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Our esteemed organizer just minutes before his

forced introduction to “fractional calculus.”
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Some of the original members of the ∼ 2001 NSF-sponsored

“Fractional Calculus Project.”
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Outline

• An unabridged history of the science of contaminant

hydrology (5 min.)

• Anomalous diffusion, limit theorems, and multi-

dimensional fractional differential operators

• Inverses and (matrix) operator-scaling fractional

Brownian motion (os-fBm)
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Ideal Plume Behavior

Conservation of mass and an assumption of additive advective and

Fickian (Fourier) diffusive flux gives

∂C

∂t
= ∇ · (−vC +D∇C)

for concentration C(x, t) with variable parameter fields of velocity

v(x) and diffusion strength D(x).

• ∼ Gaussian Green function - restatement of Central Limit Theorem

• Solute “particles” experience all possible velocities

• Hydrologists love to measure and model v(x)

• Dispersion: velocity perturbations sort of a “black box”
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Classical ADE profile
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Gaussian density Green function with “variance” that grows linear

with time, and tails that drop off like e−x
2
.
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Aquifer material-One of Nature’s extreme laboratories

Highly (long-range) autocorrelated,

very high variance (VAR(ln(K) > 20),

and ...
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Fractal (scale invariant)

Zoom in on any part: looks statistically similar to larger picture.
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Spatial (dimensional) 
averaging: 
In any small time step Δt, the 
change in well concentration is 
due to upstream contributions  

viΔt Non-local 
upscaled 
transport Eq.
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Real Plumes (MADE site)
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Follows a space-time nonlocal model at the largest scale.
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Power-law leading edge

The Lévy motion’s α-stable density C(x, t) with α = 1.1 gives a

good fit. The Brownian motion’s ADE badly underestimates tail

concentrations.
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Tracer plume has heavy power law tails and spreads like t1/α. Let

the cat out of the bag:

∂C

∂t
= −v

∂C

∂x
+D

∂αC

∂xα
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Spreads Faster than Diffusive...
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... but slower than ballistic (constant velocity).

AND different rates in different directions.
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Rather than guess at governing equations, look at

the limit distributions

For “isotropically scaling” Markovian random walks, take a standard

heavy-tailed jump R, with P (R > r) ∼ r−1 so that P (R1/α > r) ∼ r−α.

Then take independent unit vectors θ with measure on the unit

sphere m(dθ). The random walk converges to Lévy motion Z(t)

[t/dt]∑
i=1

Xi =
[t/dt]∑
i=1

R
1/α
i · θi =⇒ Z(t)

with characterisic function (Fourier transform of density function)

p(k, t) = exp
[
−t〈ik, v〉+Dt

∫
(〈ik, θ〉)αm(dθ)

]

(using FT p(k) =
∫
ei〈k,x〉p(x)dx)
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From Lévy motion to Fractional Derivatives

The characteristic function of Lévy motion with 0 < α ≤ 2

p(k, t) = exp
[
−t〈ik, v〉+Dt

∫
(〈ik, θ〉)αm(dθ)

]

Solves the Cauchy equation

dp(k, t)

dt
=
[
−〈ik,v〉+D

∫
(〈ik, θ〉)αm(dθ)

]
p(k, t),

which for now we will call the Fourier inverse transform

∂p(x, t)

∂t
= −v · ∇p(x, t) +D∇αmp(x, t),
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A Brief Review of Well-Known Cases

p(k, t) = exp
[
−t〈ik, v〉+Dt

∫
(〈ik, θ〉)αm(dθ)

]
1-Dimension: θ = ±1,m(+1) = p,m(−1) = q, then

p(k, t) = exp [−t(ik)v +Dt(p(ik)α + q(−ik)α)]

∂p(k, t)

∂t
= −v(ik)p(k, t) +D(p(ik)α + q(−ik)α)p(k, t)

Invert FT:

∂p(x, t)

∂t
= −v

∂p(x, t)

∂x
+

D

Γ(−α)
(p
∫ x
−∞

(x− ξ)−1−αp(ξ, t)dξ

+q
∫ ∞
x

(ξ − x)−1−αp(ξ, t)dξ)

where convolution with the power law in forward and backward di-

rections define

∂p(x, t)

∂t
= −v

∂p(x, t)

∂x
+D

(
p
∂α

∂xα
+ q

∂α

∂(−x)α

)
p(x, t)
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A Brief Review of Well-Known Cases, cont.

