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Time-Fractional vs. Space-Fractional

Time-Fractional PDEs Models Space-Fractional PDEs: Models
sub-diffusion via long waiting super-diffusion via long particle
times ( “hold-ups") jumps (“fast-paths”)
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is the inverse stable t).
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Ultrasound: Two Applications

B-Mode Ultrasound Imaging

(Webb, 2003) Histotripsy (Maxwell, 2012)
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Ultrasound: Power Law Attenuation

Ultrasound waves attenuate as they travel through tissue.
e Limits maximum imaging depth for B-mode imaging.

e Influences maximum focal pressure for histotripsy.

e Attenuation coefficient a(w) fits a power-law

a(w) = aplwl]”.
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Stokes Wave Equation

Stokes Wave Equation (1845) is a classical PDE model:
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Wave attenuation is proportional to relaxation time T [us].
Take FTs with respect to space and time, yielding

[—kz +w?/ + iw7k2] p(k,w) =0.
Dispersion relationship is k(w) = w/co(1 — iwr) /2.
Attenuation is a(w) = Imk(w) ~ 7/(2co)w? for wr < 1.

Phase velocity ¢(w) is constant for wr < 1 (no dispersion).



Models for Attenuation in Ultrasound

e Early models (Gurumurthy and Arthur, 1982) modeled
attenuation /dispersion in the frequency domain.
e Szabo (1994) proposed a phenomenological model for
ultrasound in power law media (0 < y < 2).
1 0°p 20 o tlp
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o Interpolates between the integer-ordered telegrapher’s
equation (y = 0) and the (viscous) Blackstock (1967)
equation (y = 2) using a time-fractional derivative. Invalid for

y=1



Power Law Wave Equation (PLWE)

Assume a dispersion relationship:

w o oag(—iY e
kw) = @ 205(7ry/2)

for w > 0 and k(—w) = k*(w) to ensure real solutions. Imaginary
part of the dispersion relationship is

a(w) = aglw]”.

Compute the phase speed as
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which is predicted by the Kramers-Kronig relationships and
supported by measurements.



PLWE: Derivation

Square the dispersion relationship and multiply by FT p(k,w)

2y w?  2ap(—iw)’ !t af(—iw)¥
@ cocos(my/2)  cos?(my/2)

p(k,w) = 0.

Perform an inverse FTs (space and time), yielding the PLWE
(Kelly et. al., 2008)
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which satisfies the dispersion relationship exactly for y # 1. For
mammalian tissue, power-law exponent y is very close to one!



PLWE: 3D Green's Function (1)

Solve PLWE subject to an impulse point-source with zero initial
conditions in free-space
2g—i 82g_ 2ap 6y+1g_ a3 0¥g _
2 0t2  cocos(my/2) Oty+l  cos?(my/2) Ot

—0(R)o(2),

where R is the relative displacement between the source and the
observer and R = |R|. Take Fourier transform wrt t

V28 + k*(w)g = —4(R),

where k(w) is our dispersion relationship. The Green's function for
this Helmholtz equation is a spherical wave
eik(@)R

4R
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PLWE: 3D Green's Function (2)

Inserting the dispersion relationship into the spherical wave
solution yields

g(R,w) = [W] [exp (—aoR(|w|y - itan(7ry/2)w|w|y_1))] ,

where the first factor solves the lossless Helmholtz equation.
Evaluate inverse Fourier transform and apply the convolution
theorem, yielding

g(R, t) =7 [g(R7w)] :

g(R, t) = gD(R7 t) *gL(Rv t)

where gp(R, t) = 6(t — R/cp)/4mR is is the Green's function
(transient spherical wave) for the lossless wave equation.



Interlude: Stable Parameterizations

1. ST parameterization (Samoradnitsky and Taquu, 1994):
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2. Zolotarev C-Parameterization (for duality)
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Loss Function

The second term is a loss function defined as

gL(R, t) =F* [exp (—aoR(|w]” — itan(my/2)w|w|’ )]

1 £ t
~(aoR)YY " \(agR)Y )

e Nice for engineers, since stable PDFs may be numerically
evaluated using STABLE toolbox (Nolan, 1997) or MATLAB
2016a.

e Solution of a time-fractional equation involves a stable
density, not an inverse stable density. Not what we expected!

e Solution involves a PDF: What is the random variable?



