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Past

CTRWs

Let {J;}°; be a sequence of i.i.d. positive random variables with the meaning of
waiting times between events. Let N(t) be the corresponding renewal counting
process and {X;}7°, a sequence of i.i.d. random variables. Define

Then the density fx()(x, t)dx = P(X(t) € dx|X(0) = 0) obeys the following
equation (1):
! of; t Hoo
/ dt’q)(t_ t’)% = —p(X7 t)+/ dx’ fx(X—X/)fx(t)(X/,t/)
0 —oo

where (using Laplace transforms)

us
and F_J(f) =1- FJ(l’).
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Past

Two-state Markov chain |

A clear and simple relation between relaxation and semi-Markov processes is in
(2). Consider a two-state system existing in states A and B. Assume that state A
is transient and state B absorbing. The deterministic embedded chain has the
following transition probabilities gaa =0, gag =1, gg.a =0, and gg.g = 1.
This means that if the system is prepared in state A, it will jump to state B at the
first step and it will stay there forever. Suppose that the inter-event time J is
random and follows an exponential distribution with rate A = 1 for the sake of
simplicity. Let Y(t) denote the state of the time-changed chain at time ¢, then

pii(t) = P(Y(t) = j|Y(0) = i) = Fy(t)dr; + > a{VP(N(t) = n).
n=1

Then paa(t) = F,(t) = exp(—t): the probability of finding the system in the
initial state decays exponentially towards zero.

us
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Past

Two-state Markov chain |l

The relaxation function exp(—t) is the solution of

d
—paa(t) = —paa(t), paa(0)=1

dt
The response function is defined as £p(t) = —dpa a(t)/dt and its Laplace
transform is 1/(1 + s). For s = —iw this is the Debye model (2). If inter-event
times follow the Mittag-Leffler distribution, we get pa a(t) = F,(t) = Eg(—t").
This is the solution of (3)

dB
WPA,A(t) = —paa(t), paa(0)=1.

In this case, the Laplace transform of the response function
Ecc(t) = —dpana(t)/dt is 1/(1 + s”) and for s = —iw, we get the Cole-Cole
model (2). For a general renewal time change N(t) one gets

t dpa a(t’)
/ _ i 9PAAL) =
/0 dt’ d(t —t') gt paa(t), paa(0)=1. us
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Present Theory

Meerschaert and Toaldo

Meerschaert and Toaldo in (4) consider non-local abstract Cauchy problems on
Banach and Hilbert spaces of the form introduced above

®:q(t) = Aq(t), q(0) = u.

as well as related time-changed processes as in the previous examples.
Our recent examples belong to this class of problems. We are interested in
applications.

@ Can we find explicit expressions for cumulative distribution function, etc. of
the time-changed processes?

@ How this is related to the solution of relaxation problems?

@ Is numerical work possible?
@ What can we say on mixing and stability of time-changed processes?

us
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Present Examples

Statistics

Let {X;}"_; be a sequence of n independent and identically distributed positive
random variables with cumulative distribution function Fx,(u) =P(X; < u). A
statistic is a function from R” to R that summarizes some characteristic behavior

of the random variables:
Sn = Gp(Xy, ... Xy).

Examples:
o s\ = S Xi
Q S,(,2) = max{Xy,..., Xp};
o 51(13) = H7=1 Xi.

us
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Present Examples

Renewal process

Introduce another set of positive independent and identically distributed random
variables (independent from the X;s) {J;}$2; with the meaning of sojourn times.
Let F,(t) = P(J < t) denote the cumulative distribution function of the J;s and
fi(t) = dF,(t)/dt denote their probability density function. The epochs at which

events occur are
n
Tn - Z J,‘,
i=1
and the counting process N(t) giving the number of events that occur up to time

tis
N(t) =max{n: T, < t}.

us
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Present Examples

Continuous-time statistics

The continuous-time statistic S(t) corresponding to S, is

S(t) = Sney = Gy (X, - - » Xivge))-
Examples:
0 Sty = XM x:
[2) 5,(\,2()t) = max{X1, ..., Xno };
0 Suy =TI x.

us
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Present Examples

Convolution-type statistics-1

To connect continuous-time statistics and relaxation equations, consider a special
class of statistics of convolution type (as in the examples above). Denote these
statistics with the following symbol

Further assume the existence of a linear transform Lgy such that

Lgy(Fs,(u))(w) = [Lg(Fx, (u))(w)]".
Now consider a continuous-time statistic of convolution time

N(t)

S(t) = 5[\[(1;) = @Xiv
i=1

and compute its cumulative distribution function. us
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Present Examples

Convolution-type statistics-2

One has
Fs(ey(u) =P(S(t) < u) =Y Fs,(u)P(N(t) = n).

