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Past

CTRWs

Let {Ji}∞i=1 be a sequence of i.i.d. positive random variables with the meaning of
waiting times between events. Let N(t) be the corresponding renewal counting
process and {Xi}∞i=1 a sequence of i.i.d. random variables. Define

X (t) =

N(t)∑
i=1

Xi

Then the density fX (t)(x , t)dx = P(X (t) ∈ dx |X (0) = 0) obeys the following
equation (1):∫ t

0

dt ′ Φ(t − t ′)
∂fX (t)(x , t

′)

∂t ′
= −p(x , t) +

∫ +∞

−∞
dx ′ fX (x − x ′)fX (t)(x

′, t ′)

where (using Laplace transforms)

L(Φ(t))(s) =
L(F̄J(t))(s)

L(fJ(t))(s)

and F̄J(t) = 1− FJ(t).
Enrico Scalas Relaxation and Semi-Markov Processes 21 October, 2016 2 / 31



Past

Two-state Markov chain I

A clear and simple relation between relaxation and semi-Markov processes is in
(2). Consider a two-state system existing in states A and B. Assume that state A
is transient and state B absorbing. The deterministic embedded chain has the
following transition probabilities qA,A = 0, qA,B = 1, qB,A = 0, and qB,B = 1.
This means that if the system is prepared in state A, it will jump to state B at the
first step and it will stay there forever. Suppose that the inter-event time J is
random and follows an exponential distribution with rate λ = 1 for the sake of
simplicity. Let Y (t) denote the state of the time-changed chain at time t, then

pi,j(t) = P(Y (t) = j |Y (0) = i) = F̄J(t)δi,j +
∞∑
n=1

q
(n)
i,j P(N(t) = n).

Then pA,A(t) = F J(t) = exp(−t): the probability of finding the system in the
initial state decays exponentially towards zero.
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Past

Two-state Markov chain II

The relaxation function exp(−t) is the solution of

d

dt
pA,A(t) = −pA,A(t), pA,A(0) = 1.

The response function is defined as ξD(t) = −dpA,A(t)/dt and its Laplace
transform is 1/(1 + s). For s = −iω this is the Debye model (2). If inter-event
times follow the Mittag-Leffler distribution, we get pA,A(t) = F J(t) = Eβ(−tβ).
This is the solution of (3)

dβ

dtβ
pA,A(t) = −pA,A(t), pA,A(0) = 1.

In this case, the Laplace transform of the response function
ξCC (t) = −dpA,A(t)/dt is 1/(1 + sβ) and for s = −iω, we get the Cole-Cole
model (2). For a general renewal time change N(t) one gets∫ t

0

dt ′ Φ(t − t ′)
dpA,A(t ′)

dt ′
= −pA,A(t), pA,A(0) = 1.
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Present Theory

Meerschaert and Toaldo

Meerschaert and Toaldo in (4) consider non-local abstract Cauchy problems on
Banach and Hilbert spaces of the form introduced above

Φtq(t) = Aq(t), q(0) = u.

as well as related time-changed processes as in the previous examples.
Our recent examples belong to this class of problems. We are interested in
applications.

Can we find explicit expressions for cumulative distribution function, etc. of
the time-changed processes?

How this is related to the solution of relaxation problems?

Is numerical work possible?

What can we say on mixing and stability of time-changed processes?
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Present Examples

Statistics

Let {Xi}ni=1 be a sequence of n independent and identically distributed positive
random variables with cumulative distribution function FX1(u) = P(X1 ≤ u). A
statistic is a function from Rn to R that summarizes some characteristic behavior
of the random variables:

Sn = Gn(X1, . . .Xn).

Examples:

1 S
(1)
n =

∑n
i=1 Xi ;

2 S
(2)
n = max{X1, . . . ,Xn};

3 S
(3)
n =

∏n
i=1 Xi .
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Present Examples

Renewal process

Introduce another set of positive independent and identically distributed random
variables (independent from the Xi s) {Ji}∞i=1 with the meaning of sojourn times.
Let FJ(t) = P(J ≤ t) denote the cumulative distribution function of the Ji s and
fJ(t) = dFJ(t)/dt denote their probability density function. The epochs at which
events occur are

Tn =
n∑

i=1

Ji ,

and the counting process N(t) giving the number of events that occur up to time
t is

N(t) = max{n : Tn ≤ t}.
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Present Examples

Continuous-time statistics

The continuous-time statistic S(t) corresponding to Sn is

S(t) = SN(t) = GN(t)(X1, . . . ,XN(t)).