p(k, t) = exp
[
−t〈ik, v〉+Dt

∫
(〈ik, θ〉)αm(dθ)

]
1-Dimension, add symmetry (p = q = 1/2):

p(k, t) = exp [−t(ik)v +Dt(p(ik)α + q(−ik)α)]

p(k, t) = exp [−t(ik)v +Dt cos(πα/2)|k|α]

∂p(x, t)

∂t
= −v

∂p(x, t)

∂x
+D cos(πα/2)

(
∂αp(x, t)

∂|x|α

)

(The Riesz fractional derivative)

Note for χ = x− vt the scaling property p(χ, ct) = 1
c1/α

p( χ

c1/α
, t)
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1-D Green Function: Lévy densities
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A Brief Review of Well-Known Cases, cont.

p(k, t) = exp
[
−t〈ik, v〉+Dt

∫
(〈ik, θ〉)αm(dθ)

]
α = 2 (Brownian motion)

p(k, t) = exp

−t〈ik,v〉+Dt
∫ d∑
j=1

(kjθj)
2m(dθ)


p(k, t) = exp

[
−t〈ik,v〉+Dt(ik)A(ik)T

]
where Ai,j =

∫
θiθjm(dθ). This is a Brownian motion with mean drift

vt and covariance matrix 2DtA. Take the time derivative and invert

to get the governing equation for which the pdf of Brownian motion

is Green function:

∂p(x, t)

∂t
= −v · ∇p(x, t) +∇DA∇Tp(x, t),
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In General (for scalar order α) ...

The characteristic function of isotropically-scaling Lévy (incl. Brow-

nian) motion can be written

p(k, t) = exp[−tψ(k)]

Where ψ(k) is the Lévy measure. The motion has Cauchy Eq.

dp(k, t)

dt
= ψ(k)p(k, t)

And Inverse transform (propagator)

∂p(x, t)

∂t
= F−1[ψ(k)]p(x, t)
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In General (isotropic scaling)...

The Lévy measure ψ(dr, dθ) is best described by a mixture of di-

rectional fractional derivatives. The first derivative of f(x) in the θ

direction is df(x+ sθ)/ds = dg(s)/ds and the scalar fractional deriva-

tive is then

Dα
+g(r) =

1

Γ(−α)

∫ ∞
0

r−1−αg(s− r)dr

A mixture of these according to the measure m(dθ) gives the (single-

order) multi-dimensional fractional derivative

∇αmf(x) =
1

Γ(−α)

∫
|θ|=1

∫ ∞
0

r−1−αf(x− rθ)drm(dθ)

Which is a (radial) convolution with the Lévy measure

ψ(dr, dθ) = αr−1−αm(dθ)/Γ(−α)

.
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Example 2-D Green Function: multi-stable
densities
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Motivation: Transport in Fractured Rock

	

	

	

Ensem
ble F

low and  

Transport S
imulations

Fractional-Order 

Diffusion Eq. 

Reeves et al., Transport of conservative solutes in simulated fracture networks: 2. Ensemble

solute transport and the correspondence to operator-stable limit distributions, Water Resour.

Res., 2008.
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But I lied. Big jumps can be different in different

directions (i.e. fracture sets).

For “anisotropically scaling” Markovian random walks, take a stan-

dard heavy-tailed jump R, with P (R > r) ∼ r−1. Rescale jumps by

growth rate matrix H so the jump size matrix RH has probabilities

that fall off like r−αi in the ith eigendirection. Also take independent

unit vectors θ with measure on the unit sphere m(dθ). The random

walk converges to operator-scaling Lévy motion Z(t)

[t/dt]∑
i=1

Xi =
[t/dt]∑
i=1

RH
i · θi =⇒ Z(t)

with characteristic function (Fourier transform of density function)

p(k, t) = exp [−t〈ik, v〉+ tk ·Ak +Dtψ(k)]

where the operator-scaling Lévy measure now is primarily defined by

its matrix scale-invariance ψ(cHk) = cψ(k) (different power laws in

different directions).
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A simple example

Let H =

[
1/α1 0

0 1/α2

]
, and m([1 0]) = m([0 1]) = 0.5, then

ψ(k) = 0.5(ik1)α1 + 0.5(ik2)α2

∂p(x, t)

∂t
= 0.5

(
p
∂α1

∂xα1
+ q

∂α2

∂yα2

)
p(x, t)
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αx = 1.6, αy = 1.8 (Finite-difference and RW)
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Example operator-scaling Lévy densities (bottom)

Schumer et al., Multiscaling fractional advection-dispersion equations and their solutions, Water

Resour. Res., 2003
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But what about the part that hydrologists love to

measure and simulate - v(x)?