Let Q(w, s) denote the Laplace-Lgy transform of Fs(,)(u)
Q(w, s) = LLg(Fs()(v))(w; 5).

Under suitable conditions, one gets

_ 1
Qw,s) = LIF,(t))(s)1— L(f,(1))(s) L (Fx, (u))(w)’

where F;(t) =1 — F,(t) is the complementary cumulative distribution function of
the time intervals {J;}?°;.

us
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Present Examples

Anomalous relaxation and convolution-type statistics

Following Mainardi et al. (1), Meerschaert and Toaldo (4), Georgiou et al. (5),
the above Laplace transform can be inverted to get

Qw. t) = Lgy(Fs(ry(u))(w) = L7HQ(w, 9))(t),

the solution of the Cauchy problem (Q(w, t = 0) = 1) for the following
pseudo-differential relaxation equation

[ ete— 22 g 1 g (F ()W)
0

where _

us
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Present Examples

A simple example-1

Consider the continuous-time sum statistic

N(t)

SO =>" X

i=1

where N(t) is the Poisson process.

In this case, @ is the usual convolution and the operator EEB coincides with the
usual Laplace transform L. As the J;s are exponentially distributed, one can see
that the kernel ®(t) in the relaxation equation coincides with Dirac’s delta §(t).

us
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Present Examples

A simple example-2

As ®(t) = 4(t), one gets an ordinary relaxation equation

9O (w,t) _

T —(1 = L(Fx; (u))(w)) QW (w, ).

The solution of the Cauchy problem for the above relaxation equation is
QW (w, t) = exp(—(1 — L(Fx, (u))(w))t)

leading to (rate A = 1)

o0 I'I

F5(1 (t)(u = exp Z

n=0

where F%"(u) denotes the n-fold convolution and F{?(u) = 0(u).
us
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Present Examples

A non-trivial example-1

Take the maximum continuous-time statistic
s = max{X: Xnn) }
N(t) 1o XN(t) -

Assume that sojourn times J; are independent and identically positive random
variables following a Mittag-Leffler distribution; in other words, the cumulative
distribution function of J; is given by

Fi(t) =1 — En(—t%), (2.1)
where - ]

Ealz) = ; r(n; 1)
with a € (0,1).

us
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Present Examples

A non-trivial example-2

In this case, € is the usual product and the operator Lgy is the identity. The

kernel is
t—Oé

rl-a)’

and the non-local relaxation equation becomes

(t) =

(r“)O‘Q(z)(u7 t)

oo = _(1 - Fxl(u))QQ)(u, t)7

where 0% /0t“ is the Caputo derivative. The solution of the Cauchy problem for
the relaxation equation is

Fse(u) = QP (u, 1) = Ea(—(1 — Fx ()t?).

us
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Present Examples

Model for “Human” Dynamics?

As an example from (5), consider a population of 5 and let X, be the number of
links at discrete time n.

us
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Present Examples

Model for “Human” Dynamics?

As an example from (5), consider a population of 5 and let X, be the number of
links at discrete time n.

@ Initial state of the number of links is
Xo = 4.

us
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Present Examples

Model for “Human” Dynamics?

As an example from (5), consider a population of 5 and let X, be the number of
links at discrete time n.

@ Initial state of the number of links is
Xo = 4.

@ A link is chosen uniformly, and if
present...

us
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Present Examples

Model for “Human” Dynamics?

As an example from (5), consider a population of 5 and let X, be the number of
links at discrete time n.

Q Initial state of the number of links is
Xo = 4.

@ A link is chosen uniformly, and if
present...

© ...it is deleted. X; = 3.

us
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Present Examples

Model for “Human” Dynamics?

As an example from (5), consider a population of 5 and let X, be the number of
links at discrete time n.

@ Initial state of the number of links is

Xo = 4.

@ A link is chosen uniformly, and if
present...

© ...it is deleted. X; = 3.

@ Otherwise...
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Present Examples

Model for “Human” Dynamics?

As an example from (5), consider a population of 5 and let X, be the number of
links at discrete time n.

@ Initial state of the number of links is

Xo = 4.

@ A link is chosen uniformly, and if
present...

© ...it is deleted. X; = 3.

@ Otherwise...

Q@ ... itisadded. X; = 4.
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Present Examples

Model for “Human” Dynamics?

As an example from (5), consider a population of 5 and let X, be the number of
links at discrete time n.

@ Initial state of the number of links is

Xo = 4.

