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Curse of Dimensionality for SPDEs
Consider the SPDE,

∂tZ (t, x) =
ν

2
ΔZ (t, x)+

·

W (t, x) (t > 0, x ∈ Rd , d ≥ 2)

subject to Z (0, x) = 0.
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Curse of Dimensionality for SPDEs
Consider the SPDE,

∂tZ (t, x) =
ν

2
ΔZ (t, x)+

·

W (t, x) (t > 0, x ∈ Rd , d ≥ 2)

subject to Z (0, x) = 0.
The weak solution is

Z (t, x) =

∫
(0,t)×R

pt−s(y − x)W (dsdy ),

where pt(x) = (2νπt)−d/2 exp{−||x ||2/(2νt)}.
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Curse of Dimensionality for SPDEs
Consider the SPDE,

∂tZ (t, x) =
ν

2
ΔZ (t, x)+

·

W (t, x) (t > 0, x ∈ Rd , d ≥ 2)

subject to Z (0, x) = 0.
The weak solution is

Z (t, x) =

∫
(0,t)×R

pt−s(y − x)W (dsdy ),

where pt(x) = (2νπt)−d/2 exp{−||x ||2/(2νt)}.
Not a random function; If it were then it would be a GRF with

E (|Z (t, x)|2) =

∫ t

0

ds

∫
Rd

dy [ps(y )]
2 =

∫ t

0

p2s(0)ds

≈

∫ t

0

s−d/2ds =∞.

(1)
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Fractional Diffusion

Fractional time derivative: Two approaches

Riemann-Liouville fractional derivative of order 0 < β < 1;

D
β
t g(t) =

1

Γ(1− β)

∂

∂t

[∫ t

0

g(s)
ds

(t − s)β

]

with Laplace transform sβ g̃(s), g̃(s) =
∫∞
0

e−stg(t)dt denotes
the usual Laplace transform of g .

Caputo fractional derivative of order 0 < β < 1;

D
β
t g(t) =

1

Γ(1− β)

∫ t

0

dg(s)

ds

ds

(t − s)β
(2)

was invented to properly handle initial values (Caputo 1967).
Laplace transform of Dβ

t g(t) is s
β g̃(s)− sβ−1g(0) incorporates

the initial value in the same way as the first derivative.
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Fractional Diffusion

examples

D
β
t (t

p) =
Γ(1 + p)

Γ(p + 1− β)
tp−β

D
β
t (e

λt) = λβeλt −
t−β

Γ(1− β)
?

D
β
t (sin t) = sin(t +

πβ

2
)
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Fractional Diffusion

Space-Time fractional PDE
The solution to the equation

∂βt u(t, x) = −ν(−Δ)α/2u(t, x); u(0, x) = u0(x), (3)

where ∂βt is the Caputo fractional derivative of index β ∈ (0, 1) and
α ∈ (0, 2] is given by

u(t, x) = Ex(u0(Y (Et))) =

∫ ∞

0

P(s, x)fEt
(s)ds

=

∫
Rd

(∫ ∞

0

p(s, x − y )fEt
(s)ds

)
u0(y )dy

(4)

where fEt
(s) is the density of inverse stable subordinator of index

β ∈ (0, 1) , and Y is α-stable process. Here P(t, x) = Ex(u0(Y (t)))
is the semigroup of α-stable process.
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Fractional Diffusion

Equivalence to Higher order PDE’s
Let Lxg(x) = −(−Δ)α/2g(x), be the fractional Laplacian of g .

For any m = 2, 3, 4, . . . both the Cauchy problem

∂tu(t, x) =

m−1∑
j=1

t j/m−1

Γ(j/m)
Ljxu0(x) + Lmx u(t, x); u(0, x) = u0(x)

(5)

and the fractional Cauchy problem:

∂
1/m
t u(t, x) = Lxu(t, x); u(0, x) = u0(x), (6)

have the same unique solution given by

u(t, x) = E(u0(Y (Et))) =

∫ ∞

0

P(s, x)fEt
(s)ds (7)

Due to Baeumer, Meerschaert, and Nane TAMS(2009).
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Time fractional SPDE’s

Time fractional spde model?
We want to study the equations of the following type

∂βt u(t, x) = −ν(−Δ)α/2u(t, x) + λσ(u)
·

W (t, x); u(0, x) = u0(x),
(8)

where Ẇ (t, x) is a space-time white noise with x ∈ Rd .
Assume that σ(·) satisfies the following global Lipschitz condition,
i.e. there exists a generic positive constant Lip such that :

|σ(x)− σ(y )| ≤ Lip|x − y | for all x , y ∈ R. (9)

