Mixing and Reaction in Highly Heterogeneous Porous Media

by
 Diogo Bolster

Dept. of Civil Engineering and Geological Sciences

Thanks to my collaborators

Heterogeneity Spreading vs Mixing

Heterogeneity => Typically Superdiffusive spreading

Topics I'll Talk About

- Incomplete Mixing and Slowdown on Chemical Reactions - Fickian and Non-Fickian
- Incomplete Mixing - When Might Tails not be due to fractional type behavior?
- How fractional dispersion can make reactions happen in places where Fickian models say it cannot - And I don't mean tails.

Topic 1

-

Incomplete Mixing and Slowdown on Chemical
Reactions - Fickian and NonFickian Transport

What does any of this mean for reactive transport?

Consider the following example:

Instantaneous? Reversible? Equilibrium?

Let's start easy - forget heterogeneity

- Kinetic, irreversible

$$
\begin{aligned}
& \mathrm{d}[\mathrm{~A}] / \mathrm{dt}=\mathrm{k}[\mathrm{~A}][\mathrm{B}] \\
& \mathrm{d}[\mathrm{~B}] / \mathrm{dt}=\mathrm{k}[\mathrm{~A}][\mathrm{B}] \\
& \mathrm{d}[\mathrm{C}] / \mathrm{dt}=-\mathrm{k}[\mathrm{~A}][\mathrm{B}]
\end{aligned}
$$

- Analytical Solution if
[A]=[B] (assume initially equal $->$ always equal)
- $A=A_{0} /\left(1+k A_{0} t\right)$

To study this let's use a numerical

model....

- Move Particles with a random walk
- Based on the distance between two particles calculate probability that they will collocate
- Then based on the reaction multiply probability that reaction will occur

Step 1 - Move Particles by Random Motion

Update Particle Positions by $\mathbf{x}(\mathrm{t}+\mathrm{dt})=\mathbf{x}(\mathrm{t})+\boldsymbol{\xi}$
Random Jump Reflecting Dispersion

Step 1 - Move Particles by Brownian Motion

Update Particle Positions by $\mathbf{x}(\mathrm{t}+\mathrm{dt})=\mathbf{x}(\mathrm{t})+\boldsymbol{\xi}$
Random Jump Reflecting Dispersion

Step 1 - Move Particles by Brownian Motion

Update Particle Positions by $\mathbf{x}(\mathrm{t}+\mathrm{dt})=\mathbf{x}(\mathrm{t})+\boldsymbol{\xi}$
Random Jump Reflecting Dispersion

Step 2 - Search for Neighbors of Opposite Particle

Particle 1

Gives distances
s1
s2

Step 3 - Calculate Probability of RXN

Probability of Reaction

Particle 1-1

$=\quad$ function of distance
Convolution of position
Probability of Collocation densities
Fickian=> Gaussian
Fractional=>Stable
e.g.
X
$$
v(\mathrm{~s}, \Delta t)=\frac{1}{(8 \pi D \Delta t)^{d / 2}} e^{-\frac{s^{2}}{8 D \Delta t}}
$$

Probability of Reaction Given
function of reaction Kinetics
Collocation

Step 4 - Die or Survive

Particle 1-1
Generate a random number $0<P<1$

If $\mathrm{P}>$ Probability of Reaction
Kill both particles

If less move to next blue particle

Step 4 - Die or Survive

Particle 1-2

Kill both particles
If less move to next blue particle

Step 4 - Die or Survive

Particle 1-2

Kill both particles
If less move to next blue particle

And so on Cycling through all blues

Step 4 - Die or Survive

Particle 1-2

Kill both particles
If less move to next blue particle

And so on Cycling through all blues

Repeat for Each red Particle

Particle 2

And so on Cycling through all reds
Then back to Step One (Move Particles)

Non Dimensional Time $\left(C_{0} K_{f} t\right)$

What do we observe? For 1d Brownian Motion

Analytical Solution

Other Observations of the Same (different methods of study)

Benson \& Meerschaert 2008, WRR

Countless other examples:

Astrophysics Particle Physics
Biochemical Processes
Turbulent Environmental Flows
Population Dynamics
Warfare Simulation

What's going on... Let's take a look at concentrations in 1d

What's going on... Let's take a look at concentrations in 1d

But what does this have to with fractional transport?

