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Spatial SIR model in Zd

• Each site x ∈ Zd represents a village
• N individuals on each site x — N: village size
• People can be susceptible, infected or recovered
• Recovery⇒ immunity — e.g., measles
• Infected recovers after one unit of time
• Infected infects neighboring susceptibles with certain

probability pN

• Critical case: pN = 1/((2d + 1)N)
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SIR in Z1

Village size N = 10: susceptible, infected or recovered
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SIR in Z1

Village size N = 10: susceptible, infected or recovered
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Convergence of SIR When d ≤ 3

Theorem
[Lalley(2009), Lalley and Zheng(2010)] If for α = 2/(6− d), the
initial infections µN := X N

0 are such that

µN(
√

Nα·)
Nα

⇒ µ with compact support, as N →∞,

Then under some regularity assumptions, as N →∞,
(i) (

RN
Nαt (
√

Nα·)
N(4−d)/(6−d)

)
=⇒ (Lt (·)) in D([0,∞); C(Rd )),

where RN
k (y) stands for the number of recovered individuals at site

y at time k;
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What the Lt(·) Looks Like: the Distribution of
Recovered Individuals
Village size N = 108, IC = one infected individual/site in [−50,50]2.
Distribution of recovered at time = 104: number of recovered per
site is of order 104 =

√
N
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Convergence of SIR When d ≤ 3, ctd

Theorem
[Lalley(2009), Lalley and Zheng(2010)] (ii) Moreover,

X N
Nαt (
√

Nα·)
Nα

=⇒ Xt in D([0,∞);MF (Rd )),

where Xt satisfies that for each ϕ ∈ C2
b(Rd ),

Xt (ϕ)− µ(ϕ) =
1
2

∫ t

0
Xs(∆ϕ) ds −

∫ t

0
Xs(Lsϕ) ds + Mt (ϕ);

(iii) Lt (·) is the local time density of Xt , i.e., the density of
∫ t

0 Xs ds,
and Mt (ϕ) is a martingale with quadratic variation
[M(ϕ)]t =

∫ t
0 Xs(ϕ2) ds.
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Survival or not?

Xt (ϕ)− µ(ϕ) =
1
2

∫ t

0
Xs(∆ϕ) ds −

∫ t

0
Xs(Lsϕ) ds + Mt (ϕ),

• Q: Can the process survive forever?
• Total mass bounded by a drift-less Feller diffusion⇒ almost

sure extinction
• If the infection probability were slightly bigger,

= (1 + θ/N2/(6−d))/((2d + 1)N) for some θ > 0, then the limit
process would be

Xt (ϕ)− µ(ϕ)

=
1
2

∫ t

0
Xs(∆ϕ) ds + θ

∫ t

0
Xs(ϕ) ds −

∫ t

0
Xs(Lsϕ) ds + Mt (ϕ)

• Also arises as a scaling limit of certain stochastic
reaction-diffusion systems [Mueller and Tribe(2011)]

• Will there be survival if θ is large enough?
8 / 17 Xinghua Zheng A Phase Transition for SIR
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A More Careful Look at the Process

Xt (ϕ)− µ(ϕ)

=
1
2

∫ t

0
Xs(∆ϕ) ds + θ

∫ t

0
Xs(ϕ) ds −

∫ t

0
Xs(Lsϕ) ds + Mt (ϕ),

• Constant drift term: θ
• Increasing killing term: Lt

• Recall Lt is the density of
∫ t

0 Xs ds

• Bigger θ gives bigger drift term, but also accelerates the
accumulation of the killing term!

• Not a priori clear increasing θ will necessarily increase the
chance of survival

9 / 17 Xinghua Zheng A Phase Transition for SIR
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A Phase Transition

Theorem
[Lalley, Perkins, and Zheng(2013+)] For d = 2 or 3, there exist
critical values θc = θc(d) > 0 such that the following holds.

(i) if θ > θc , then
P(X survives forever) > 0.

(ii) if θ < θc , then
P(X dies out) = 1.

For d = 1, for any θ, X dies out almost surely.

10 / 17 Xinghua Zheng A Phase Transition for SIR
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Strong Local Extinction

Theorem
[Lalley, Perkins, and Zheng(2013+)] For any dimension d ≤ 3, for
any θ, for any compact set K ⊂ Rd , with probability one,

Xt (K ) = 0 eventually.

⇒ The only way to survive is to explore new world without looking
back

11 / 17 Xinghua Zheng A Phase Transition for SIR
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Universality of Critical Values
• In dimensions d = 2,3, the critical values θc do not depend on

the initial mass µ
• Usually this follows from the Markov property, and the

absolute continuity of laws of X1 under different Pµ’s
• In our case the Markov property only holds for (Xt ,Lt ):

Xt (ϕ)− µ(ϕ)

=
1
2

∫ t

0
Xs(∆ϕ) ds + θ

∫ t

0
Xs(ϕ) ds −

∫ t

0
Xs(Lsϕ) ds + Mt (ϕ),

whose law is not absolutely continuous under different Pµ’s
• To see this, consider the supports of L1 and X0

• Alternatives?
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Weak Local Extinction

Proposition
There exists κ <∞ such that for any θ ∈ R, γ > 0, and any R ≥ 1,

E〈L∞,1BR(0)〉 ≤
2|µ|

κ+ 2θ+
+ Vd (κ+ 2θ+)(R + 1)d <∞.

In particular, Xt (BR(0))→ 0 almost surely.

Proof.