Clearly, (9) implies the uniform linear growth condition of σ(·).
Assume also that the initial datum is Lp(Ω) bounded (p ≥ 2), that is

sup
x∈Rd

E|u0(x)|
p <∞. (10)
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Time fractional SPDE’s

Time fractional Duhamel’s principle
Let G (t, x) be the fundamental solution of the time fractional PDE
∂βu = Lxu. The solution to the time-fractional PDE with force term
f (t, x)

∂βt u(t, x) = Lxu(t, x) + f (t, x); u(0, x) = u0(x), (11)

is given by Duhamel’s principle (Umarov and Saydmatov, 2006), the
influence of the external force f (t, x) to the output can be count as

∂βt V (τ, t, x) = LxV (τ, t, x); V (τ, τ, x) = ∂1−βt f (t, x)|t=τ , (12)

which has solution

V (t, τ, x) =

∫
Rd

G (t − τ, x − y )∂1−βτ f (τ, x)dx

Hence solution to (11) is given by

u(t, x) =

∫
Rd

G (t, x−y )u0(y )dy+

∫ t

0

∫
Rd

G (t−r , x−y )∂1−βr f (r , x)dxdr .
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Time fractional SPDE’s

Model?

Hence if we use this approach we will get the solution of

∂βt u(t, x) = Lxu(t, x)+
·

W (t, x); u(0, x) = u0(x), (13)

to be of the form (informally):

u(t, x) =

∫
Rd

G (t, x − y )u0(y )dy

+

∫ t

0

∫
Rd

G (t − r , x − y )∂1−βr [
·

W (r , y )]dydr .!

(14)

here I am not sure what the fractional derivative in the Walsh-Dalang
integral mean?
Another point is that the stochastic integral maybe non-Gaussian!?
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Time fractional SPDE’s

Let γ > 0, define the fractional integral by

I
γ
t f (t) :=

1

Γ(γ)

∫ t

0

(t − τ)γ−1f (τ)dτ.

For every β ∈ (0, 1), and g ∈ L∞(R+) or g ∈ C (R+)

∂βt I
β
t g(t) = g(t).

Therefore if we consider the time fractional PDE with a force given
by f (t, x) = I

1−β
t g(t, x), then by the Duhamel’s principle the solution

to (11) will be given by

u(t, x) =

∫
Rd

G (t, x − y )u0(y )dy

+

∫ t

0

∫
Rd

G (t − r , x − y )∂1−βr [I 1−βr g(r , x)]dxdr

=

∫
Rd

G (t, x − y )u0(y )dy +

∫ t

0

∫
Rd

G (t − r , x − y )g(r , x)dxdr .

(15)
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Time fractional SPDE’s

“Correct” TFSPDE Model

We should consider the following model problem (Here
Lx = −(−Δ)α/2):

∂βt u(t, x) = Lxu(t, x)+λI
1−β
t [σ(u)

·

W (t, x)]; u(0, x) = u0(x), (16)

By the Duhamel’s principle, mentioned above, (16) will have solution

u(t, x) =

∫
Rd

G (t, x − y )u0(y )dy

+ λ

∫ t

0

∫
Rd

G (t − r , x − y )σ(u(r , y ))W (dydr).

(17)

These time-fractional SPDEs may arise naturally by considering the
heat equation in a material with thermal memory, Chen et al. (2015).
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Time fractional SPDE’s

The fractional integral above in equation (16) for functions
φ ∈ L2(Rd) is defined as∫
Rd

φ(x)I 1−βt [
·

W (t, x)]dx =
1

Γ(1− β)

∫
Rd

∫ t

0

(t−τ)−βφ(x)W (dτdx),

is well defined only when 0 < β < 1/2!
An important reason to take the fractional integral of the noise in
equation (16): Apply the fractional derivative of order 1− β to both
sides of the equation (16) to see the forcing function, in the
traditional units x/t ( Baeumer et al. (2005)).

Erkan Nane (Auburn University) Space-time fractional SPDEs October 20, 2016 15 / 63



Time fractional SPDE’s

Physical explanation/motivation of the model!