- Consider the following problem

$$
\begin{gathered}
\frac{\partial C_{i}}{\partial t}=D \frac{\partial^{\alpha} C_{i}}{\partial|x|^{\alpha}}-k C_{A} C_{B}, \quad i=A, B \quad-\infty<x<\infty \\
C_{i}(x, t)=\overline{C_{i}}(t)+C_{i}^{\prime}(x, t)
\end{gathered}
$$

But what does this have to with fractional transport?

- Consider the following problem
$\frac{\partial C_{i}}{\partial t}=D \frac{\partial^{\alpha} C_{i}}{\partial|x|^{\alpha}}-k C_{A} C_{B}, \quad i=A, B \quad-\infty<x<\infty$
Average $C_{i}(x, t)=\overline{C_{i}}(t)+C_{i}^{\prime}(x, t)$ Remainder

$$
\frac{\partial \overline{C_{i}}}{\partial t}=-k \overline{C_{A}} \overline{C_{B}}-k \overline{C_{A}^{\prime} C_{B}^{\prime}} \quad \frac{\partial C_{i}^{\prime}}{\partial t}=D \frac{\partial^{\alpha} C_{i}^{\prime}}{\partial|x|^{\alpha}}-k \overline{C_{A}} C_{B}^{\prime}-k C_{A}^{\prime} \overline{C_{B}}-k C_{A}^{\prime} C_{B}^{\prime}+k \overline{C_{A}^{\prime} C_{B}^{\prime}}
$$

But what does this have to with fractional transport?

- Consider the following problem

$$
\begin{aligned}
& \frac{\partial C_{i}}{\partial t}=D \frac{\partial^{\alpha} C_{i}}{\partial|x|^{\alpha}}-k C_{A} C_{B}, \quad i=A, B \quad-\infty<x<\infty \\
& \text { Average } \quad C_{i}(x, t)=\overline{C_{i}}(t)+C_{i}^{\prime}(x, t) \quad \text { Remainder } \\
& =-k \overline{C_{A}} \frac{C_{B}}{C_{B}}-k \overline{C_{A}^{\prime} C_{B}^{\prime}}=D \frac{\partial^{\alpha} C_{i}^{\prime}}{\partial|x|^{\alpha}}-k \overline{C_{A}} C_{B}^{\prime}-k C_{A}^{\prime} \overline{C_{B}}-k C_{A}^{\prime} C_{B}^{\prime}+k \overline{C_{A}^{\prime} C_{B}^{\prime}} \\
& f(x, y, t)=\overline{C_{A}^{\prime}(x, t) C_{B}^{\prime}(y, t)}
\end{aligned}
$$

But what does this have to with fractional transport?

- Consider the following problem

$$
\frac{\partial C_{i}}{\partial t}=D \frac{\partial^{\alpha} C_{i}}{\partial|x|^{\alpha}}-k C_{A} C_{B}, \quad i=A, B \quad-\infty<x<\infty
$$

$$
C_{i}(x, t)=\overline{C_{i}}(t)+C_{i}^{\prime}(x, t) \quad \text { Remainder }
$$

Perturbation closure

$$
\frac{\partial \overline{C_{i}}}{\partial t}=-k \overline{C_{A}} \overline{C_{B}}-k \overline{C_{A}^{\prime} C_{B}^{\prime}} \quad \frac{\partial C_{i}^{\prime}}{\partial t}=D
$$

$$
\frac{\partial C_{i}^{\prime}}{\partial t}=D \frac{\partial^{\alpha} C_{i}^{\prime}}{\partial|x|^{\alpha}}-k \overline{C_{A}} C_{B}^{\prime}-k C_{A}^{\prime} \overline{C_{B}}-k C_{A}^{\prime} C_{B}^{\prime}+k \overline{C_{A}^{\prime} C_{B}^{\prime}}
$$

$$
f(x, y, t)=\overline{C_{A}^{\prime}(x, t) C_{B}^{\prime}(y, t)}
$$

$$
f(x, y, t)=\int_{-\infty}^{\infty} R(\xi, y) G(x, \xi, t) d \xi
$$

$$
\begin{gathered}
\overline{C_{A}^{\prime}(x, 0) C_{B}^{\prime}(y, 0)}=R(x, y) \\
G(x, \xi, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-2 D_{\dagger}|k|^{\alpha} t} e^{i k(x-\xi)} d k
\end{gathered}
$$

So my equation becomes

$$
\frac{\partial \overline{C_{i}}}{\partial t}=-k{\overline{C_{i}}}^{2}+k \int_{-\infty}^{\infty} R(\xi, x) G(x, \xi, t) d \xi .
$$