Examples:

1 S
(1)
N(t) =

∑N(t)
i=1 Xi ;

2 S
(2)
N(t) = max{X1, . . . ,XN(t)};

3 S
(3)
N(t) =

∏N(t)
i=1 Xi .
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Present Examples

Convolution-type statistics-1

To connect continuous-time statistics and relaxation equations, consider a special
class of statistics of convolution type (as in the examples above). Denote these
statistics with the following symbol

Sn =
n⊕

i=1

Xi .

Further assume the existence of a linear transform L⊕ such that

L⊕(FSn(u))(w) = [L⊕(FX1(u))(w)]n.

Now consider a continuous-time statistic of convolution time

S(t) = SN(t) =

N(t)⊕
i=1

Xi ,

and compute its cumulative distribution function.
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Present Examples

Convolution-type statistics-2

One has

FS(t)(u) = P(S(t) ≤ u) =
∞∑
n=0

FSn(u)P(N(t) = n).

Let Q(w , s) denote the Laplace-L⊕ transform of FS(t)(u)

Q(w , s) = LL⊕(FS(t)(u))(w , s).

Under suitable conditions, one gets

Q(w , s) = L(F̄J(t))(s)
1

1− L(fJ(t))(s)L⊕(FX1(u))(w)
,

where F̄J(t) = 1− FJ(t) is the complementary cumulative distribution function of
the time intervals {Ji}∞i=1.
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Present Examples

Anomalous relaxation and convolution-type statistics

Following Mainardi et al. (1), Meerschaert and Toaldo (4), Georgiou et al. (5),
the above Laplace transform can be inverted to get

Q(w , t) = L⊕(FS(t)(u))(w) = L−1(Q(w , s))(t),

the solution of the Cauchy problem (Q(w , t = 0) = 1) for the following
pseudo-differential relaxation equation∫ t

0

Φ(t − t ′)
∂Q(w , t ′)

∂t ′
dt ′ = −[1− L⊕(FX1(u))(w))]Q(w , t),

where

L(Φ(t))(s) =
L(F̄J(t))(s)

L(fJ(t))(s)
.
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Present Examples

A simple example-1

Consider the continuous-time sum statistic

S (1)(t) =

N(t)∑
i=1

Xi .

where N(t) is the Poisson process.
In this case,

⊕
is the usual convolution and the operator L⊕ coincides with the

usual Laplace transform L. As the Ji s are exponentially distributed, one can see
that the kernel Φ(t) in the relaxation equation coincides with Dirac’s delta δ(t).
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Present Examples

A simple example-2

As Φ(t) = δ(t), one gets an ordinary relaxation equation

∂Q(1)(w , t)

∂t
= −(1− L(FX1(u))(w))Q(1)(w , t).

The solution of the Cauchy problem for the above relaxation equation is

Q(1)(w , t) = exp(−(1− L(FX1(u))(w))t)

leading to (rate λ = 1)

FS(1)(t)(u) = exp(−t)
∞∑
n=0

F ?nX1
(u)

tn

n!
,

where F ?nX1
(u) denotes the n-fold convolution and F ?0X1

(u) = θ(u).
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Present Examples

A non-trivial example-1

Take the maximum continuous-time statistic

S
(2)
N(t) = max{X1, . . . ,XN(t)}.

Assume that sojourn times Ji are independent and identically positive random
variables following a Mittag-Leffler distribution; in other words, the cumulative
distribution function of J1 is given by

FJ1(t) = 1− Eα(−tα), (2.1)

where

Eα(z) =
∞∑
n=0

zn

Γ(nα + 1)

with α ∈ (0, 1).
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Present Examples

A non-trivial example-2

In this case,
⊕

is the usual product and the operator L⊕ is the identity. The
kernel is

Φ(t) =
t−α

Γ(1− α)
,

and the non-local relaxation equation becomes

∂αQ(2)(u, t)

∂tα
= −(1− FX1(u))Q(2)(u, t),

where ∂α/∂tα is the Caputo derivative. The solution of the Cauchy problem for
the relaxation equation is

FS(2)(t)(u) = Q(2)(u, t) = Eα(−(1− FX1(u))tα).
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Present Examples

Model for “Human” Dynamics?

As an example from (5), consider a population of 5 and let Xn be the number of
links at discrete time n.

1 Initial state of the number of links is
X0 = 4.

2 A link is chosen uniformly, and if
present...

3 ...it is deleted. X1 = 3.

4 Otherwise...

5 ... it is added. X2 = 4.

Human interactions are generally ‘slow’ in evolution. Add Mittag-Leffler dynamics.
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Present Examples

Embedded Ehrenfest Chain

Xn, n ≥ 1, is the number of links after n events. Initially X0 = i , as we start with i
present links and the number of links in the network increases, remains or
decreases according to the following transition probabilities

qk,k−1 = Pi{Xj+1 = k − 1|Xj = k} =


0, k = 0,

1− α, k = M,

(1− α) k
M , otherwise,

qk,k = Pi{Xj+1 = k |Xj = k} = α,

qk,k+1 = Pi{Xj+1 = k + 1|Xj = k} =


1− α, k = 0,

0, k = M,

1− α− k(1−α)
M , otherwise.
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Present Examples

Bottom-up derivation with semi-Markov dynamics-1

Mittag-Leffler again!