The following discussion is adapted from Chen et al.(2015). Let

u(t, x), e(t, x) and
→

F (t, x) denote the body temparature, internal
energy and flux density, reps. the the relations

∂te(t, x) = −div
→

F (t, x)

e(t, x) = βu(t, x),
→

F (t, x) = −λ∇u(t, x)
(18)

yields the classical heat equation β∂tu = λΔu.
According to the law of classical heat equation, the speed of heat
flow is infinite. However in real modeling, the propagation speed can
be finite because the heat flow can be disrupted by the response of
the material.
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Time fractional SPDE’s

In a material with thermal memory

e(t, x) = β̄u(t, x) +

∫ t

0

n(t − s)u(s, x)ds

holds with some appropriate constant β̄ and kernel n. Typically
n(t) = Γ(1− β)−1t−β1 . The convolution implies that the nearer past
affects the present more! If in addition the internal energy also
depends on past random effects, then

e(t, x) = β̄u(t, x)+

∫ t

0

n(t−s)u(s, x)ds+

∫ t

0

l(t−s)h(s, u)
·

W (s, x)ds

(19)

Where
·

W is the space time white noise, modeling the random effects.
Take β̄ = 0, l(t) = Γ(2− β2)

−1t1−β2 , then after differentiation (19)

gives ∂β1t u = div
→

F + 1
Γ(1−β2)

∫ t

0
(t − s)−β2h(s, u(s, x))

·

W (s, x)ds
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Time fractional SPDE’s

Walsh-Dalang Integral
Need to make sense of the stochastic integral in the mild solution
(17). We use the Brownian Filtration {Ft} and the Walsh-Dalang
integrals:

(t, x)→ Φt(x) is an elementary random field when ∃0 ≤ a < b

and an Fa-meas. X ∈ L2(Ω) and φ ∈ L2(Rd) such that

Φt(x) = X1[a,b](t)φ(x) (t > 0, x ∈ Rd).

If h = ht(x) is non-random and Φ is elementary, then∫
hΦdW := X

∫
(a,b)×Rd

ht(x)φ(x)W (dtdx).

The stochastic integral is Wiener’s; well defined iff
ht(x)φ(x) ∈ L2([a, b]× Rd).
We have Walsh isometry,

E

(∣∣∣∣
∫

hΦdW

∣∣∣∣
2)

=

∫ ∞

0

ds

∫
Rd

dy [hs(y )]
2E(|Φs(y )|

2)
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Time fractional SPDE’s

G (t, x) is the density function of Y (Qt), where Y is an isotropic
α-stable Lévy process in Rd and Qt is the first passage time of a
β-stable subordinator D = {Dr , r ≥ 0}. Let pY (s)(x) and fQt

(s) be
the density of Y (s) and Qt , respectively. Then the Fourier transform
of pY (s)(x) is given by

p̂Y (s)(ξ) = e−sν|ξ|
α

, fQt
(x) = tβ−1x−1−1/βgβ(tx

−1/β), (20)

where gβ(·) is the density function of D1. By conditioning, we have

G (t, x) =

∫ ∞

0

p
Y (s)

(x)fQt
(s)ds. (21)

Lemma 1. Let d < min{2, β−1}α, then∫
Rd

G 2(t, x)dx = t−βd/α
(ν)−d/α2πd/2

αΓ(d
2
)

1

(2π)d

∫ ∞

0

zd/α−1(Eβ(−z))
2dz

(22)
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Time fractional SPDE’s

Stochastic Convolutions
Given a random field Φ := {Φt(x)}t≥0,x∈Rd and space-time noise W ,
we define the [space-time] stochastic convolution G � Φ to be the
random field that is defined as

(G � Φ)t(x) :=

∫
(0,t)×Rd

G (t − s, y − x)Φs(y )W (dsdy ),

for t > 0 and x ∈ Rd , [as a Walsh-Dalang integral] and
(G �W )0(x) := 0. Let Φ be a random field, and for every γ > 0 and
k ∈ [2,∞) define

Nγ,k(Φ) := sup
t≥0

sup
x∈Rd

(
e−γt ||Φt(x)||k

)
= sup

t≥0
sup
x∈Rd

(
e−γt

[
E|Φt(x)|

k

]1/k)

(23)
We denote by Lγ,2 the completion of the space of all simple random
fields in the norm Nγ,2.
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Time fractional SPDE’s

Theorem (Mijena and N., 2015)

Let d < min{2, β−1}α. If σ is Lipschitz continuous and u0 is

measurable and bounded, then there exists a continuous random

variable u ∈ ∪γ>0Lγ,2 that solves (16) with initial function u0.

Moreover, u is a.s.-unique among all random fields that satisfy the

following: There exists a positive and finite constant L-depending

only on Lip, and supz∈Rd |u0(z)|- such that

sup
x∈Rd

E

(
|ut(x)|

k

)
≤ Lk exp(Lk1+α/(α−βd)t) (24)

In contrast to SPDEs, TFSPDEs have random field (function)
solutions for d < min{2, β−1}α.
We use Picard iteration and the stochastic Young inequality below to
prove this Theorem.
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Time fractional SPDE’s

Picard iteration

Define u
(0)
t (x) := u0(x), and iteratively define u

(n+1)
t from u

(n)
t as

follows:

u
(n+1)
t (x) := (Gt ∗ u0)(x)