So

$$
\begin{aligned}
\frac{\partial \overline{C_{i}}}{\partial t} & =-k{\overline{C_{i}}}^{2}+k \int_{-\infty}^{\infty} R(\xi, x) G(x, \xi, t) d \xi \\
R(x, y) & =\sigma^{2} l \delta(x-y) \\
& \square \frac{\partial \overline{C_{i}}}{\partial t}=-k{\overline{C_{i}}}^{2}+k \chi t^{-\frac{1}{\alpha}}
\end{aligned}
$$

So

$$
\frac{\partial \overline{C_{i}}}{\partial t}=-k{\overline{C_{i}}}^{2}+k \int_{-\infty}^{\infty} R(\xi, x) G(x, \xi, t) d \xi
$$

$$
R(x, y)=\sigma^{2} l \delta(x-y) \longmapsto \frac{\partial \overline{C_{i}}}{\partial t}=-k{\overline{C_{i}}}^{2}+k \chi t^{-\frac{1}{\alpha}}
$$

$$
\overline{C_{i}}(t)=\frac{\sqrt{\chi^{*}}}{t^{\frac{1}{2 \alpha}}} \frac{\left(I_{-\frac{\alpha-1}{2 \alpha-1}}(z)-\kappa K_{\frac{\alpha-1}{2 \alpha-1}}(z)\right)}{\left(I_{\frac{\alpha}{2 \alpha-1}}(z)+\kappa K_{\frac{\alpha}{2 \alpha-1}}(z)\right)}
$$

$$
z=\frac{2 \alpha \sqrt{\chi^{*}}}{2 \alpha-1} t^{\frac{2 \alpha-1}{2 \alpha}}
$$

So

$$
\begin{aligned}
& \frac{\partial \overline{C_{i}}}{\partial t}=-k{\overline{C_{i}}}^{2}+k \int_{-\infty}^{\infty} R(\xi, x) G(x, \xi, t) d \xi \\
& R(x, y)=\sigma^{2} l \delta(x-y) \Longrightarrow \frac{\partial \overline{C_{i}}}{\partial t}=-k{\overline{C_{i}}}^{2}+k \chi t^{-\frac{1}{\alpha}} \\
& \overline{C_{i}}(t)=\frac{\sqrt{\chi^{*}}}{t^{\frac{1}{2 \alpha}}} \frac{\left.\left(I_{-\frac{\alpha-1}{2 \alpha-1}}^{2 \alpha}(z)-\kappa K_{\frac{\alpha-1}{2 \alpha-1}}^{2 \alpha-1}\right)\right)}{\left(I_{\frac{\alpha}{2 \alpha-1}}(z)+\kappa K_{\frac{\alpha}{2 \alpha-1}}^{2(z)}\right)} \\
& z=\frac{2 \alpha \sqrt{\chi^{*}}}{2 \alpha-1} t^{\frac{2 \alpha-1}{2 \alpha}}
\end{aligned}
$$

So

$$
\begin{aligned}
& \frac{\partial \overline{C_{i}}}{\partial t}=-k{\overline{C_{i}}}^{2}+k \int_{-\infty}^{\infty} R(\xi, x) G(x, \xi, t) d \xi . \\
& R(x, y)=\sigma^{2} l \delta(x-y) \Longrightarrow \frac{\partial \overline{C_{i}}}{\partial t}=-k{\overline{C_{i}}}^{2}+k \chi t^{-\frac{1}{\alpha}} \\
& \overline{C_{i}}(t)=\frac{\sqrt{\chi^{*}}}{t^{\frac{1}{2 \alpha}}} \frac{\left(I_{-\frac{\alpha-1}{2 \alpha-1}}^{2 \alpha-1}(z)-\kappa K_{\frac{\alpha-1}{2 \alpha-1}}^{2 \alpha-1}(z)\right)}{\left(I_{\frac{\alpha}{2 \alpha-1}}(z)+\kappa K_{\frac{\alpha}{2 \alpha-1}}^{2 \alpha-1}(z)\right)} \quad \text { Late Times } \\
& z=\frac{2 \alpha \sqrt{\chi_{A}^{*}}}{2 \alpha-1} t^{\frac{2 \alpha-1}{2 \alpha}}(t)=\frac{1}{1+\left(t-t_{0}\right)} \\
&
\end{aligned}
$$

What does Solution Look like

Validation

Topic 2

-

Incomplete Mixing - When
Might Tails Exist, but not be due to fractional type behavior?
Or are they and I'm just wrong

Let's Look at Some Experiments

Famous Experiment by Gramling et al

Gramling's Measurements vs Predictions

Gramling's Measurements vs Predictions

Anomalous Transport

We Don't Think So

There is no evidence of anomalous transport in non reactive flow experiments through the same column

Looking closely at Gramling data

Looks a lot like what we called islands from our numerical models.....

