuity of $\mathcal{L}(X_1)$ under different P^{μ} 's.

<ロ> (四) (四) (三) (三) (三)

Proposition

If d = 1 then for every $\theta \in \mathbb{R}$ and every initial measure μ , X_t dies out almost surely.

Proof.

- In order to survive forever, $|X_t|$ must blow up
- Also can show that X_t spreads out at most linearly, in other words, almost surely, X_t is contained in [-Ct, Ct] for all t sufficiently large
- Hence, if survival,

 $\langle L_N, \mathbf{1}_{[-CN,CN]} \rangle = \int_0^N \langle X_t, \mathbf{1}_{[-CN,CN]} \rangle dt \approx \int_0^N |X_t| dt$ ust grow in N faster than linear rate

 This contradicts the Local extinction lemma, which says that when *d* = 1, *E*⟨*L*∞, 1_[−*CN*,*CN*]⟩ grows at most linearly in *N*

Proposition

If d = 1 then for every $\theta \in \mathbb{R}$ and every initial measure μ , X_t dies out almost surely.

Proof.

- In order to survive forever, |X_t| must blow up
- Also can show that X_t spreads out at most linearly, in other words, almost surely, X_t is contained in [-Ct, Ct] for all t sufficiently large
- Hence, if survival,

 $\langle L_N, \mathbf{1}_{[-CN,CN]} \rangle = \int_0^N \langle X_t, \mathbf{1}_{[-CN,CN]} \rangle dt \approx \int_0^N |X_t| dt$ ust grow in N faster than linear rate

 This contradicts the Local extinction lemma, which says that when *d* = 1, *E*⟨*L*∞, 1_[−*CN*,*CN*]⟩ grows at most linearly in *N*

Proposition

If d = 1 then for every $\theta \in \mathbb{R}$ and every initial measure μ , X_t dies out almost surely.

Proof.

- In order to survive forever, $|X_t|$ must blow up
- Also can show that X_t spreads out at most linearly, in other words, almost surely, X_t is contained in [-Ct, Ct] for all t sufficiently large
- Hence, if survival,

 $\langle L_N, \mathbf{1}_{[-CN,CN]} \rangle = \int_0^N \langle X_t, \mathbf{1}_{[-CN,CN]} \rangle dt \approx \int_0^N |X_t| dt$ ust grow in *N* faster than linear rate

 This contradicts the Local extinction lemma, which says that when *d* = 1, *E*⟨*L*_∞, 1_[−*CN*,*CN*]⟩ grows at most linearly in *N*

Proposition

If d = 1 then for every $\theta \in \mathbb{R}$ and every initial measure μ , X_t dies out almost surely.

Proof.

- In order to survive forever, $|X_t|$ must blow up
- Also can show that X_t spreads out at most linearly, in other words, almost surely, X_t is contained in [-Ct, Ct] for all t sufficiently large
- Hence, if survival,

 $\langle L_N, \mathbf{1}_{[-CN,CN]} \rangle = \int_0^N \langle X_t, \mathbf{1}_{[-CN,CN]} \rangle \ dt \approx \int_0^N |X_t| \ dt$ must grow in *N* faster than linear rate

 This contradicts the Local extinction lemma, which says that when *d* = 1, *E*⟨*L*_∞, 1_[−*CN*,*CN*]⟩ grows at most linearly in *N*

Proposition

If d = 1 then for every $\theta \in \mathbb{R}$ and every initial measure μ , X_t dies out almost surely.

Proof.

- In order to survive forever, $|X_t|$ must blow up
- Also can show that X_t spreads out at most linearly, in other words, almost surely, X_t is contained in [-Ct, Ct] for all t sufficiently large
- Hence, if survival,

 $\langle L_N, \mathbf{1}_{[-CN,CN]} \rangle = \int_0^N \langle X_t, \mathbf{1}_{[-CN,CN]} \rangle \ dt \approx \int_0^N |X_t| \ dt$ must grow in *N* faster than linear rate

• This contradicts the Local extinction lemma, which says that when d = 1, $E\langle L_{\infty}, \mathbf{1}_{[-CN,CN]} \rangle$ grows at most linearly in N

Proofs of Extinction/Survival

- Extinction for θ > 0 small: By comparison to subcritical branching following [Mueller and Tribe(1994)] who proved a phase transition for a SPDE arising as the limit of one-dimensional contact process;
- Survival for θ large (d = 2, 3): By comparison with supercritical oriented percolation.
 - Key is to control the growth and spread of local time *L* to show infection can propagate ahead of local time wave;
 - Relying on a sandwich lemma which gives both upper and lower bound for the SIR process

ヘロン 人間 とくほ とくほ とう

Proofs of Extinction/Survival

- Extinction for θ > 0 small: By comparison to subcritical branching following [Mueller and Tribe(1994)] who proved a phase transition for a SPDE arising as the limit of one-dimensional contact process;
- Survival for θ large (d = 2, 3): By comparison with supercritical oriented percolation.
 - Key is to control the growth and spread of local time *L* to show infection can propagate ahead of local time wave;
 - Relying on a sandwich lemma which gives both upper and lower bound for the SIR process

Proofs of Extinction/Survival

- Extinction for θ > 0 small: By comparison to subcritical branching following [Mueller and Tribe(1994)] who proved a phase transition for a SPDE arising as the limit of one-dimensional contact process;
- Survival for θ large (d = 2, 3): By comparison with supercritical oriented percolation.
 - Key is to control the growth and spread of local time *L* to show infection can propagate ahead of local time wave;
 - Relying on a sandwich lemma which gives both upper and lower bound for the SIR process

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Summary

- 0. Discrete SIR and its scaling limit
- 1. An extinction-survival phase transition in d = 2 and 3
- 2. Extinction in d = 1
- 3. Both strong and weak local extinction for all $d \le 3$

Summary

- 0. Discrete SIR and its scaling limit
- 1. An extinction-survival phase transition in d = 2 and 3
- 2. Extinction in d = 1
- 3. Both strong and weak local extinction for all $d \leq 3$

Thank you!

- Lalley, S. P. (2009), "Spatial epidemics: critical behavior in one dimension," *Probab. Theory Related Fields*, 144, 429–469.
- Lalley, S. P., Perkins, E., and Zheng, X. (2013+), "A Phase Transition for Measure-valued SIR Epidemic Processes," to appear in *Ann. Probab.*
- Lalley, S. P. and Zheng, X. (2010), "Spatial epidemics and local times for critical branching random walks in dimensions 2 and 3," *Probab. Theory Related Fields*, 148, 527–566.
- Mueller, C. and Tribe, R. (1994), "A phase transition for a stochastic PDE related to the contact process," *Probab. Theory Related Fields*, 100, 131–156.
- (2011), "A phase diagram for a stochastic reaction diffusion system," *Probab. Theory Related Fields*, 149, 561–637.

ヘロン 人間 とくほ とくほとう