Numerical Results: Green's Functions
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Figure: Snapshots of the 3D power law Green's function for y = 0.5, 1.5,
and 2.0 for ag = 0.05 mm~MHz Y. Snapshots of the Green's function
are shown for t = 20 and 50 us.



Ultrasound Pulse Propagation in Tissue
Given an input pulse v(t), the velocity potential ¢(r, t) is

¢(r, t) = v(t) x g(r. 1)
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Pulse experiences a frequency downshift and distortion as depth
increases.



Causality

Physics demands causality. The Green's function is causal if
g(R,t) =0 for all t < 0. PLWE Green's function is

1 1 t — R/CO
R, t) = f, )
g(R. 1) 4R (aoR)/Y y:1 ((aoR)l/y>

e If y <1, then f,1(z) =0is z<0. Then g(R,t) =0 if
t < R/cp, implying causality.

e If y > 1, then f, 1(z) > 0 for all z. Then g(R,t) > 0 for
t < 0, violating causality!

e However, f, 1(z) decays with exponential order for t — —oo:
fy1(2) = Alz|” exp (=Blz["),

where A, B, u, and v are functions of y only.

e For observation points only one wavelength from the radiating
source, the relative magnitude of g(R, t) is less than -136 dB
foralll <y <2.



Many Models: Which is the “Right” One?
The Szabo (1994) wave equation

2
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is a simplified PLWE. Chen and Holm (2004) recommend

1
V2p + agd(—V?2)?p = ?a,_?p
0

using a fractional Laplacian. Caputo (1967) and Wismer (2006)
propose

1 _
V2p = —283p + 19V
Co
while Treeby and Cox (2010) consider

1
V2p + agde(—V2)?p + 010, VD2 p = —0:p.
0

All exhibit power law attenuation a(w) = aglw|? for 1 < y < 2.



Solutions
Analytical comparison (Kelly and McGough, 2016)
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Numerical comparison (Zhao and McGough, 2016)
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Model Unification and Duality

Many models proposed that agree with experiments, but
who's right, and who's wrong?

The idea of duality: two ways of looking at the same thing
(Atiyah, 2008).

Famous Example: wave-particle duality of light. Light behaves
like a particle (Democritus) and a wave (Descartes). These
contrary viewpoints were unified by quantum mechanics.

Perhaps this duality principle can resolve (and unify) these
alternative time-fractional and space-fractional models?



A Brief History of Space-Time Duality

e Zolotarev (1961) noted an equivalence between stable
densities of index o and 1/« in the C parameterization:

Theorem
(Duality Principle) For any pairs of admissible parameters o > 1,
and any u >0

pa (uin,1) = u= Mo (=% 1),

where a* = 1/a and 1+ n* = a(1 + 6).
e Feller (1971) gave a simplified proof of this “curious
by-product” using infinite series
e Baeumer et. al. (2009) recognized that (negatively skewed)
space-fractional diffusion equations are solved by inverse
stable densities, while time-fractional diffusion equations are
solved by stable densities:

fa,—1(x,t) = vhy(x, t) where v = 1/a.



A Heuristic Argument

Let 1 <a<2and 1/2 <y =1/a < 1. Consider negatively

skewed FDE:
0 B 0%y

ot A(—x)
Apply the Fourier transform in both variables

[(iw) — (—ik)*]Co = 0.

Dispersion relationship: iw — (—ik)® = 0. Dual dispersion
relationship:(iw)Y = (—ik). Inverting the FTs leads to the dual

equation
NG  0G

ot~ Ox

e Heaviside (1871) noted this relationship for the classical
diffusion equation (a = 2).

e Baeumer et. al. (2009) noted this equivalence from
fo,—1(x,t) = vhy(x, t).



Some New Results

® New proof of duality using Fourier-Laplace transforms (FLTs).
® Duality principle assumes x > 0. We extend duality to x < 0,
thereby covering the real line.