+ λ

∫
(0,t)×Rd

G (t − r , x − y )σ(u(n)(r , y ))W (drdy )
(25)

for all n ≥ 0, t > 0, and x ∈ Rd . Moreover, we set u
(k)
0 (x) := u0(x)

for every k ≥ 1 and x ∈ Rd .
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Time fractional SPDE’s

Proposition (A stochastic Young inequality)

For all γ > 0, k ∈ [2,∞), d < min{2, β−1}α, and Φ ∈ Lγ,2,

Nγ,k(G � Φ) ≤ c0k
1/2 · Nγ,k(Φ).

||(G � Φ)t(x)||
2
k ≤ 4k

∫ t

0

ds

∫
Rd

dy [G (t − s, y − x)]2||Φ(y )||2k

≤ 4k[Nγ,k(Φ)]
2

∫ t

0

e2γsds

∫
Rd

[G (t − s, y − x)]2dy

= 4kC ∗[Nγ,k(Φ)]
2

∫ t

0

e2γs(t − s)−βd/αds

= 4kC ∗[Nγ,k(Φ)]
2e2γt

∫ t

0

e−2γuu−βd/αdu

≤ kCα,β,d [Nγ,k(Φ)]
2e2γt(γ)−(1−βd/α).
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Time fractional SPDE’s

Finite energy solution

Random field u is a finite energy solution to the stochastic heat
equation (16) when u ∈ ∪γ>0Lγ,2 and there exists ρ∗ > 0 such that∫ ∞

0

e−ρ∗tE(|ut(x)|
2)dt <∞ for all x ∈ Rd .

If ρ ∈ (0,∞), then∫ ∞

0

e−ρtE(|ut(x)|
2)dt ≤ [Nγ,2(u)]

2 ·

∫ ∞

0

e−(ρ−2γ)tdt.

Therefore if ρ > 2γ and Nγ,2(u) <∞, then the preceding integral is
finite. When σ is Lipschitz-continuous function and u0 is bounded
and measurable, then there exists a finite energy solution to the time
fractional stochastic type equation (16).
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Time fractional SPDE’s

If we drop the assumption of linear growth for σ, then we have the
next theorem that extends the result of Foondun and Parshad (2014).

Theorem (Mijena and N., 2015)

Suppose infz∈Rd u0(z) > 0 and infy∈Rd |σ(y )|/|y |1+ε > 0. Then, there
is no finite-energy solution to the time fractional stochastic heat

equation (16).

Hence there is no solution that satisfies

sup
x∈Rd

E(|ut(x)|
2) ≤ L exp(Lt) for all t > 0.
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Intermittency

Intermittency

Definition: The random field u(t, x) is called weakly intermittent if
infz∈Rd |u0(z)| > 0, and γk(x)/k is strictly increasing for k ≥ 2 for all
x ∈ Rd , where

γk(x) := lim inf
t→∞

1

t
logE(|u(t, x)|k).

Fact: If γ2(x) > 0 for all x ∈ Rd , then γk(x)/k is strictly increasing
for k ≥ 2 for all x ∈ Rd .
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Intermittency

Theorem (Mijena and N., 2016)

Let d < min{2, β−1}α. If infz∈Rd |u0(z)| > 0, then

inf
x∈Rd

γ2(x) ≥ [C ∗(Lσ)
2Γ(1− βd/α)]

1
(1−βd/α)

where Lσ := infz∈Rd |σ(z)/z |. Therefore, the solution u(t, x) of (16)
is weakly intermittent when infz∈Rd |u0(z)| > 0 and Lσ > 0.

This theorem extends the results of Foondun and Khoshnevisan
(2009) to the time fractional stochastic heat type equations. Recall
the constant C ∗ = const · ν−d/α. Hence Theorem above implies the
so-called “very fast dynamo property,” limν→∞ infx∈Rd η2(x) =∞.
This property has been studied in fluid dynamics: Arponen and
Horvai (2007), Baxendale and Rozovskii(1993), Galloway (2003).
This theorem is proved by using an application of non-linear renewal
theory.
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Intermittency

What if the initial function satisfies the following assumptions:

The initial function u0 is non-negative on a set of positive
measure.

The function σ satisfies σ(x) ≥ Lσ|x | with Lσ being a positive
number.

