Asymptotics of Heat Equation with
Large, Highly Oscillatory, Random Potential

Yu Gu

Applied Mathematics, Columbia University

Joint work with Prof. Guillaume Bal.



Introduction

PDE with highly heterogeneous random coefficients

1. Homogenization and error estimate
> u. — Ug? U —ug ~e’?
» (u: — ug)/e” = universal distribution?

2. Dependence of limiting equation on random coefficients

» short-range-correlated coefficients: homogenization
» long-range-correlated coefficients: convergence to SPDE

3. Application: uncertainty quantification, inverse problem
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Problem setup
Equation:

1 .1 x
Orug(t,x) = §Au€(t,x)+/g—BV(g,w)ue(t,x)

u(0,x) = f(x)

v

V/(x): stationary random field
> £ < 1: heterogeneity of small scales
> imaginary unit: stability
» d >3, B >0 to be determined
Question:
> limiting equation of wug
» dependence on the statistical property of V/(x)

» quantify the error u. — ug when the limit ug is deterministic



Probabilistic representation and weak convergence
approach

Equation:

Oeuc(t,x) = %Aug(t,x) i V(g,w)ug(t,x)
us(0,x) = f(x)

Feynman-Kac formula:

> u:(t,x) = Eg{f(x + By) exp(ic ™" [ V((x + Bs)/e)ds)}

» scaling property of B:: u(t,x) ~ G:(t, x)

Gc(t, x) = Ba{f(x + B, o) exp(ic2~? [/¥ V/(B,)ds)}
Weak convergence:
(€Bejez, 2 [/ V(By)ds) =7



Brownian motion in random scenery

Weak convergence:

2

t/e
g2 h / V(Bs)ds =7
0

Two independent random sources:
» V(x): random coefficients from the PDE
» B;: Brownian motion from the Feyman-Kac formula
Two different weak convergences:
» quenched: for fixed realization of V/(x),
e2-8 [1< v(B,)ds =7
» annealed: in product probability space,
278 [H% v(B,)ds =7



Kipnis&Varadhan's approach

Medium seen from an observer

» (Q,F,m): random medium associated with a group of
measure-preserving, ergodic transformation {7,,x € R9}

» V(x,w) = V(7xw) for V € L?(7) with mean zero

> ys = Tp,w: stationary Markov process, ergodic with respect to
T

> 28 fot/52 V(Bs,w)ds = 278 fot/gz V(ys)ds

Corrector equation and martingale CLT

> solve (A — 2A)p) =V, decompose
g2=p fot/52 V(ys)ds = Rf + M; with R; small and M;
martingale

> prove R; — 0 and apply martingale CLT to M;



Weak convergence of Brownian motion in random scenery
Assumption
» R(x) =E{V(0)V(x)} satisfies

fRd X)|X|2 Iefx ~ JRd )|£’72df <00
» CLT scaling: =1
Proposition (Weak convergence in probability)

(eByjezre [1/7 V(Bs)ds) = (WL, o W2)

Remark
> th, w2 |ndependent Brownian motions,
02 = 4(2m) 79 [ru R( ]£| 2d¢
> Eg{F(By)or e [{/F V(By)ds)} — B{F(WE, o W2)} in
m—probability for F € Cb(]RdH)
» weaker than quenched and stronger than annealed
convergence



Quantitative martingale CLT: Kantorovich distance

> &[5 V(By)ds = RE + M ~ M — oW,
> uc(t,x) — uo(t, x) ~ dist(Rg,0) + dist(M, o W;)
Theorem (Mourrat 12)

Let M; be continuous, square-integrable martingale and W;
standard Brownian motion, then

dy (M1, Wr) < (kV1)E|[(M)1 — 1]
where (M) quadratic variation associated with M; and

di k(X,Y)
= sup{[E{F(X) — F(V)}]. F € CAR), | loc < L. [IF"]lcc < K}



Random coefficient: homogenization setting

» Assumption 1. Finiteness of asymptotic variance
R(E)IE[2 € L1(RY)
» Assumption 2. Integrability condition
E{V(x)®} < oo
» Assumption 3. Strongly mixing property
mixing coefficient p(r) < C,(1L A r™")

Definition: V/(x) is strongly mixing with coefficient p(r) if
E-{¢o1(V)d2(V)} < p(r) for any two compact sets K1, K> with
d(Ki, K2) > r and any random variables ¢1(V), $2(V) with ¢;(V)
being 7, —measurable and E;{¢;(V)} = 0,E.{¢?(V)} = L.