1 Mittag-Leffler i.i.d. waiting times {Ji}i≥1 of order β ∈ (0, 1), scaling γ > 0
and c.d.f.

F
(β,γ)
T (t) = P{J ≤ t} = 1− Eβ(−(t/γ)β).

where Eβ(z) is the Mittag-Leffler function, defined by

Eβ(z) =
∞∑
n=0

zn

Γ(1 + βn)
.

In this talk γ = 1 unless explicitly said otherwise.

2 Counting process

Nβ(t) = max

{
n : Sn =

n∑
i=1

Ji ≤ t

}
.

counts the number of M-L events up to time t.
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Present Examples

Bottom-up derivation with semi-Markov dynamics-2

1 The number of links in the fractional network is given (via the embedded
chain) by

X (t) = XNβ(t) = Xn 11{Sn ≤ t < Sn+1}.
In words, at every M-L event, the chain jumps according to the discrete
transition probabilities.

2 All information about X (t) is encoded in {(Xn, Jn)}n≥1 which are a discrete
Markov renewal process, satisfying

P{Xn+1 = j , Jn+1 ≤ u | (X0,S0), . . . , (Xn = i ,Sn)}
= P{Xn+1 = j , Jn+1 ≤ u|Xn = i}.

X (·) is then a semi-Markov process subordinated to Nβ(t) and satisfies the
forward equations

pi,j(t)= F
(β)

J (t)δij+
∑
`∈S

q`,j

∫ t

0

pi,`(u)f
(β)
J (t − u) du.

Here pi,j(t) = P{X (t) = j |X (0) = i}, c.c.d.f. F
(β)

J (t) = 1− F
(β)
J (t) and

f
(β)
t (t) the M-L(β) density.

Enrico Scalas Relaxation and Semi-Markov Processes 21 October, 2016 19 / 31



Present Examples

Fractional Kolmogorov Equations

Theorem (Georgiou, Kiss, Scalas 2015 (5))

The probabilities pi,j(t) satisfy the following pseudo-differential equations

dβpi,j(t)

d tβ
= −(1− α) pi,j(t) + (1− α)

(
M − j + 1

M
pi,j−1(t) +

j + 1

M
pi,j+1(t)

)
Similarly, the equations of the boundary terms are

dβpi,0(t)

d tβ
= (1− α)

(
−pi,0(t) +

1

M
pi,1(t)

)
dβpi,M(t)

d tβ
= (1− α)

(
−pi,M(t) +

1

M
pi,M−1(t)

)
.
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Present Examples

Solution to the fractional equations

pi,j(t) = Pi{X (t) = j}

=
∞∑
k=0

Pi{X (t) = j ,Nβ(t) = k} =
∞∑
k=0

Pi{X (t) = j |Nβ(t) = k}P{Nβ(t) = k}

= Pi{X (t) = j |Nβ(t) = 0}P{Nβ(t) = 0}

+
∞∑
k=1

P{X (t) = j |Nβ(t) = k ,X (0) = i}P{Nβ(t) = k}

= Pi{X (t) = j |T1 ≥ t}P{T1 ≥ t}+
∞∑
k=1

Pi{X (t) = j |Nβ(t) = k}P{Nβ(t) = k}

= δijF
(β)

T (t) +
∞∑
k=1

Pi{Xk = j |11{Sk ≤ t < Sk+1}}P{Nβ(t) = k}

= δijF
(β)

T (t) +
∞∑
k=1

Pi{Xk = j}P{Nβ(t) = k},
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Present Examples

Monte-Carlo simulations

where it finally leads to

pi,j(t) = δijF
(β)

T (t)

+
∞∑
k=1

q
(k)
ij P{Nβ(t) = k}.

Here,

P{Nβ(t) = k} =
tβn

n!
E

(n)
β (−tβ).

Scalas, Gorenflo, Mainardi
(2004) (3).

Link ount
60 80 100 120 140 160 180

P
L

(T
)

0

0.01

0.02

0.03

0.04

0.05

0.06

Figure: Discrete markers are the estimated
probabilities p190,j(250), averaged over 10000 MC
simulations starting from a fully connected network
with N = 20 nodes and for β = 1, 0.7, 0.5, as we
move from left to right.
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Present Examples

Approximation to power law distributions.