Theorem (Foondun and N. 2015)

Under Assumptions above, there exists a T > 0, such that

inf
x∈B(0, tβ/α)

E|ut(x)|
2 ≥ c3e

c4λ
2α

α−dβ t
for all t > T . (26)

Here c3 and c4 are positive constants.
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Intermittency

Remark

The two theorems above imply that for any fixed x ∈ Rd .

c4λ
2α/(α−βd) ≤ lim inf

t→∞

1

t
logE|ut(x)|

2

≤ lim sup
t→∞

1

t
logE|ut(x)|

2 ≤ c2λ
2α/(α−βd),

(27)

for any fixed x ∈ Rd .
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Intermittency

Ideas of the proof:

We know from Walsh isometry that the second moment of the
solution satisfies

E|u(t, x)|2 = |(Gu0)t(x)|
2

+ λ2
∫ t

0

∫
Rd

G 2
t−s(x − y )E|σ(u(s, y ))|2dy ds.

Erkan Nane (Auburn University) Space-time fractional SPDEs October 20, 2016 30 / 63



Intermittency

Ideas of the proof:

We know from Walsh isometry that the second moment of the
solution satisfies

E|u(t, x)|2 = |(Gu0)t(x)|
2

+ λ2
∫ t

0

∫
Rd

G 2
t−s(x − y )E|σ(u(s, y ))|2dy ds.

the idea is to show that the second term essentially contributes
to the exponential growth of the second moment, provided that
the first term does not decay too fast with time.
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Intermittency

Ideas of the proof:

We know from Walsh isometry that the second moment of the
solution satisfies

E|u(t, x)|2 = |(Gu0)t(x)|
2

+ λ2
∫ t

0

∫
Rd

G 2
t−s(x − y )E|σ(u(s, y ))|2dy ds.

the idea is to show that the second term essentially contributes
to the exponential growth of the second moment, provided that
the first term does not decay too fast with time.
When the initial condition u0 is bounded below then we have the
exponential growth since the first term is bounded below.
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Intermittency

Ideas of the proof:

We know from Walsh isometry that the second moment of the
solution satisfies

E|u(t, x)|2 = |(Gu0)t(x)|
2

+ λ2
∫ t

0

∫
Rd

G 2
t−s(x − y )E|σ(u(s, y ))|2dy ds.

the idea is to show that the second term essentially contributes
to the exponential growth of the second moment, provided that
the first term does not decay too fast with time.
When the initial condition u0 is bounded below then we have the
exponential growth since the first term is bounded below.
But when u0 have only positive support, the first term decays
but only polynomially fast.
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Intermittency

Ideas of the proof:

We know from Walsh isometry that the second moment of the
solution satisfies

E|u(t, x)|2 = |(Gu0)t(x)|
2

+ λ2
∫ t

0

∫
Rd

G 2
t−s(x − y )E|σ(u(s, y ))|2dy ds.

the idea is to show that the second term essentially contributes
to the exponential growth of the second moment, provided that
the first term does not decay too fast with time.
When the initial condition u0 is bounded below then we have the
exponential growth since the first term is bounded below.
But when u0 have only positive support, the first term decays
but only polynomially fast.
As time gets large, the “exponential growth” induced by the
second term makes the second moment of the solution to start
growing exponentially fast.
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Intermittency

In some sense, this is an interplay between the “dissipative”
effect of the Fractional Laplacian and the noise term which is
pumping energy to the system.
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Intermittency

In some sense, this is an interplay between the “dissipative”
effect of the Fractional Laplacian and the noise term which is
pumping energy to the system.

Renewal theoretic ideas are used to prove the upper bound.

When the initial function u0 is bounded uniformly from below,
renewal theoretical ideas work well.

When the initial function u0 is non-negative on a set of positive
measure, then the methods used include Localization and heat
kernel estimates for TFPDE:

There exists some finite positive constants C1,C2 such that for
all x ∈ R,

C1

(
t−βd/α ∧

tβ

|x |d+α

)
≤ Gt(x) ≤ C2

(
t−βd/α ∧

tβ

|x |d+α

)
. (28)

the lower bound holds for all x ∈ Rd .
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Intermittency

Non-linear noise excitation

We set

Et(λ) :=

√∫
Rd

E|ut(x)|2 dx .

and define the nonlinear excitation index by

e(t) := lim
λ→∞

log log Et(λ)

log λ

This was first studied by Khoshnevisan and Kim (2013). This
measures in some sense the effect of non-linear noise on the solution
of the SPDE.
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Intermittency

The following theorem shows that as the value of λ increases, the
solution rapidly develops tall peaks that are distributed over relatively
small islands!

Theorem (Foondun and N. 2015.)

Fix t > 0 and x ∈ R, we then have

lim
λ→∞

log logE|ut(x)|2

log λ
=

2α

α− βd
.

Moreover, if the energy of the solution exists, then the excitation

index, e(t) is also equal to 2α
α−βd

.
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Intermittency

We now give a relationship between the excitation index and the
Hölder exponent of the solution.