@ A link is chosen uniformly, and if
present...

© ...it is deleted. X; = 3.

@ Otherwise...

Q@ ... itisadded. X; = 4.

Human interactions are generally ‘slow' in evolution. Add Mittag-Leffler dynamics.

us
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Present Examples

Embedded Ehrenfest Chain

Xn,n > 1, is the number of links after n events. Initially Xy = i, as we start with 7
present links and the number of links in the network increases, remains or
decreases according to the following transition probabilities

0, k=0,
Qk,k—1 = Pi{)<j+1 = k — ].|)<J = k} = 1—a7 k= M,
(1—a)sg, otherwise,

Ak = Pi{Xjp1 = k|Xj = k} = a,

1—aq, k=0,
k1 = Pi{X1 = k+1[X; = k} = 0, k=M,
1—a-— W, otherwise.

us
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Present Examples

Bottom-up derivation with semi-Markov dynamics-1

Mittag-Leffler again!

Q Mittag-Leffler i.i.d. waiting times {J;};>1 of order 8 € (0, 1), scaling v > 0
and c.d.f.

FE(8) =Bl < 1) = 1 E(~(t/2)").
where Eg(z) is the Mittag-Leffler function, defined by

Ea(z) = ;ruﬂn

In this talk v = 1 unless explicitly said otherwise.

@ Counting process

Ng()—max{ 52J<t}

counts the number of M-L events up to time t. us
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Present Examples

Bottom-up derivation with semi-Markov dynamics-2

© The number of links in the fractional network is given (via the embedded

chain) by
X(t) == XNﬁ(t) == Xn ]1‘{5,, S t < 5n+1}.

In words, at every M-L event, the chain jumps according to the discrete
transition probabilities.

@ All information about X(t) is encoded in {(X,, Jn)}n>1 which are a discrete
Markov renewal process, satisfying

]P{XnJrl :ja Jn+1 <u | (XO» S0)7 ey (Xn - ’.» Sn)}
= ]P){Xn_;,_l :.j?JfH-]- S U‘Xn = I}

X(+) is then a semi-Markov process subordinated to Ng(t) and satisfies the
forward equations

pij(t)= u"'z qZ,J/ Pie f(ﬂ)(t u) du

Les

Here pij(t) = B{X(t) = jIX(0) = i}, ccdf. F (1) =1—F(t) and g
£O)(t) the M-L(B) density.
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Present Examples

Fractional Kolmogorov Equations

Theorem (Georgiou, Kiss, Scalas 2015 (5))
The probabilities p; j(t) satisfy the following pseudo-differential equations

dBp;i(t M~—j+1 Jj+1
S0 ——1-0) pis(0) + (1 - ) (M a0+ S prsa(e))

Similarly, the equations of the boundary terms are

B p.
dcl!)’i,toﬁ(t) =(1-a) (Pi,o(f) + Alﬂp"vl(t))

B p;
% = (]_ — a) (—Pi,M(t) T /\:L/Ipi7M—1(t)) :

us
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Present Examples

Solution to the fractional equations

p(t) = BAAX(8) = )
= SCBAX(E) = Na(t) = K} = ZP{X ) = JINs(E) = KYE{Ns(6) = K}
_ BX(0) = /N5 (6) = OFB(Ns(1) = 0}

v ZP{X ) = JINs(t) = K X(0) = B{N5 (1) = K}

=PAX(t) =j|Ts > t}P{Ty > t} + > Pi{X(t) = j|Ns(t) = k}P{Ns(t) = k}
k=1

= 5 F () + 3 Pif X = JIL{Sk < t < Sii1}YP{Ns(t) = k}
k=1

= 5 F () + S Pif X = JYP{Ns(t) = K}, s
k=1
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Present Examples

Monte-Carlo simulations

0.06
where it finally leads to
0.05
—=(8)
pij(t) = 6;F7 (1) e ™
oo w o003
+ Z g P{Nﬁ(t) = k}' 0.02
k=1
0.01
Here’ - it
B0 00 120 T4 60 T80

tﬁn () 5 Link Count
P{Ns(t) = k} = ——EP(=tP). |
n: Figure: Discrete markers are the estimated
probabilities p1go,;(250), averaged over 10000 MC
simulations starting from a fully connected network
with N = 20 nodes and for 8 = 1,0.7,0.5, as we
move from left to right.

Scalas, Gorenflo, Mainardi
(2004) (3).

us
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Present Examples

Approximation to power law distributions.

) 3=1.7,p=07y=4 , 9=15p-05y-3.14
10 10
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10
X X

Pareto density:

0—1

fo)(s) = ~———=,5 > 0.