10
−10

10
0

10
10

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

x

P
(X

≥
 x

)

δ=1.7,β=0.7,γ=4

 

 

PWL

ML

10
−10

10
0

10
10

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

x

δ=1.5,β=0.5,γ=3.14

 

 

PWL

ML

Pareto density:

fP(δ)(s) =
δ − 1

(1 + s)δ
, s > 0.

Can we use the analytical fractional
network as a rigorous approximation to
others?

Main idea: For a fixed finite time
horizon T , the value of the r.v. NT is
(severely) restricted by the long
inter-event times that are not
“uncommon” because of the fat tails.

Match the survival functions (c.c.d.f), at
least up to T , by playing with scaling γ.

sin(βπ)

π

Γ(β)

(t/γ)β
=

1

tδ−1
⇐⇒ γ =

(
π

sin(βπ)Γ(β)

)1/β
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Future

Three Monte Carlo tests for the approximation

1 Finite time horizon T , link
distributions P{XT = k}.

2 The evolution of E(Xt),
0 ≤ t ≤ T .

3 The prevalence of a Markovian
S-I-S epidemic on the dynamical
network.
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Future

Equilibrium via the discrete embedding

1 Network of N nodes and maximum possible number of links M = N(N−1)
2 .

2 Order the links and encode the state of the network by a 0− 1
(M-dimensional) vector. Possible states are the 2M vertices of the hypercube.

3 Discrete Ehrenfest chain defines a random walk on the hypercube, therefore
the equilibrium distribution on graphs is, by symmetry, uniform.

4 Moreover, we have Erdös-Rényi(1/2) network selection:

P{L1 = x1, L2 = x2, . . . , Lk = xk} =
2M−k

2M
=

k∏
i=1

P{Li = xi}

and binomial degree distribution.

5 Recall: Markov Chains tend a.s. (empirically) to their invariant limit (ergodic
theorem). Renewal counting processes satisfy SLLN and L1 convergence
(renewal theorems). Versions of MCMC work well because of this fact.
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Future

Equilibrium via the discrete embedding

1 The fat tails destroy several of these properties (including the appropriate
scaling) for all the good theorems because of the considerable time delay.

2 Monte-Carlo simulations need to be treated with care. E.g FRT fails to give
meaningful information

E(Nβ(t)) = Ctβ =⇒ lim
t→∞

t−1E(Nβ(t)) = 0.

3 Main idea: Utilise the mixing time of the discrete chain to decide whether
you are studying near-equilibrium behaviour or not.

4 We say the chain is well mixed at time T (in the total variation distance), up
to some tolerance ε if

sup
j
|Pi{X (T ) = j} − π(j)| ≤ ε.

The mixing time tmix(ε) is the infimum over all times such that the chain
is well-mixed.
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Future

Numerical approximation of the equilibrium

Theorem (Diakonis, Chen - Sallof-Coste, ...)

For the discrete Ehrenfest Markov chain on M states,

tmix(ε) ≤ Cε−2M2 logM.

1 Same bound will hold for the continuous MC because of the law of large
numbers. Thus, what is essential for mixing, is to have tmix(ε) many jumps.

2 For a finite time horizon T , the expected number of jumps of the fractional
chain is CTβ . Therefore, for the chain to be well-mixed at time T we must
at least have that

T = Cε−2/βM2/β(logM)1/β .

3 This horizon becomes forbidding/unrealistic for large networks (or small β) so
quite likely we are away from equilibrium.

4 This argument is not quite rigorous, but it can be made.
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Future

Numerical approximation of the equilibrium

Let α < η < β. Also let s = −t−η < 0. Then

P{Nβ(t) ≤ tα} = P{esNβ(t) ≥ est
α

} ≤ e|s|t
α

E(e−|s|Nβ(t))

= et
α−η

Eβ(−tβ(1− e−t
−η

))

∼ et
α−η

Eβ(−tβ−η)) = Cet
α−η

t−β+η

∼ C (1 + tα−η)t−β+η = C (t−β+η + t−β+α)→ 0.

Therefore, with probability near
1, for a sufficiently large time
horizon, the counting process
Nβ ≥ tα so the sufficient con-
dition for mixing is

Lemma (2015+)

For any δ > 0,

T > C (ε)M(2+δ)/β(logM)(1+δ)/β
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Future

To do

We have preliminary answers to our questions

Can we find explicit expressions for cumulative distribution function, etc. of
the time-changed processes?
Indeed!

How this is related to the solution of relaxation problems?
Probabilities turn out to be solutions of relaxation problems!

Is numerical work possible?
It is possible. We use Monte Carlo simulations, but other methods are
welcome!

What can we say on mixing and stability of time-changed processes?
We are working on that, stay tuned!

And there is no limit to modelling. For instance, we are now working on more
refined time-changed network dynamical models related to percolation models.
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