Theorem (Mijena and N., 2014)

Let η < (α− βd)/2α then for every x ∈ R, {ut(x), t > 0}, the
solution to (16) has Hölder continuous trajectories with exponent η.
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Intermittency fronts

Intermittency fronts

What if inf |u0(x)| = 0, say u0 has compact support.
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We consider a non-random initial function u0 : R
d → R that is

measurable and bounded, has compact support, and is strictly
positive on an open subinterval of (0,∞).
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What if inf |u0(x)| = 0, say u0 has compact support.

We consider a non-random initial function u0 : R
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measurable and bounded, has compact support, and is strictly
positive on an open subinterval of (0,∞).
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σ : R→ R Lipschitz and σ(0) = 0.
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Intermittency fronts

Intermittency fronts

What if inf |u0(x)| = 0, say u0 has compact support.

We consider a non-random initial function u0 : R
d → R that is

measurable and bounded, has compact support, and is strictly
positive on an open subinterval of (0,∞).

We consider α = 2.

σ : R→ R Lipschitz and σ(0) = 0.

A kind of weak intermittency occur. Roughly, tall peaks arise as
t →∞, but the farthest peaks move roughly linearly with time
away from the origin–intermittency fronts.
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Intermittency fronts

Define, for all p ≥ 2 and for all θ ≥ 0,

Lp(θ) := lim sup
t→∞

1

t
sup
|x |>θt

logE (|ut(x)|
p) . (29)
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t
sup
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We can think of θLp > 0 as an intermittency lower front if
Lp(θ) < 0 for all θ > θLp , and
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Intermittency fronts

Define, for all p ≥ 2 and for all θ ≥ 0,

Lp(θ) := lim sup
t→∞

1

t
sup
|x |>θt

logE (|ut(x)|
p) . (29)

We can think of θLp > 0 as an intermittency lower front if
Lp(θ) < 0 for all θ > θLp , and

of θUp
> 0 as an intermittency upper front if Lp(θ) > 0

whenever θ < θUp
.

If there exists θ∗ that is both a lower front and an upper front
then θ∗ is the intermittency front–Phase transition.
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Intermittency fronts

Theorem (Mijena, N. (2016), Asogwa, N. (2016?))

Under the above conditions, the time fractional stochastic heat

equation (16) has a positive intermittency lower front. In fact,

Lp(θ) < 0 if θ >
p2

4

(
4ν

p

)1/β

(Lipσc0)
2( 2−β

2−βd ). (30)

In addition, under the cone condition Lσ = infz∈R |σ(z)/z | > 0, there
exists θ0 > 0 such that

Lp(θ) > 0 if θ ∈ (0, θ0). (31)

That is, in this case, the stochastic heat equation has a finite

intermittency upper front.

This theorem in the case of the stochastic heat equation (for p = 2,
and d = 1) was proved by Conus and Khoshnevisan (2012).
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Intermittency fronts

We use a version of stochastic Young inequality for the proof of
the intermittency lower front.

Erkan Nane (Auburn University) Space-time fractional SPDEs October 20, 2016 38 / 63



Intermittency fronts

We use a version of stochastic Young inequality for the proof of
the intermittency lower front.

Let d = 1.

When σ(x) = Ax . PAM. Our theorem implies that, if there were
an intermittency front, then it would lie between θ0 and

21/β(Ac0)
4/(2−β)

(Ac0)2β/(2−β)
.
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Intermittency fronts

We use a version of stochastic Young inequality for the proof of
the intermittency lower front.

Let d = 1.

When σ(x) = Ax . PAM. Our theorem implies that, if there were
an intermittency front, then it would lie between θ0 and

21/β(Ac0)
4/(2−β)

(Ac0)2β/(2−β)
.

When β = 1. The existence of an intermittency front has been
proved recently by Le Chen and Dalang (2012); in fact, they
proved that the intermittency front is at A2/2.
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SPDEs in bounded domains

TFSPDE in bounded domains with Dirichlet

boundary conditions.
How about the moment estimates and growth of the solution of the
following TFSPDEs with Dirichlet boundary conditions? (t fixed
large λ and λ fixed, large t.)

∂βt u(t, x) = Lxu(t, x) + λI 1−βt [σ(u)
·

W (t, x)], x ∈ B(0,R);

u(0, x) = u0(x),
(32)

Following Walsh (1986) and using the time fractional Duhamel’s
principle, (32) will have (mild/integral) solution

u(t, x) =

∫
B

GB(t, x − y )u0(y )dy

+ λ

∫ t

0

∫
B

GB(t − r , x − y )σ(u(s, y ))W (dydr).

(33)
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SPDEs in bounded domains

Theorem (Foondun, Mijena, N. (2016?))