Main result: homogenization setting
Theorem (Bal-Gu 2013)

Let B =1 and u., ug solve the following equations respectively
with the same initial condition f € Cp(RY):

1 1 x
Orus(t,x) = §Au€(t,x)+/gV(g)ue(t,x)
1 1
Orup(t,x) = EAuo(t,x)f§a2uo(t,x)

then we have
» under Assumption 1, us(t,x) — uo(t,x) in probability

» under Assumption 1, 2, 3 and if we further assume
f € C(RY),

VE d=3
Eﬂ.{’ua(t,X)—Ug(t,X)’}S \/ “Ogé‘ d=4

d>4



Main result: homogenization setting

Remark:
» finiteness of asymptotic variance = homogenization

/ Q(f)dfw RO e < oo
R

a [§P S

ie., R(x) ~ |x|7* with o > 2
both short-range-correlated(a« > d) and long-range
correlated(2 < o < d) lead to homogenization!

> integrability condition and strongly mixing property = error
estimate

> similar results hold for elliptic equation
(—A + 1)u(t, %) + V(2 (t, x) = £(x)
Question:
1. asymptotic distribution of rescaled error “=%0 =7
2. the case when R(x) ~ |x|~* with a € (0, 2)



Random coefficient: SPDE setting

Assumptions: V(x) = ®(g(x)):
» g(x): stationary Gaussian field, Ry(x) = {g( )g(x)} with
[Re ()| S TIZy 1A x|~ and Re(x) ~ cq TTEy bl =
€(0,1)and a =37 a; € (0,2).
» & has Hermite rank 1, i.e., Vi := E{®(g)Hk(g)} for Hermite
polynomial Hy and Vy = 0, V4 # 0 [Taqqu 75]
Properties:
» R(x) = E{V(0)V(x)} satisfies R(x)|x|?>~¢ ¢ L*(R9)
> R(x) ~ V2eq T il



Weak convergence of Brownian motion in random scenery

Brownian motion in Gaussian noise:

» W(dx): generalized Gaussian random field with
E{W(dx)W(dy)} =TI, [ — yil - dxdy
» Brownian motion in Gaussian noise:
/ W(Bs)ds := Ilm/ os(x — Bs)W(dx)ds
Rd
¢s: approximation to identity

Proposition (annealed weak convergence)

Let B = a/2(a = 27:1 a;i),

1/ V(X+B)ds;»v1f/ W(B
/2 0



Main result: SPDE setting

Theorem (Bal-Gu 2013)

Let 5 = «/2 and u., uy solve the following equations respectively
with the same initial condition f € Cp(RY):

1 1

Beus(t,x) = EAug(t,x)—HMV(g)ua(t,x)
1 .

Orup(t,x) = EAuo(t,x)+iV1\/ch(x)uo(t,x)

then we have for fixed (t,x), uc(t,x) — uo(t,x) in distribution.



Main result: SPDE setting
Result:
Deuc(t,x) = Au(tx) + i—n V()uc(t
tus( 7X) 2 Ua( 7X)+l€a/2 (g)uE( 7X)
Deuo(t,x) = %Auo(t,x)—i-iV1\/aW(x)uo(t,x)

us(t,x) = uo(t, x) in distribution
Remark:

» solution to the limiting SPDE [Hu-Nualart-Song 11]:
uo(t, x) = Eg{f(x + B:) exp(iVa\/cq f; W(Bs)ds)}

» Hermite rank equals one = Gaussian noise in the limit

» proof based on moment convergence

» W(x) with other type of covariance structure, e.g.,
E{W(dx)W(dy)} = |x — y|%dxdy with « € (0, 2)



Homogenization vs Convergence to SPDE

1. Brownian motion in random scenery
» homogenization:

g1 fo (Bs/e)ds = oW, for Brownian motion W,
» SPDE:
e=/2 [T V/(B,/e)ds = [ W(B;)ds for Gaussian noise W

2. Assumptions on random potentlals:
» homogenization:
stationarity, ergodicity, R(¢)|¢|"2 € L1(RY)
» SPDE:
stationarity, functional of Gaussian process



Discussions

1. Without stability: O;u. = %Aue + %V(g)uE
> uniform integrability of exp(e~* [y V/(Bs/c)ds)?
» small time restriction for V(x) Gaussian: 3T >0, Vt € (0, T),

ue(t,x) — up(t, x) in probability with O;up = %Aqur%Uzuo
[Bal 10]

2. Homogenization setting: asymptotic distribution of corrector
e " (u: — up)?
3. SPDE setting: non-Gaussian noise in the limit?
- 1%
Hermite rank equals two, V/(x) = ®(g(x)) ~ % (g%(x) — 1)
d =1, Rosenblatt distribution [Tagqu 75]
4. Low dimension cases:
» d = 2: similar results hold with e=! — (¢|loge|)~?
» d =1: SPDE in the limit;
em2 Jy V(Bs/e)ds — [, Le(x)W(dx); local time exists in 1—d
[Pardoux-Piatnitski 06]



Summary

1. Homogenization or convergence to SPDE

1,,.x —0?%/2
V() _>{ Vi /S W (x)

2. Limiting equation depending on the correlation property of
random coefficients; integrability of R(¢)|¢|~2

3. Stationarity+ergodicity = homogenization; error estimate
requires more, e.g., strongly mixing property