© Consider problems with drift: fractional advection dispersion
equation (FADE)

oc __0¢ p o0°C
at — ox T o(—x)



FLT Approach

Cauchy problem for fractional diffusion/dispersion equation (FDE)

9C _ 907G
ot~ 9(—x)°

subject to C(x,0) = 6(x).
Apply the Fourier-Laplace transform (FLT)
Colk,s) = / / e~5te= R Cy (x, t) dx dt
0 —o0
to get sCo(k,s) — 1 = (—ik)*Co(k, s). Rearrange as
— 1
k,s) = ————.
CO( 75) S—(—ik)a

Apply an inverse LT followed to inverse FT:

Colx, £) = tl%fa,,l (5%)-



FLT Approach (Cont'd)

Why not apply the inverse FT first? The inverse FT can be
expressed as (Morse and Feschbach, 1953)

. 1 T+ir oikx
Co(x,s) = — lim —— dk,
0( ) 2 T*)OO/_T_;’_I'T S — (—Ik)a
where 7 > 0 is chosen to avoid the branch cut along the negative

real axis. Integrand has a single pole at k* = is/® and remains
analytic for all other points in the upper half-plane.
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FLT Approach (Cont'd)

Evaluate the contour integral, yielding
Co(x,s) =~s" Lexp(—xs?) for x > 0,
where v =1/ € [1/2,1). Invert using
hy 1 (x,5) =T exp (—xs7)

for the LT of the inverse stable subordinator density (see
Meerschaert and Sikorskii, 2012)

- t -1/
hry7+(X, t) = Wﬁy’l (tX ) .

Compare and use the uniqueness of the LT to get
Co(x,t) = vhy +(x,t) forall x > 0.

For x > 0, the negatively skewed diffusion (dispersion) equation is
solved by a positively skewed stable PDF with index v = 1/a.



FLT Approach (Cont'd)

Take FT of h, 4 (x,5) = H(x)s" L exp (—xs7), yielding

s11
ik +s7°

h’y,Jr(k’ S) =

Rewrite s7h., 4 (k,s) — s771 = —(ik)h, +(k,s) and invert

<(‘;91t>7 hy+(x, t) = _a%’H(X’ t)i hyt(x,0) = 9(x).

Since Co(x, t) is proportional to h, (x,t) for all x > 0and t >0,

9 7C(x t)_—éC(X t) forx>0andt>0
ot o\X, L) = Ox 0\ X, .

Agrees with heuristic argument and Baeumer et. al. (2009) result.



Duality for x < 0

Apply the reflection property po(—x;n, b,0) = po(x; —n, b, 0) for
stable densities for x < O:
Pa (X; 777 17 0) = pOé (_|X|' 77’ 1’ 0)
= Pa (’X‘; -, 1, 0)
= [x|7%p, (IxI7% 7, 1,0)

with v = 1/ and n* =2 — 3. In ST parameterization
foa(.0) = x| 17 (1x]7).

Hence, Co(x, t) = vh_ ,(—x, t) for x < 0 where

t

b6 8) = 5

fy,3* <tx_1/7> H(x).



Duality for FADE

Consider the negatively-skewed FADE (Benson et. al., 2000)

oc __,0¢ p 0°C
ot~ “ax | o(—x)°

on the real line. Then C(x,t) has a traveling wave solution
C(x,t) = Co(x — vt, Dt)

where Cp(x, t) solves the FDE. Apply duality on the positive and
negative axes:

C(x,t) = vhy 1 (x—vt, Dt)H(x — vt)+~vh, _(x —vt, Dt)H(vt — x).

where H(x) is the Heaviside function.



Dual Solution for FADE

C(x,t) =~vhy 1 (x—vt, Dt)H(x — vt)+~vh, _(x —vt, Dt)H(vt —x).

(a) snapshot (b) breakthrough curve

Figure: Comparison of FADE solution (solid) with dual solution (markers)
with parameters are « =3/2, v=1,t=2,and D =1.



The Governing Equation

For x > vt, we can show the FLT relationship (Kelly and
Meerschaert, 2016)

v(s + ikv)r~1
Dvik 4 (s + ikv)r’

C(k,s) =
Invert using the FLT formula (Meerschaert et. al., 2002)

0 + v2 ! f(x,t) = (s + ikv) f(k,s)
ot Ox ’ '

and the LT formula t=7 /T (1 — ) + 771, yielding a coupled

space-time fractional governing equation for x > vt

g
<8 +va> C(x,t) = —D78(9)<C(x7 t) + v(x — vt)

ot " 'd r1—r)

This space-time operator is a fractional material derivative
(Sokolov and Metzler, 2003).