Suppose that d < (2 ∧ β−1)α. Then under Lipschitz condition on σ,
there exists a unique random-field solution to (32) satisfying

sup
x∈B(0,R)

E|ut(x)|
2 ≤ c1e

c2λ
2α

α−dβ t for all t > 0.

Here c1 and c2 are positive constants.
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SPDEs in bounded domains

Theorem (Foondun, Mijena, N. (2016?))

Fix ε > 0 and let x ∈ B(0,R − ε), then for any t > 0,

lim
λ→∞

log logE|ut(x)|2

log λ
=

2α

α− dβ
,

where ut is the mild solution to (32). The excitation index of the

solution to (32), e(t) is equal to 2α
α−dβ

.

This result for β = 1, α ∈ (1, 2) is established by Foondun et al
(2015), and for β = 1, α = 2 it is established by Khoshnevisan and
Kim (2015) and Foondun and Joseph (2015).
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SPDEs in bounded domains

Large time fixed λ behavior of the solution
Recently Foondun and Nualart (2015) studied the long time (t →∞)
behavior of the the second moment of the solution to (32) when
α = 2, β = 1 d = 1. We have extended their results to α ∈ (1, 2)

Theorem (Foondun, Guerngar, and N. (2016?))

There exists λ0 > 0 such that for all λ < λ0 and x ∈ (0, 1)

−∞ < lim sup
t→∞

1

t
logE|ut(x)|

2 < 0.

On the other hand, for all ε > 0, there exists λ1 > 0 such that for all

λ > λ1 and x ∈ [ε, 1 − ε],

0 < lim inf
t→∞

1

t
logE|ut(x)|

2 <∞.

Theorem says that the solution grows exponentially when λ is large.
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SPDEs in bounded domains

When λ is small the solution decays exponentially.
We define the energy of the solution u as

Et(λ) :=
√

E||ut ||2.

We have also the following

−∞ < lim sup
t→∞

1

t
log Et(λ) < 0 for all λ < λ0.

0 < lim inf
t→∞

1

t
log Et(λ) <∞ for all λ > λ1.

Intuitively these results show that if the amount of noise is small,
then the heat lost in the system modeled by the Dirichlet equation is
not enough to increase the energy in the long run.
On the other hand, if the amount of noise is large enough, then the
energy will increase
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SPDES with space-colored noise

Space-colored noise
Look at the equation with colored noise.

∂βt u(t, x) = Lxu(t, x)+λI
1−β
t [σ(u)

·

F (t, x)]; u(0, x) = u0(x), (34)

in (d + 1) dimensions, where ν > 0, β ∈ (0, 1), α ∈ (0, 2],

−(−Δ)α/2 is the generator of an isotropic stable process,
·

F (t, x) is
white noise in time and colored in space, and σ : R→ R is Lipschitz
continuous, and satisfies Lσ|x | ≤ σ(x) ≤ Lipσ|x | with Lσ and Lipσ
being positive constants.
Ḟ denotes the Gaussian colored noise satisfying the following
property, E[Ḟ (t, x)Ḟ (s, y )] = δ0(t − s)f (x , y ). This can be
interpreted more formally as

Cov

(∫
φdF ,

∫
ψdF

)
=

∫ ∞

0

∫
Rd

dx

∫
Rd

dyφs(x)ψs(y )f (x − y )

(35)
where we use the notation

∫
φdF to denote the wiener integral of φ

with respect to F and the right-most integral converges absolutelyErkan Nane (Auburn University) Space-time fractional SPDEs October 20, 2016 44 / 63



SPDES with space-colored noise

We will assume that the spatial correlation of the noise term is given
by the following function for γ < d ,

f (x , y ) :=
1

|x − y |γ
.

Following Walsh (1986), we define the mild solution of (34) as the
predictable solution to the following integral equation

ut(x) = (Gu0)t(x) + λ

∫
Rd

∫ t

0

Gt−s(x , y )σ(us(y ))F (dsdy ). (36)

where

(Gu0)t(x) :=

∫
Rd

Gt(x , y )u0(y )dy ,

and Gt(x , y ) is the space-time fractional heat kernel.
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Related work in the literature

Recently Chen et al. (2016) has studied the following space-time
fractional SPDE:

∂βt u = −ν(−Δ)α/2u + λI 1−βt [uḢ(t, x)], (37)

in (d + 1) dimensions, where ν > 0, β ∈ (0, 1), α ∈ (0, 2],

−(−Δ)α/2 is the generator of an isotropic stable process,
·

H (t, x) is
space-time colored Gaussian noise:
Ḣ denotes the Gaussian colored noise satisfying the following
property,

E[Ḣ(t, x)Ḣ(s, y )] = γ(t − s)f (x , y ).