(14 s)’

sin(B7) T(B)

o Can we use the analytical fractional
network as a rigorous approximation to
others?

@ Main idea: For a fixed finite time
horizon T, the value of the r.v. Nt is
(severely) restricted by the long
inter-event times that are not
“uncommon’ because of the fat tails.

@ Match the survival functions (c.c.d.f), at
least up to T, by playing with scaling .

m ()

Enrico Scalas

1/8
1 v /F
-1 sin(Bm)(B)
us
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Future

Three Monte Carlo tests for the approximation

0.06 ©) 0.06 ®)
@ Finite time horizon T, link 0.04 004
distributions P{XT = k} 0.02 }ﬁ 0.02
%0 100 150 200 r‘50 100 150 200
Link Count
200
) B0 e
@ The evolution of E(X;), Lol
0<t<T. 5o
100
800 500 IOtOO 1500 2000
0.
© The prevalence of a Markovian Bool\ ]
S-I-S epidemic on the dynamical Sou
network. o2 "

500 1000 1500 2000
t

us
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Future

Equilibrium via the discrete embedding

Network of N nodes and maximum possible number of links M = N(/\éfl).

Order the links and encode the state of the network by a 0 — 1
(M-dimensional) vector. Possible states are the 2™ vertices of the hypercube.

Discrete Ehrenfest chain defines a random walk on the hypercube, therefore
the equilibrium distribution on graphs is, by symmetry, uniform.

Moreover, we have Erdés-Rényi(1/2) network selection:

H]P{L = x}

P{L1:X1,L2:X2,.. Lk—Xk}—

and binomial degree distribution.

Recall: Markov Chains tend a.s. (empirically) to their invariant limit (ergodic
theorem). Renewal counting processes satisfy SLLN and £! convergence
(renewal theorems). Versions of MCMC work well because of this fact.
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Future

Equilibrium via the discrete embedding

@ The fat tails destroy several of these properties (including the appropriate
scaling) for all the good theorems because of the considerable time delay.

@ Monte-Carlo simulations need to be treated with care. E.g FRT fails to give
meaningful information

E(Ng(t)) = CtP = Jim t'E(Ns(t)) = 0.

© Main idea: Utilise the mixing time of the discrete chain to decide whether
you are studying near-equilibrium behaviour or not.

@ We say the chain is well mixed at time T (in the total variation distance), up
to some tolerance ¢ if

sup [Pi{X(T) =/} —7())| < e.

The mixing time tmix(¢) is the infimum over all times such that the chain
is well-mixed.
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Future

Numerical approximation of the equilibrium

Theorem (Diakonis, Chen - Sallof-Coste, ...)

For the discrete Ehrenfest Markov chain on M states,

tmix(€) < Ce™2M? log M.

@ Same bound will hold for the continuous MC because of the law of large
numbers. Thus, what is essential for mixing, is to have tmix(¢) many jumps.

@ For a finite time horizon T, the expected number of jumps of the fractional
chain is CT?. Therefore, for the chain to be well-mixed at time T we must
at least have that

T = Ce= P M?/B(log M)Y/5.

@ This horizon becomes forbidding/unrealistic for large networks (or small ) so
quite likely we are away from equilibrium.
@ This argument is not quite rigorous, but it can be made.

us
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Future
Numerical approximation of the equilibrium
Let o << fB. Also let s=—t"7 < 0. Then
P{Ns(t) < t} = P{eV(t) > 5"} < eIt (e IsINo (1))
)

Es(—t7) = Ce" "0
~ C(1+ to M40 = C(+=F+ 4 B+e) 5 0,

te—n

=e" "Ep(—tP(1—-e"

a—n
Net

Therefore, with probability near
1, for a sufficiently large time
horizon, the counting process
Ng > t so the sufficient con-
dition for mixing is

For any § > 0,

Edge count Edge count

T > C(e)MEH0)/B(1og M)(1+0)/8
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Future

To do

We have preliminary answers to our questions

@ Can we find explicit expressions for cumulative distribution function, etc. of
the time-changed processes?
Indeed!

@ How this is related to the solution of relaxation problems?
Probabilities turn out to be solutions of relaxation problems!

@ |s numerical work possible?
It is possible. We use Monte Carlo simulations, but other methods are
welcome!

@ What can we say on mixing and stability of time-changed processes?
We are working on that, stay tuned!

And there is no limit to modelling. For instance, we are now working on more
refined time-changed network dynamical models related to percolation models.

us
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Future

Thank You

us
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Future

Thank You
Questions & Comments ?

2

L

~—l —_tr

us
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