

Mixing and Reaction in Highly Heterogeneous Porous Media

by Diogo Bolster

Dept. of Civil Engineering and Geological Sciences

University of Notre Dame

Thanks to my collaborators

Heterogeneity Spreading vs Mixing

Heterogeneity => Typically Superdiffusive spreading

Topics I'll Talk About

- Incomplete Mixing and Slowdown on Chemical Reactions – Fickian and Non-Fickian
- Incomplete Mixing When Might Tails not be due to fractional type behavior?
- How fractional dispersion can make reactions happen in places where Fickian models say it cannot – And I don't mean tails.

Topic 1

Incomplete Mixing and Slowdown on Chemical Reactions – Fickian and Non-Fickian Transport

What does any of this mean for reactive transport?

Consider the following example:

Instantaneous? Reversible? Equilibrium?

Let's start easy – forget heterogeneity

- Kinetic, irreversible

 d[A]/dt=k[A][B]
 d[B]/dt=k[A][B]
 d[C]/dt=-k[A][B]
- Analytical Solution if

 [A]=[B] (assume initially equal -> always equal)
- $A = A_0 / (1 + kA_0 t)$

To study this let's use a numerical model....

- Move Particles with a random walk
- Based on the distance between two particles calculate probability that they will collocate
- Then based on the reaction multiply probability that reaction will occur

Step 1 – Move Particles by Random Motion

Update Particle Positions by **x**(t+dt)=**x**(t)+ξ

Random Jump Reflecting Dispersion

Step 1 – Move Particles by Brownian Motion

Update Particle Positions by **x**(t+dt)=**x**(t)+ξ

Random Jump Reflecting Dispersion

Step 1 – Move Particles by Brownian Motion

Update Particle Positions by **x**(t+dt)=**x**(t)+ξ

Random Jump Reflecting Dispersion

Step 2 – Search for Neighbors of Opposite Particle

Particle 1

Gives distances s1 s2 s3

Step 3 – Calculate Probability of RXN

Probability of Reaction

Probability of Reaction Given Collocation

K m_p dt

Kinetics

Particle 1 - 1

Generate a random number 0<P<1

If P> Probability of Reaction

Kill both particles

If less move to next blue particle

Particle 1 - 2

Generate a random number 0<P<1

If P> Probability of Reaction (for this pair)

Kill both particles

If less move to next blue particle

Particle 1 - 2

Generate a random number 0<P<1

If P> Probability of Reaction (for this pair)

Kill both particles

If less move to next blue particle

And so on Cycling through all blues

Particle 1 - 2

Generate a random number 0<P<1

If P> Probability of Reaction (for this pair)

Kill both particles

If less move to next blue particle

And so on Cycling through all blues

Repeat for Each red Particle

Particle 2

And so on Cycling through all reds

Then back to Step One (Move Particles)

Non Dimensional Time (C_0K_ft)

What do we observe? For 1d Brownian Motion

Analytical Solution

Other Observations of the Same (different methods of study)

Benson & Meerschaert 2008, WRR

Countless other examples:

Astrophysics Particle Physics Biochemical Processes Turbulent Environmental Flows Population Dynamics Warfare Simulation

What's going on... Let's take a look at concentrations in 1d

Benson & Meerschaert 2008, WRR

What's going on... Let's take a look at concentrations in 1d

• Consider the following problem

$$\frac{\partial C_i}{\partial t} = D \frac{\partial^{\alpha} C_i}{\partial |x|^{\alpha}} - k C_A C_B, \qquad i = A, B \qquad -\infty < x < \infty$$
$$C_i(x, t) = \overline{C_i}(t) + C'_i(x, t)$$

• Consider the following problem

$$\begin{split} \frac{\partial C_i}{\partial t} &= D \frac{\partial^{\alpha} C_i}{\partial |x|^{\alpha}} - kC_A C_B, \qquad i = A, B \qquad -\infty < x < \infty \\ \text{Average} \qquad C_i(x,t) &= \overline{C_i}(t) + C_i'(x,t) \qquad \text{Remainder} \\ \frac{\partial \overline{C_i}}{\partial t} &= -k\overline{C_A} \overline{C_B} - k\overline{C'_A C'_B} \qquad \frac{\partial C'_i}{\partial t} = D \frac{\partial^{\alpha} C'_i}{\partial |x|^{\alpha}} - k\overline{C_A} C'_B - kC'_A \overline{C_B} - kC'_A C'_B + k\overline{C'_A C'_B} \end{split}$$

• Consider the following problem

$$\begin{split} \frac{\partial C_i}{\partial t} &= D \frac{\partial^{\alpha} C_i}{\partial |x|^{\alpha}} - kC_A C_B, \qquad i = A, B \qquad -\infty < x < \infty \\ \text{Average} \qquad C_i(x,t) &= \overline{C_i}(t) + C_i'(x,t) \qquad \text{Remainder} \\ \frac{\partial \overline{C_i}}{\partial t} &= -k\overline{C_A} \overline{C_B} - k\overline{C_A'C_B'} \qquad \frac{\partial C_i'}{\partial t} = D \frac{\partial^{\alpha} C_i'}{\partial |x|^{\alpha}} - k\overline{C_A} C_B' - kC_A' \overline{C_B} - kC_A' C_B' + k\overline{C_A'C_B'} \\ & \text{Perturbation closure} \\ \text{Closure Problem} \\ f(x,y,t) &= \overline{C_A'(x,t)C_B'(y,t)} \end{split}$$