Physical Explanation

e Negatively skewed FADE models large negative (upstream)
jumps. Zhang (2009) noted this is unphysical!

e The dual space-time fractional equation resolves this problem.
Consider the fractional material derivative:

0 n o\”
JR— Vi
ot Ox
e Material derivative is the time-rate of change in a moving
coordinate system.

e The Caputo derivative models waiting times (retention) in this
moving frame.



Space-Time Duality: Generalizations

Can we extend these results?
@ Space-fractional PDEs: 0:u(x, t) = poZu(x, t) + g0, u(x, t).
@ Tempered FDEs: d,u(x, t) = 82 u(x, t), where %7 is the
tempered fractional RL derivative (Baeumer and Meerschaert,
2010) and (Li et. al, 2015).

©® FDEs with boundary conditions: d:u(x, t) = 0%, u(x,t) on
x > 0 with 9°u(0, t) = 0.



General space-FDEs

Consider FPDE for x > 0

(67 [0}

%C(X, t) :p(;a?C(x, t)+qWC(x, t), (1)

where p4+ g =1, f = p— q, and the fractional derivatives are
Riemann-Liouville. Solution is

1 X

Rewrite in Zolotarev's C parameterization, apply duality, and
transform back to ST parameterization:

t 1 t
Ctx.t) = s 5 oo (537) HO9 ®)

with v = 1/a and skew * = (53, ).



General space-FDEs

This dual solution solves a time-fractional PDE:

Lo Lo

C(x,t) = —%C(X, t) + p*o(x)b(t),

where * = p* — g* and b(t) is a source term. Several questions:

@ Is this time-fractional equation the scaling limit of some
CTRW? For example, a time-reversed subordinator? (Lorick
Huang)

@ Is it possible to transform only the negative jumps into a
positive time-fractional derivative, yielding a governing
equation without the negatively-skewed time-fractional
derivative?



Tempered FDEs

Truncated power-laws can be modeled using with tempered time
derivatives or tempered space derivatives. Consider

Beu = 9”7 u where u(x,0) = §(x).

where 82’;\ has Fourier symbol ¢(k) = (A — ik)* =AY, 1 < a <2,
and A > 0. Solve using FLTs and apply Zolotarev duality, yielding
u(x, t) :e’\xe_’\atfm,l(x, t)
=yeMe N th, (x, 1),

Solves

(aat)%A u(x, t) = —Oxu(x, t) + b(x t)



FDEs with boundary conditions

e Boundary-value problems for space-fractional PDEs are
difficult.

e Is it possible to transform a space FDE with boundary
conditions to an equivalent time-fractional FDE with
boundary conditions?

Oru(x, t) = 0%, u(x, t)

on x > 0 subject to a fractional flux boundary condition

9o tu(0,t) =0



“Fractional Derivative” of order 1

What is the governing equation of Lévy motion of order one and
skewness one? Define an operator

D} f(x)=F1 [wl,l(_k)?(k)} ,

where 11 1(k) is the log characteristic function of a stable law with
a=1land g =1:

1106 = -1 (14 2 W ).

By Lemma 7.3.9 in (Meerschaert and Scheffler, 2001)

2 [®
Yra(k) = / (e'ky 1k siny) y2dy.
0

s

Invert FT, yielding the generator form:

’D_li_f(x) = /OOO (f(x —y) = f(x) + f'(x)sin y) y~2dy.



Caputo Form and an example

Integrate by parts with u = f(x — y) — f(x) + f'(x)siny and
dv = y~?dy, to yield the Caputo form

DL f(x) = 2/000 [f'(x)cosy — f'(x —y)] y *dy.

s

Example
Let f(x) = e, where X > 0.

2 o
D}rf(x) :W/o [)\e)‘x cosy — Ae’\(x’y)} y~ldy
2\ o
—e’\X/ (cosy — e_)‘y> y~Ldy
n 0

2
=ZXIne™
v

If A =1, this “derivative” is zero!



Summary

Fractional wave equations (e.g. PLWE) are used to model
attenuation and dispersion in biomedical ultrasound.

Both TF and SF power-law models exist, prompting the
question: "What is the correct model?”

Space-time duality, which links SF and TF PDEs, allows
models to be unified.

We have applied duality to the negatively-skewed FDE and
the spatial FADE.

Many questions remain regarding general FDEs, FDEs with
boundary conditions, etc.
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