Streamlines
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Probably can only be done via random walks (see

great paper by Yong Zhang et al.)

Random walk approximation of fractional-order multiscaling anomalous diffusion

Yong Zhang and David A. Benson
Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA

Mark M. Meerschaert
Department of Statistics and Probability, Michigan State University, East Lansing, Michigan 48824, USA

Eric M. LaBolle
Department of Land, Air, and Water Resources, University of California, Davis, California 95616, USA

Hans-Peter Scheffler
Department of Mathematics, University of Siegen, Germany

!Received 30 May 2006; published 22 August 2006; publisher error corrected 25 August 2006"

Random walks are developed to approximate the solutions of multiscaling, fractional-order, anomalous
diffusion equations. The essential elements of the diffusion are described by the matrix-order scaling indexes
and the mixing measure, which describes the diffusion coefficient in every direction. Two forms of the
governing equation !also called the multiscaling fractional diffusion equation", based on fractional flux and
fractional divergence, are considered, where the diffusion coefficient and the drift vary in space. The particle-
tracking algorithm is also extended to approximate anomalous diffusion with a streamline-dependent mixing
measure, using a streamline-projection technique. In this and other general cases, the random walk method is
the only known way to solve the nonhomogeneous equations. Five numerical examples demonstrate the
flexibility, simplicity, and efficiency of the random walk method.

DOI: 10.1103/PhysRevE.74.026706 PACS number!s": 02.60.Cb, 05.40.Fb, 02.60.!x, 05.10.Gg

I. INTRODUCTION

Various forms of Lévy motion and Lévy walks, and their
fractional-order governing equations, have been used to de-
scribe superdiffusive spreading of passive scalars in turbu-
lent and chaotic flow #1,2$, plasma #3,4$, surface and ground
water flow #5–8$, and financial returns #9–11$. Many of these
studies have not differentiated the superdiffusive rates in dif-
ferent directions, although the evidence of multiple scaling
rates is clear in contaminant transport in heterogeneous ma-
terial #12$, including fractured rock #13$. The multiscaling
space-fractional diffusion equation !FDE, described in detail
in the next section", describes anomalous superdiffusion with
added realism by not only allowing direction-dependent
spreading rates, but also specifying magnitudes of diffusion
that are arbitrarily assigned on the entire unit sphere in
d-dimensions #12$. The diffusion operator owes its existence
to the coarse-graining, or upscaling, that eliminates some of
the detail of the fine-grained velocity field. If the underlying
velocity field is inherently anisotropic or has embedded pref-
erential directions, then the multiscaling diffusion operator is
an appealing tool for predicting anomalous superdiffusion at
the coarser scale. For nonhomogeneous problems, however,
analytic solutions are unavailable and numerical methods are
needed.

Numerous numerical methods have been developed re-
cently to simulate superdiffusion embodied in a one-
dimensional !1D" fractional-order diffusion equation, includ-
ing the finite element method !FEM" #14,15$, the method of
lines #16$, the explicit and the related semi-implicit method
#17$, the three-point approximation method #5$, the mass bal-
ance method #6$, and the implicit Euler finite difference
method !FDM" #18–20$. Only a few methods have been pro-

posed to solve the multidimensional FDE, including the al-
ternative direction implicit finite difference method !ADI
FDM" #21$, the fast Fourier transform method #22$, and the
FEM #14$. Although these methods have successfully solved
the 1D and/or 2D FDEs, they cannot solve the multiscaling
FDE with an arbitrary mixing measure and space-dependent
coefficients. As discussed in the following section, a general
mixing measure and the local variation of transport coeffi-
cients will significantly improve our ability to capture real-
world superdiffusion.

A random walk method was developed recently to ap-
proximate the 1D FDE #23$. It is superior in many ways to
traditional numerical methods in solving large flow systems,
since it is grid-free, can be applied to any underlying form of
flow !velocity" field, and does not cause numerical dispersion
for advection-dominated transport problems. As a Lagrang-
ian method, the random walk also illustrates the dynamics of
the physical process. Most importantly, the embedded La-
grangian algorithm can easily add particle retention in immo-
bile phases in a manner similar to classical continuous time
random walks !CTRW" #24,25$.

