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Heterogeneity	
Spreading	vs	Mixing	

Spreading	

Mixing	

Spreading	

Heterogeneity	=>	Typically	Superdiffusive	spreading	



Topics	I’ll	Talk	About	

•  Incomplete	Mixing	and	Slowdown	on	
Chemical	Reac,ons	–	Fickian	and	Non-Fickian	

•  Incomplete	Mixing	-	When	Might	Tails	not	be	
due	to	frac,onal	type	behavior?	

•  How	frac,onal	dispersion	can	make	reac,ons	
happen	in	places	where	Fickian	models	say	it	
cannot	–	And	I	don’t	mean	tails.	



Topic	1	
-	

Incomplete	Mixing	and	
Slowdown	on	Chemical	

Reac,ons	–	Fickian	and	Non-
Fickian	Transport	



What	does	any	of	this	mean	for	
reac,ve	transport?	

Consider	the	following	example:	

A	 B	 C	

Instantaneous?	Reversible?	Equilibrium?	



Let’s	start	easy	–	forget	heterogeneity	

•  Kine,c,	irreversible	
	 	d[A]/dt=k[A][B]	
	 	d[B]/dt=k[A][B]	
	 	d[C]/dt=-k[A][B]	

•  Analy,cal	Solu,on	if		
[A]=[B]	(assume	ini,ally	
equal	–>	always	equal)	

•  A=A0/(1+kA0t)		

A	 B	 C	



To	study	this	let’s	use	a	numerical	
model….	

•  Move	Par,cles	with	a	
random	walk	

•  Based	on	the	distance	
between	two	par,cles	
calculate	probability	that	
they	will	collocate	

•  Then	based	on	the	
reac,on	mul,ply	
probability	that	reac,on	
will	occur	

A	

B	



Step	1	–	Move	Par,cles	by	Random	
Mo,on	

Update	Par,cle	Posi,ons	by	x(t+dt)=x(t)+ξ

Random	Jump	Reflec,ng	Dispersion	



Step	1	–	Move	Par,cles	by	Brownian	
Mo,on	

Update	Par,cle	Posi,ons	by	x(t+dt)=x(t)+ξ

Random	Jump	Reflec,ng	Dispersion	



Step	1	–	Move	Par,cles	by	Brownian	
Mo,on	

Update	Par,cle	Posi,ons	by	x(t+dt)=x(t)+ξ

Random	Jump	Reflec,ng	Dispersion	



Step	2	–	Search	for	Neighbors	of	
Opposite	Par,cle		

Par,cle	1

Gives	distances	
	s1	
	s2	
	s3	



Step	3	–	Calculate	Probability	of	RXN	

Par,cle	1-1
Probability	of	Reac,on	

	
=	
	

Probability	of	Colloca,on	
	
	
X	
	
	

Probability	of	Reac,on	Given		
Colloca,on	

func,on	of	distance	
-	

Convolu,on	of	posi,on	
densi,es	

-		
Fickian=>	Gaussian	
Frac,onal=>Stable		

e.g.	

func,on	of	reac,on	
Kine,cs	

	
K	mp	dt	



Step	4	–	Die	or	Survive	

Par,cle	1	-	1 Generate	a	random	number	0<P<1	
	
If	P>	Probability	of	Reac,on	

		
	Kill	both	par,cles	

	
If	less	move	to	next	blue	par,cle	
	



Step	4	–	Die	or	Survive	

Par,cle	1	-	2 Generate	a	random	number	0<P<1	
	
If	P>	Probability	of	Reac,on	(for	this	pair)	

		
	Kill	both	par,cles	

	
If	less	move	to	next	blue	par,cle	
	



Step	4	–	Die	or	Survive	

Par,cle	1	-	2 Generate	a	random	number	0<P<1	
	
If	P>	Probability	of	Reac,on	(for	this	pair)	

		
	Kill	both	par,cles	

	
If	less	move	to	next	blue	par,cle	
	

And	so	on	Cycling	through	all	blues	



Step	4	–	Die	or	Survive	

Par,cle	1	-	2 Generate	a	random	number	0<P<1	
	
If	P>	Probability	of	Reac,on	(for	this	pair)	

		
	Kill	both	par,cles	

	
If	less	move	to	next	blue	par,cle	
	

And	so	on	Cycling	through	all	blues	



Repeat	for	Each	red	Par,cle	

Par,cle	2

And	so	on	Cycling	through	all	reds	
	
Then	back	to	Step	One	(Move	Par?cles)	



Movie	



What	do	we	observe?	For	1d	Brownian	Mo,on	

Analy,cal	Solu,on	

Observa,ons	



Other	Observa,ons	of	the	Same	
(different	methods	of	study)	

Benson	&	Meerschaert	2008,	WRR	

Countless	other	examples:	
	
Astrophysics	
Par,cle	Physics	
Biochemical	Processes	
Turbulent	Environmental	Flows	
Popula,on	Dynamics	
Warfare	Simula,on	



What’s	going	on…	
Let’s	take	a	look	at	concentra,ons	in	1d	

Early	

Late	

Intermediate	

Benson	&	Meerschaert	2008,	WRR	



What’s	going	on…	
Let’s	take	a	look	at	concentra,ons	in	1d	

Early	

Late	

Intermediate	

Isolated	Islands	of	A	and	B	form		
limi,ng	reac,on	by	how	quickly		
A	and	B	diffuse	into	one	another	

Benson	&	Meerschaert	2008,	WRR	

Incomplete		
Mixing	



Movie	



But	what	does	this	have	to	with	
frac,onal	transport?	