Xt (ϕ)− µ(ϕ) =
1
2

∫ t

0
Xs(∆ϕ) ds + θ

∫ t

0
Xs(ϕ) ds −

∫ t

0
Xs(Lsϕ) ds + Mt (ϕ)⇒

−µ(ϕ) ≤1
2

E(Lt (∆ϕ)) + θE(Lt (ϕ))− 1
2

E(L2
t (ϕ)).

There exists ϕ = ϕR ∈ C2 such that

|∆ϕ| ≤ κ√ϕ and 1BR(0) ≤ ϕ ≤ 1BR+1(0).

13 / 17 Xinghua Zheng A Phase Transition for SIR



Discrete Spatial SIR and its Scaling Limit Extinction-Survival Phase Transition Local Extinction and its Consequences Summary

Weak Local Extinction

Proposition
There exists κ <∞ such that for any θ ∈ R, γ > 0, and any R ≥ 1,

E〈L∞,1BR(0)〉 ≤
2|µ|

κ+ 2θ+
+ Vd (κ+ 2θ+)(R + 1)d <∞.

In particular, Xt (BR(0))→ 0 almost surely.

Proof.

Xt (ϕ)− µ(ϕ) =
1
2

∫ t

0
Xs(∆ϕ) ds + θ

∫ t

0
Xs(ϕ) ds −

∫ t

0
Xs(Lsϕ) ds + Mt (ϕ)⇒

−µ(ϕ) ≤1
2

E(Lt (∆ϕ)) + θE(Lt (ϕ))− 1
2

E(L2
t (ϕ)).

There exists ϕ = ϕR ∈ C2 such that

|∆ϕ| ≤ κ√ϕ and 1BR(0) ≤ ϕ ≤ 1BR+1(0).

13 / 17 Xinghua Zheng A Phase Transition for SIR



Discrete Spatial SIR and its Scaling Limit Extinction-Survival Phase Transition Local Extinction and its Consequences Summary

Weak Local Extinction

Proposition
There exists κ <∞ such that for any θ ∈ R, γ > 0, and any R ≥ 1,

E〈L∞,1BR(0)〉 ≤
2|µ|

κ+ 2θ+
+ Vd (κ+ 2θ+)(R + 1)d <∞.

In particular, Xt (BR(0))→ 0 almost surely.

Proof.

Xt (ϕ)− µ(ϕ) =
1
2

∫ t

0
Xs(∆ϕ) ds + θ

∫ t

0
Xs(ϕ) ds −

∫ t

0
Xs(Lsϕ) ds + Mt (ϕ)⇒

−µ(ϕ) ≤1
2

E(Lt (∆ϕ)) + θE(Lt (ϕ))− 1
2

E(L2
t (ϕ)).

There exists ϕ = ϕR ∈ C2 such that

|∆ϕ| ≤ κ√ϕ and 1BR(0) ≤ ϕ ≤ 1BR+1(0).

13 / 17 Xinghua Zheng A Phase Transition for SIR



Discrete Spatial SIR and its Scaling Limit Extinction-Survival Phase Transition Local Extinction and its Consequences Summary

Universality of Critical Values

Proposition
The critical value θc = θc(d , µ) depends only on the dimension d
and not on the choice of 0 6= µ.

Proof.

• Local extinction⇒ introducing a compactly supported killing
term K won’t affect survival or not:

Xt (ϕ) = µ(ϕ) +

∫ t

0
Xs (∆ϕ/2 + θϕ− Kϕ− Ls(X )ϕ) ds + Mt (ϕ)

• L1 is compactly supported⇒ survival only depends on X1,
and is independent of L1

• Absolute continuity of L(X1) under different Pµ’s.
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Extinction in Dimension One

Proposition
If d = 1 then for every θ ∈ R and every initial measure µ, Xt dies
out almost surely.

Proof.

• In order to survive forever, |Xt | must blow up
• Also can show that Xt spreads out at most linearly, in other

words, almost surely, Xt is contained in [−Ct ,Ct ] for all t
sufficiently large

• Hence, if survival,
〈LN ,1[−CN,CN]〉 =

∫ N
0 〈Xt ,1[−CN,CN]〉 dt ≈

∫ N
0 |Xt | dt

must grow in N faster than linear rate
• This contradicts the Local extinction lemma, which says that

when d = 1, E〈L∞,1[−CN,CN]〉 grows at most linearly in N
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Proofs of Extinction/Survival
• Extinction for θ > 0 small: By comparison to subcritical

branching following [Mueller and Tribe(1994)] who proved a
phase transition for a SPDE arising as the limit of
one-dimensional contact process;

• Survival for θ large (d = 2,3): By comparison with
supercritical oriented percolation.

• Key is to control the growth and spread of local time L to show
infection can propagate ahead of local time wave;

• Relying on a sandwich lemma which gives both upper and
lower bound for the SIR process
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Summary
0. Discrete SIR and its scaling limit
1. An extinction-survival phase transition in d = 2 and 3
2. Extinction in d = 1
3. Both strong and weak local extinction for all d ≤ 3

17 / 17 Xinghua Zheng A Phase Transition for SIR



Discrete Spatial SIR and its Scaling Limit Extinction-Survival Phase Transition Local Extinction and its Consequences Summary

Summary
0. Discrete SIR and its scaling limit
1. An extinction-survival phase transition in d = 2 and 3
2. Extinction in d = 1
3. Both strong and weak local extinction for all d ≤ 3

Thank you!
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