The computational efficiency and the potential flexibility
of the random walk method motivates us to extend it to the
multiscaling FDE. The rest of this paper is organized as fol-
lows: In Sec. II, we extend the multiscaling FDE to general
forms where the strength of the nonlocal spreading is al-
lowed to vary with the local-scale heterogeneity of the trans-
port coefficients. In Sec. III, we describe the random walk
particle-tracking schemes for solving the multiscaling FDEs.
Numerical examples are presented as demonstrations. In Sec.
IV, the extension of the random walk method to the case with
a streamline-dependent mixing measure is discussed and il-
lustrated.

PHYSICAL REVIEW E 74, 026706 !2006"

1539-3755/2006/74!2"/026706!10" ©2006 The American Physical Society026706-1
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Plume Simulation at the MADE site

Estimation of mixing measure m Particle tracking simulation of os-stable plume

Zhang, Y., and D.A.Benson, Lagrangian simulation of multidimensional anomalous transport at

the MADE site, Geophys. Res. Lett., 2008.
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The Inverse Operator (Fractional Integration)

If the most general fractional derivative operator (for eigenvalues

0 < αi ≤ 2) can be denoted by the diffusion equation for operator-

scaling Lévy motion

dp(x, t)

dt
= D∇A

mp(x, t)

with FT

dp(k, t)

dt
= Dψ(k)p(k, t),

where ψ is defined only by its scale invariance ψ(cA
−1

k) = (1/c)ψ(k),

then there must be one or more inverse operator defined by φ(k) =

[ψ(k)]−1, so that

p(k) = ψ(k)φ(k)p(k)
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Generalized Fractional Integration

Similar to the derivative model, an integral equation may take the

matrix-order form

g(x) = IAmf(x) with orders 0 < αi ≤ 2

defined by the convolution g(k) = φ(k)f(k)

Example: Classical 1-D fractional Brownian motion USES

A = H + 1/2,m(+1) = 1

BH(x) =
∫ x
−∞

(x− y)H−1/2B(dy)

where B(dy) is white noise. Now φ(k) = (ik)−H−1/2 = (ik)−A, and

φ(c1/Ak) = (1/c)φ(k)
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Constructing an isotropic d-dimensional fBm

BH(x) =
∫ [
‖x− y‖H−d/2 − ‖y‖H−d/2

]
B(dy) (1)

with B(dy) the increment of a Brownian field (a Wiener process) and

Hurst index 0 < H < 1. Numerically, we start with the (divergent)

convolution

BH(x) =
∫
‖x− y‖H−d/2B(dy)

(Formally a fractional-order integral)

BH(x) ≈
∑

φ(x− y)B(∆y)

φ(x) =
Γ(H + 1− d/2 + ‖x‖)

Γ(‖x‖+ 1)Γ(H + 1− d/2)
∼

‖x‖H−d/2

Γ(H + 1− d/2)
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Solve using FFT:

BH(x) ∝ FFT−1‖k‖−H−d/2B(∆k)

Problem: It’s obvious which way is vertical versus horizontal

Solution: Different H in different directions
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Operator-Scaling fBm

Now require different scaling (zooming) in different directions:

Bϕ(cQx)
d
= cHBϕ(x)

where Q is a scaling matrix (can also contain rotations). Also require

that Tr(Q) = d. A simple example is Q = diag(q1, q2) and

cQ =

[
cq1 0
0 cq2

]
Now the only requirement of the convolution function ϕ(x) is that

ϕ(cQx) = cH−d/2ϕ(x)
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Example 2-D Convolution Kernel

Hx = 0.9;Hy = 0.3;m(0) = 0.8;m(π/2) = 0.2
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Effect of weights m(θ): Hold scaling H isotropic
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Example: Effect of changing scaling H in one

direction

Hvert = 0.4 Hvert = 0.7

Hhoriz = 0.7

Plumes mix and slow down when Htransverse in smaller ...
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Examples (atomistic m(θ))
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Conclusions (Future Directions?)

• Particle methods rock!

• Applied mathematicians hate them: nothing to prove!

• Almost always a Langevin equation to your goofy fractional PDE.

• Hydrologists need easy-to-use plug-and-play fractional simulator.

Nothing else will do.
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