•  Consider	the	following	problem	

@Ci

@t

= D

@

↵
Ci

@|x|↵ � kCACB , i = A,B �1 < x < 1

Ci(x, t) = Ci(t) + C

0
i(x, t)



But	what	does	this	have	to	with	
frac,onal	transport?	

•  Consider	the	following	problem	

Average	

@Ci

@t

= D

@

↵
Ci

@|x|↵ � kCACB , i = A,B �1 < x < 1

Ci(x, t) = Ci(t) + C

0
i(x, t)

@Ci

@t
= �kCA CB � kC 0

AC
0
B

Remainder	

@C

0
i

@t

= D

@

↵
C

0
i

@|x|↵ � kCAC
0
B � kC

0
ACB � kC

0
AC

0
B + kC

0
AC

0
B



But	what	does	this	have	to	with	
frac,onal	transport?	

•  Consider	the	following	problem	

Average	

Closure	Problem	

@Ci

@t

= D

@

↵
Ci

@|x|↵ � kCACB , i = A,B �1 < x < 1

Ci(x, t) = Ci(t) + C

0
i(x, t)

@Ci

@t
= �kCA CB � kC 0

AC
0
B

Remainder	

@C

0
i

@t

= D

@

↵
C

0
i

@|x|↵ � kCAC
0
B � kC

0
ACB � kC

0
AC

0
B + kC

0
AC

0
B

Perturba,on	closure	

f(x, y, t) = C

0
A(x, t)C

0
B(y, t)



But	what	does	this	have	to	with	
frac,onal	transport?	

•  Consider	the	following	problem	

Average	

Closure	Problem	

@Ci

@t

= D

@

↵
Ci

@|x|↵ � kCACB , i = A,B �1 < x < 1

Ci(x, t) = Ci(t) + C

0
i(x, t)

@Ci

@t
= �kCA CB � kC 0

AC
0
B

Remainder	

@C

0
i

@t

= D

@

↵
C

0
i

@|x|↵ � kCAC
0
B � kC

0
ACB � kC

0
AC

0
B + kC

0
AC

0
B

Perturba,on	closure	

f(x, y, t) = C

0
A(x, t)C

0
B(y, t)

G(x, ⇠, t) =
1

2⇡

Z 1

�1
e

�2D†|k|↵t

e

ik(x�⇠)
dk

C

0
A(x, 0)C

0
B(y, 0) = R(x, y)

f(x, y, t) =

Z 1

�1
R(⇠, y)G(x, ⇠, t)d⇠,



So	my	equa,on	becomes	

@Ci

@t

= �kCi
2
+ k

Z 1

�1
R(⇠, x)G(x, ⇠, t)d⇠.



So	

@Ci

@t

= �kCi
2
+ k

Z 1

�1
R(⇠, x)G(x, ⇠, t)d⇠.

R(x, y) = �

2
l�(x� y) @Ci

@t
= �kCi

2
+ k�t�

1
↵



So	

@Ci
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2
+ k
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�1
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So	
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Early	Times	



So	
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Late	Times	



What	does	Solu,on	Look	like	



Valida,on	



Topic	2	
-		

Incomplete	Mixing	-	When	
Might	Tails	Exist,	but	not	be	

due	to	frac,onal	type	
behavior?	

Or	are	they	and	I’m	just	wrong	
	



Let’s	Look	at	Some	Experiments	

Famous	Experiment	by	Gramling	et	al	
	 		
	 	there	are	lots	of	papers	trying	to	model	these	results….	Using	
	 	anomalous/frac,onal	transport	methods	–	WE	ASK	WHY?	



Gramling’s	Measurements	vs	Predic,ons	



Gramling’s	Measurements	vs	Predic,ons	

Lower	Concentra,ons	Heavy	Tails	

Lower	Rates	of	Reac,on	

ANOMALOUS	TRANSPORT??	



Anomalous	Transport		
-		

We	Don’t	Think	So	

There	is	no	evidence	of		
anomalous	transport	in	
non	reac,ve	flow	experiments	
through	the	same	column	



Looking	closely	at	Gramling	data	

Looks	a	lot	like	what	we	called	islands	from		
our	numerical	models…..		

Could	it	be	incomplete	mixing	
only?	