• Consider the following problem

$$\begin{split} \frac{\partial C_i}{\partial t} &= D \frac{\partial^{\alpha} C_i}{\partial |x|^{\alpha}} - kC_A C_B, \qquad i = A, B \qquad -\infty < x < \infty \\ \text{Average} \qquad C_i(x,t) &= \overline{C_i}(t) + C_i'(x,t) \qquad \text{Remainder} \\ \frac{\partial \overline{C_i}}{\partial t} &= -k\overline{C_A} \ \overline{C_B} - k\overline{C'_A C'_B} \qquad \frac{\partial C'_i}{\partial t} = D \frac{\partial^{\alpha} C'_i}{\partial |x|^{\alpha}} - k\overline{C_A} C'_B - kC'_A \overline{C_B} - kC'_A C'_B + k\overline{C'_A C'_B} \\ & \text{Perturbation closure} \\ \text{Closure Problem} \end{split}$$

 $f(x,y,t) = \overline{C'_A(x,t)C'_B(y,t)}$

$$f(x, y, t) = \int_{-\infty}^{\infty} R(\xi, y) G(x, \xi, t) d\xi,$$

$$\overline{C'_A(x,0)C'_B(y,0)} = R(x,y)$$
$$G(x,\xi,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-2D_{\dagger}|k|^{\alpha}t} e^{ik(x-\xi)} dk$$

So my equation becomes

$$\frac{\partial \overline{C_i}}{\partial t} = -k\overline{C_i}^2 + k \int_{-\infty}^{\infty} R(\xi, x) G(x, \xi, t) d\xi.$$

$$\frac{\partial C_i}{\partial t} = -k\overline{C_i}^2 + k \int_{-\infty}^{\infty} R(\xi, x) G(x, \xi, t) d\xi.$$

$$R(x,y) = \sigma^2 l \delta(x-y) \quad \Longrightarrow \quad \frac{\partial C_i}{\partial t} = -k \overline{C_i}^2 + k \chi t^{-\frac{1}{\alpha}}$$

$$\frac{\partial \overline{C_i}}{\partial t} = -k\overline{C_i}^2 + k \int_{-\infty}^{\infty} R(\xi, x) G(x, \xi, t) d\xi.$$

$$R(x,y) = \sigma^2 l \delta(x-y) \quad \Longrightarrow \quad \frac{\partial C_i}{\partial t} = -k \overline{C_i}^2 + k \chi t^{-\frac{1}{\alpha}}$$

$$\overline{C_i}(t) = \frac{\sqrt{\chi^*}}{t^{\frac{1}{2\alpha}}} \quad \frac{\left(I_{-\frac{\alpha-1}{2\alpha-1}}(z) - \kappa K_{\frac{\alpha-1}{2\alpha-1}}(z)\right)}{\left(I_{\frac{\alpha}{2\alpha-1}}(z) + \kappa K_{\frac{\alpha}{2\alpha-1}}(z)\right)}$$

$$z = \frac{2\alpha\sqrt{\chi^*}}{2\alpha - 1}t^{\frac{2\alpha - 1}{2\alpha}}$$

$$\frac{\partial C_i}{\partial t} = -k\overline{C_i}^2 + k \int_{-\infty}^{\infty} R(\xi, x) G(x, \xi, t) d\xi.$$

$$R(x,y) = \sigma^2 l \delta(x-y) \quad \Longrightarrow \quad \frac{\partial C_i}{\partial t} = -k \overline{C_i}^2 + k \chi t^{-\frac{1}{\alpha}}$$

$$\overline{C_i}(t) = \frac{\sqrt{\chi^*}}{t^{\frac{1}{2\alpha}}} \quad \frac{\left(I_{-\frac{\alpha-1}{2\alpha-1}}(z) - \kappa K_{\frac{\alpha-1}{2\alpha-1}}(z)\right)}{\left(I_{\frac{\alpha}{2\alpha-1}}(z) + \kappa K_{\frac{\alpha}{2\alpha-1}}(z)\right)} \quad \overline{C_A}(t) = \frac{1}{1 + (t - t_0)}$$

$$z = \frac{2\alpha\sqrt{\chi^2}}{2\alpha - 1}t^{\frac{2\alpha - 1}{2\alpha}}$$

$$\frac{\partial \overline{C_i}}{\partial t} = -k\overline{C_i}^2 + k \int_{-\infty}^{\infty} R(\xi, x) G(x, \xi, t) d\xi.$$

$$R(x,y) = \sigma^2 l \delta(x-y) \quad \Longrightarrow \quad \frac{\partial C_i}{\partial t} = -k \overline{C_i}^2 + k \chi t^{-\frac{1}{\alpha}}$$