This can be interpreted more formally as

Cov

(∫
φdH,

∫
ψdH

)
=

∫
R2
+

∫
R2d

φs(x)ψt(y )f (x−y )γ(s−t)dxdydsdt

(38)
where we use the notation

∫
φdH to denote the wiener integral of φ

with respect to H, and the right-most integral converges absolutely.
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Related work in the literature

(37) will have solution

u(t, x) =

∫
Rd

G (t, x − y )u0(y )dy

+ λ

∫ t

0

∫
Rd

G (t − r , x − y )u(s, y )H(dydr).

(39)
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Related work in the literature

Chen et al. (2016) have proved bounds for the moments of any order
and a lower bound for the second moment under some assumptions
on the correlation functions.

Theorem

Under some condition on α, β and the intial function and

f (x , y ) = |x − y |κ where 0 < κ < min(α/β, d), the solution to

equation (37) satisfies for all p ≥ 1

E[u(t, x)p] ≤ C1,t exp

(
tC2,tp

2α−βκ
α−βκ

)

for some constants C1,t ,C2,t > 0. C1,t is related to finiteness of the

solution of the equation without the noise. C2,t = 2C
∫ t

0
γ(s)ds is

related to the correlation function in time.

If the noise is white in time, and the initial function is a constant then

E[u(t, x)2] ≥ cu20 exp(tC ).
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Related work in the literature

Chen et al (2016) also considered

∂βt u = −ν(−Δ)α/2u + uḢ(t, x), (40)

in (d + 1) dimensions, where ν > 0, β ∈ (0, 1), α ∈ (0, 2],

−(−Δ)α/2 is the generator of an isotropic stable process,
·

H (t, x) is
space-time colored Gaussian noise:

Erkan Nane (Auburn University) Space-time fractional SPDEs October 20, 2016 49 / 63



Related work in the literature

(40) will have solution

u(t, x) =

∫
Rd

G (t, x − y )u0(y )dy

+ λ

∫ t

0

∫
Rd

G ∗(t − r , x − y )u(s, y )H(dydr).

(41)

Where G ∗ is obtained from G by fractional differentiation in time!
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Related work in the literature

To prove existence of solutions and moment bounds the methods
used are:
Wiener-Chaos expansion of the solution.
Explicit integral representation of the kernels G and G ∗ by Fox
H-functions.
Plancharel type identities...
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Related work in the literature

Future work/Open problems

1 Large space behavior of STF-SPDEs

2 Employing the STF-SPDEs for modelling data!

3 Inverse problems for SPDEs

4 Existence-non-existence of solutions, blow up of solutions in
finite time.

5 Comparison of solutions for different initial values and/or σs!

6 Approximations of SPDEs: what happens when you have time
fractional derivatives? For regular diffusions and stable process,
one can have random walk approximations and come up with a
system of SDEs. Can one follow the same strategy here? We
can approximate time fractional diffusions by CTRWs.!
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Related work in the literature

Thank You!
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Related work in the literature
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Related work in the literature

Continuous time random walks

�

�

X1
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X3

X4
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�
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�

�

Rd

0
tJ1 J2 J3 J4 J5

The CTRW is a random walk with jumps Xn separated by ran-

dom waiting times Jn. The random vectors (Xn, Jn) are i.i.d.
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Related work in the literature

Heavy tailed waiting times

Random wait Jn between jumps, nth jump time given by a random walk
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For heavy tail waiting times
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Related work in the literature

Continuous time random walks (CTRW)

Particle jump random walk has scaling limit c−1/2S([ct]) =⇒ W (t).
Number of jumps has scaling limit c−βN(ct) =⇒ Q(t).
CTRW is a random walk subordinated to (a renewal process) N(t)

S(N(t)) = X1 + X2 + · · ·+ XN(t)

CTRW scaling limit is a subordinated process:

c−β/2S(N(ct)) = (cβ)−1/2S(cβ · c−βN(ct))

≈ (cβ)−1/2S(cβQ(t)) =⇒ W (Q(t)).
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Related work in the literature

CTRW simulation with heavy tail waiting times
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Related work in the literature

Longer time scale
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Related work in the literature
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Figure: Typical sample path of the iterated process W (Q(t)). Here W (t)
is a Brownian motion and Q(t) is the inverse of a β = 0.8-stable
subordinator. Graph has dimension 1 + β/2 = 1 + 0.4. The limit process
retains long resting times
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Related work in the literature

Power law waiting times

Wait between solar flares 1 < β < 2

Wait between raindrops β = 0.68

Wait between money transactions β = 0.6

Wait between emails β ≈ 1.0

Wait between doctor visits β ≈ 1.4

Wait between earthquakes β = 1.6

Wait between trades of German bond futures β ≈ 0.95

Wait between Irish stock trades β = 0.4 (truncated)
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