Our	Model	

Set	up	an	ini,al	condi,on	with	all	A	on	one	side	
and	B	on	the	other	

	
	



Our	Model	

Move	Every	Par,cle	–	Jump	by	dispersion		



Our	Model	

Now	kill	some	par,cles	probabilis,cally		for	reac,on	
following	rules	from	before	



When	we	use	our	Methods		

Preny	Good	Agreement	–	And	we	can	Explain	Why	

VS	



And	the	Tails….	

We	s,ll	use	conven,onal	transport	models	–	but	incorporate	incomplete	mixing	effects!	
	
To	quote	Dave	Benson–	in	our	model	par,cles	can	‘advance	further		

	 	 	 	 	into	enemy	territory	before	reac,ng’	



Our	Model	

SO	–	Tail	does	not	need	to	mean	anomalous/frac?onal	
Or	

Can	it	be	interpreted	that	way?	



Topic	3	
-	

If	not	in	the	tails,	how	frac,onal	
dispersion	can	make	reac,ons	
happen	in	places	where	Fickian	

dispersion	cannot	



Let’s	consider	another	common,	but	
very	dis,nct	chemical	reac,on	



Instantaneous	Equilibrium	Reac,ons	

€ 

i =1,2

€ 

∂C3

∂t
= −r

€ 

C1C2 = K

∂Ci
∂t

= D∇2Ci + r

Equilibrium	



Instantaneous	Equilibrium	Reac,on	

€ 

∂C3

∂t
= −r

€ 

C1C2 = K

∂Ci
∂t

= D∇2Ci + r

€ 

i =1,2



€ 

∂C3

∂t
= −r

€ 

C1C2 = K

∂Ci
∂t

= D∇2Ci + r

€ 

i =1,2



€ 

∂C3

∂t
= −r

€ 

C1C2 = K

∂Ci
∂t

= D∇2Ci + r

€ 

i =1,2



4	eqns,	4	unknowns	
	
	
	
	

€ 

U = C2 −C1
Define	conserva,ve	

∂U
∂t

= D∇2U

€ 

D∇U.∇U( )

€ 

d2C1
dU 2

" 

# 
$ 

% 

& 
' 

€ 

r =

	

	

€ 

∂C3

∂t
= −r

€ 

C1C2 = K

∂Ci
∂t

= D∇2Ci + r

€ 

i =1,2



•  Local	Measure	of	Mixing	–	Drives	many	Reac,ons	

€ 

D∇U.∇U( )

€ 

d2C1
dU 2

" 

# 
$ 

% 

& 
' 

€ 

r =

MIXING	 Chemistry	



•  Local	Measure	of	Mixing	–	Drives	many	Reac,ons	

€ 

D∇U.∇U( )

€ 

d2C1
dU 2

" 

# 
$ 

% 

& 
' 

€ 

r =

MIXING	 Chemistry	
Interes,ng,	but	let’s	
worry	about	this	later	on	
as	heterogeneity	plays	linle	
role	on	this		

???=$$$ 



How	do	we	Quani,fy	Mixing?	

•  Local	Measure	of	Mixing	–	Drives	many	Reac,ons	

•  Global	Measure	of	Mixing	(integrate	r	over	whole	domain)	

€ 

D∇U.∇U( )

€ 

d2C1
dU 2

" 

# 
$ 

% 

& 
' 

€ 

r =

MIXING	

€ 

M = D∇U.∇U( )dΩ
Ω

∫ = −
1
2
d
dt

U 2dΩ
Ω

∫

Scalar	Dissipa,on	Rate	



Homogeneous	Mixing	

€ 

~ t
−
d +2
2

A	linle	bit	boring,	no?	



Replace	Fickian	with	Frac,onal	
Dispersion	

∂C
∂t

= D ∂αC
∂ | x |α

+ r

€ 

1 < α ≤ 2



Take	a	step	back	

	
Recall	we	can	think	of	this	reac,on	in		
Terms	of	a	conserva,ve	component	u.	
Consider	a	system	with	u=constant		
ini,ally	and	then	we	inject	a	pulse	of		
different	u	at	posi,on	x=0.	
	

X=0	

∂U
∂t

= D ∂αU
∂ | x |α

€ 

U(t = 0) = δ(x)



When	α=2		
Classical	Fickian	diffusion	

€ 

D∇U.∇U( )

€ 

d2C1
dU 2
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' 

€ 

r =



What	happens	as	α	changes?	

−10 −5 0 5 10

0.05

0.1

0.15
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x

u



−100 −50 0 50 100
10−10

10−5

x

u

Let’s	take	a	closer	look	at	this	



What	does	this	mean	for	precipita,on	
reac,ons?	
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What	does	this	mean	for	precipita,on	
reac,ons?	
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Min	becomes	max	α		
gets	smaller	



Global	Measures	–	Mixing	(Scalar	
Dissipa,on)	
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At	early	,mes	more	anomalous	(smaller	α)=more	mixing	
At	late	,mes	–	less	mixing	



Global	Measures	–	Total	Reac,on	Rate	
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More	anomalous	–	always	less	reac,ons	(a	mixing	scale	effect???)	



Ques,ons	