$$\overline{C_i}(t) = \frac{\sqrt{\chi^*}}{t^{\frac{1}{2\alpha}}} \quad \frac{\left(I_{-\frac{\alpha-1}{2\alpha-1}}(z) - \kappa K_{\frac{\alpha-1}{2\alpha-1}}(z)\right)}{\left(I_{\frac{\alpha}{2\alpha-1}}(z) + \kappa K_{\frac{\alpha}{2\alpha-1}}(z)\right)} \quad \overline{C_A}(t) = \frac{1}{1 + (t - t_0)}$$

$$\text{Late Times}$$

$$z = \frac{2\alpha\sqrt{\chi^*}}{2\alpha - 1}t^{\frac{2\alpha-1}{2\alpha}}$$

1

What does Solution Look like

Validation

Topic 2

Incomplete Mixing - When Might Tails Exist, but not be due to fractional type behavior? Or are they and I'm just wrong

Let's Look at Some Experiments

Famous Experiment by Gramling et al

there are lots of papers trying to model these results.... Using anomalous/fractional transport methods – WE ASK WHY?

Gramling's Measurements vs Predictions

Gramling's Measurements vs Predictions

Anomalous Transport

We Don't Think So

There is no evidence of anomalous transport in non reactive flow experiments through the same column

Looking closely at Gramling data

Looks a lot like what we called islands from our numerical models.....

Could it be incomplete mixing only?

Set up an initial condition with all A on one side and B on the other

Move Every Particle – Jump by *dispersion*

Now kill some particles probabilistically for reaction following rules from before

When we use our Methods

Pretty Good Agreement – And we can Explain Why

And the Tails....

We still use conventional transport models – but incorporate incomplete mixing effects!

To quote Dave Benson– in our model particles can 'advance further into enemy territory before reacting'

SO – Tail does not need to mean anomalous/fractional Or Can it be interpreted that way?

Topic 3

If not in the tails, how fractional dispersion can make reactions happen in places where Fickian dispersion cannot Let's consider another common, but very distinct chemical reaction

Instantaneous Equilibrium Reactions

Instantaneous Equilibrium Reaction

$$\frac{\partial C_i}{\partial t} = D\nabla^2 C_i + r \quad i = 1,2$$
$$\frac{\partial C_3}{\partial t} = -r$$
$$C_1 C_2 = K$$

$$\frac{\partial C_i}{\partial t} = D\nabla^2 C_i + r \quad i = 1,2$$

$$\frac{\partial C_3}{\partial t} = -r$$

$$C_1 C_2 = K$$

$$\frac{\partial C_i}{\partial t} = D\nabla^2 C_i + r \quad i = 1,2$$

$$\frac{\partial C_3}{\partial t} = -r$$

$$C_1 C_2 = K$$

$$\frac{\partial C_i}{\partial t} = D\nabla^2 C_i + r \qquad i = 1,2$$

$$\frac{\partial C_3}{\partial t} = -r$$

$$C_1 C_2 = K$$

$$4 \text{ eqns, 4 unknowns}$$
Define conservative
$$U = C_2 - C_1$$

$$\bigcup$$

$$\frac{\partial U}{\partial t} = D\nabla^2 U$$

$$r = \left(D\nabla U \nabla U \right) \left(\frac{d^2 C_1}{dU^2} \right)$$

Local Measure of Mixing – Drives many Reactions

Local Measure of Mixing – Drives many Reactions

Interesting, but let's worry about this later on as heterogeneity plays little role on this

How do we Quanitify Mixing?

Local Measure of Mixing – Drives many Reactions

• Global Measure of Mixing (integrate r over whole domain)

$$M = \int_{\Omega} \left(D\nabla U \cdot \nabla U \right) d\Omega = -\frac{1}{2} \frac{d}{dt} \int_{\Omega} U^2 d\Omega$$

Scalar Dissipation Rate

Homogeneous Mixing

A little bit boring, no?

Replace Fickian with Fractional Dispersion

 $1 < \alpha \leq 2$

Take a step back

Recall we can think of this reaction in Terms of a conservative component u. Consider a system with u=constant initially and then we inject a pulse of different u at position x=0.

When α =2 Classical Fickian diffusion

 $r = \left(D\nabla U \cdot \nabla U \right) \left(\frac{d^2 C_1}{dU^2} \right)$

What happens as α changes?

Let's take a closer look at this

What does this mean for precipitation reactions?

$$r(x,t)=D_{lpha}\sum_{k=1}^{\infty}inom{lpha-1}{k}rac{\partial^{lpha-k}u}{\partial|x|^{lpha-k}}rac{\partial^k}{\partial x^k}rac{dc}{du}.$$

What does this mean for precipitation reactions?

Global Measures – Mixing (Scalar Dissipation)

At early times more anomalous (smaller α)=more mixing At late times – less mixing

Global Measures – Total Reaction Rate

More anomalous – always less reactions (a mixing scale effect???)

Questions