Could it be incomplete mixing only?

Our Model

Set up an initial condition with all A on one side and B on the other

Our Model

Move Every Particle - Jump by dispersion

Our Model

I!

Now kill some particles probabilistically for reaction following rules from before

When we use our Methods

Pretty Good Agreement - And we can Explain Why

And the Tails....

We still use conventional transport models - but incorporate incomplete mixing effects!
To quote Dave Benson- in our model particles can 'advance further into enemy territory before reacting'

Our Model

SO - Tail does not need to mean anomalous/fractional Or
Can it be interpreted that way?

Topic 3

If not in the tails, how fractional dispersion can make reactions happen in places where Fickian dispersion cannot

Let's consider another common, but very distinct chemical reaction

Instantaneous Equilibrium Reactions

$$
\begin{gathered}
\frac{\partial C_{i}}{\partial t}=D \nabla^{2} C_{i}+r \quad i=1,2 \\
\frac{\partial C_{3}}{\partial t}=-r \\
C_{1} C_{2}=K
\end{gathered}
$$

Equilibrium

Instantaneous Equilibrium Reaction

$$
\text { (a) } \frac{\partial C_{i}}{\partial t}=D \nabla^{2} C_{i}+r \quad i=1,2
$$

$$
\begin{gathered}
\frac{\partial C_{i}}{\partial t}=D \nabla^{2} C_{i}+r \quad i=1,2 \\
\frac{\partial C_{3}}{\partial t}=-r \\
C_{1} C_{2}=K
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial C_{i}}{\partial t}=D \nabla^{2} C_{i}+r \quad i=1,2 \\
\frac{\partial C_{3}}{\partial t}=-r \\
C_{1} C_{2}=K
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial C_{i}}{\partial t}=D \nabla^{2} C_{i}+r \quad i=1,2 \\
\frac{\partial C_{3}}{\partial t}=-r \\
C_{1} C_{2}=K
\end{gathered}
$$

- Local Measure of Mixing - Drives many Reactions

$$
r=\underbrace{(D \nabla U . \nabla U)}_{\text {MIXING }} \underbrace{\left(\frac{d^{2} C_{1}}{d U^{2}}\right)}_{\text {Chemistry }}
$$

- Local Measure of Mixing - Drives many Reactions

$$
r=(D \nabla U . \nabla U)
$$

MIXING

???=\$\$\$

Chemistry

Interesting, but let's worry about this later on as heterogeneity plays little role on this

How do we Quanitify Mixing?

- Local Measure of Mixing - Drives many Reactions

$$
r=(D \nabla U . \nabla U)
$$

MIXING

- Global Measure of Mixing (integrate r over whole domain)

$$
M=\int_{\Omega}(D \nabla U . \nabla U) d \Omega=-\frac{1}{2} \frac{d}{d t} \int_{\Omega} U^{2} d \Omega
$$

Scalar Dissipation Rate

Homogeneous Mixing

A little bit boring, no?

Replace Fickian with Fractional Dispersion

$$
\begin{gathered}
\frac{\partial C}{\partial t}=D \frac{\partial^{\alpha} C}{\partial|x|^{\alpha}}+r \\
1<\alpha \leq 2
\end{gathered}
$$

Take a step back

Recall we can think of this reaction in Terms of a conservative component u. Consider a system with u=constant initially and then we inject a pulse of different u at position $\mathrm{x}=0$.

$$
x=0
$$

When $\alpha=2$

Classical Fickian diffusion

Concentration at a fixed time

$$
r=(D \nabla U . \nabla U)\left(\frac{d^{2} C_{1}}{d U^{2}}\right)
$$

What happens as α changes?

Let's take a closer look at this

What does this mean for precipitation

 reactions?$$
r(x, t)=D_{\alpha} \sum_{k=1}^{\infty}\binom{\alpha-1}{k} \frac{\partial^{\alpha-k} u}{\partial|x|^{\alpha-k}} \frac{\partial^{k}}{\partial x^{k}} \frac{d c}{d u}
$$

What does this mean for precipitation reactions?

Global Measures - Mixing (Scalar Dissipation)

At early times more anomalous (smaller α)=more mixing At late times - less mixing

Global Measures - Total Reaction Rate

More anomalous - always less reactions (a mixing scale effect???)

Questions

