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Time-Fractional vs. Space-Fractional

Time-Fractional PDEs Models
sub-diffusion via long waiting
times (“hold-ups”)(

∂

∂t

)γ

C = AxC

C (x , t) =

∫ ∞

0
hγ(x , u)g(u, t) du

where ∂tg = Axg and hγ(x , u)
is the inverse stable
subordinator density.

Space-Fractional PDEs: Models
super-diffusion via long particle
jumps (“fast-paths”)

∂

∂t
C (x , t) =

∂α

∂xα
C (x , t)

C (x , t) = fα,1(x , t)

where fα,β(x , t) is a stable
density (with scaling parameter
t).
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Ultrasound: Two Applications

B-Mode Ultrasound Imaging
(Webb, 2003) Histotripsy (Maxwell, 2012)
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Ultrasound: Power Law Attenuation
• Ultrasound waves attenuate as they travel through tissue.
• Limits maximum imaging depth for B-mode imaging.
• Influences maximum focal pressure for histotripsy.
• Attenuation coefficient α(ω) fits a power-law

α(ω) = α0|ω|y .

Figure: Measured attenuation
(Goss, 1979) Figure: Meassured dispersion

(Gurumurthy and Arthur, 1982)
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Stokes Wave Equation

• Stokes Wave Equation (1845) is a classical PDE model:

∇2p − 1

c20

∂2p

∂t2
+ τ

∂

∂t
∇2p = 0.

• Wave attenuation is proportional to relaxation time τ [µs].

• Take FTs with respect to space and time, yielding[
−k2 + ω2/c20 + iωτk2

]
p(k, ω) = 0.

• Dispersion relationship is k(ω) = ω/c0(1− iωτ)−1/2.

• Attenuation is α(ω) = Imk(ω) ∼ τ/(2c0)ω
2 for ωτ ≪ 1.

• Phase velocity c(ω) is constant for ωτ ≪ 1 (no dispersion).
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Models for Attenuation in Ultrasound

• Early models (Gurumurthy and Arthur, 1982) modeled
attenuation/dispersion in the frequency domain.

• Szabo (1994) proposed a phenomenological model for
ultrasound in power law media (0 ≤ y ≤ 2).

∇2p − 1

c20

∂2p

∂t2
− 2α0

c0 cos(πy/2)

∂y+1p

∂ty+1
= 0.

• Interpolates between the integer-ordered telegrapher’s
equation (y = 0) and the (viscous) Blackstock (1967)
equation (y = 2) using a time-fractional derivative. Invalid for
y = 1.
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Power Law Wave Equation (PLWE)

Assume a dispersion relationship:

k(ω) =
ω

c0
− α0(−i)y+1ωy

cos(πy/2)

for ω ≥ 0 and k(−ω) = k∗(ω) to ensure real solutions. Imaginary
part of the dispersion relationship is

α(ω) = α0|ω|y .

Compute the phase speed as

1

c(ω)
=

Re k(ω)

ω
=

1

c0
+ α0 tan

(πy
2

)
|ω|y−1,

which is predicted by the Kramers-Krönig relationships and
supported by measurements.
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PLWE: Derivation

Square the dispersion relationship and multiply by FT p(k, ω)[
−k2 +

ω2

c20
− 2α0(−iω)y+1

c0 cos(πy/2)
− α2

0(−iω)2y

cos2(πy/2)

]
p(k, ω) = 0.

Perform an inverse FTs (space and time), yielding the PLWE
(Kelly et. al., 2008)

∇2p − 1

c20

∂2p

∂t2
− 2α0

c0 cos(πy/2)

∂y+1p

∂ty+1
− α2

0

cos2(πy/2)

∂2yp

∂t2y
= 0,

which satisfies the dispersion relationship exactly for y ̸= 1. For
mammalian tissue, power-law exponent y is very close to one!
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PLWE: 3D Green’s Function (1)

Solve PLWE subject to an impulse point-source with zero initial
conditions in free-space

∇2g− 1

c20

∂2g

∂t2
− 2α0

c0 cos(πy/2)

∂y+1g

∂ty+1
− α2

0

cos2(πy/2)

∂2yg

∂t2y
= −δ(R)δ(t),

where R is the relative displacement between the source and the
observer and R = |R|. Take Fourier transform wrt t

∇2ĝ + k2(ω)ĝ = −δ(R),

where k(ω) is our dispersion relationship. The Green’s function for
this Helmholtz equation is a spherical wave

ĝ(R, ω) =
e ik(ω)R

4πR
.
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PLWE: 3D Green’s Function (2)

Inserting the dispersion relationship into the spherical wave
solution yields

ĝ(R, ω) =

[
exp(iωR/c0)

4πR

] [
exp

(
−α0R(|ω|y − i tan(πy/2)ω|ω|y−1)

)]
,

where the first factor solves the lossless Helmholtz equation.
Evaluate inverse Fourier transform and apply the convolution
theorem, yielding

g(R, t) = F−1 [ĝ(R, ω)] .

g(R, t) = gD(R, t) ∗ gL(R, t)

where gD(R, t) = δ(t − R/c0)/4πR is is the Green’s function
(transient spherical wave) for the lossless wave equation.
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Interlude: Stable Parameterizations

1. ST parameterization (Samoradnitsky and Taquu, 1994):

fα,β(x) =
1

2π

∫ ∞

−∞
e−ikx exp (iµk + σαψα,β(k)) dk

ψα,β(k) = −|k|α
(
1− iβsgn(k) tan

(πα
2

))
for α ̸= 1

ψα,β(k) = −|k |
(
1 +

2i sgn(k)

π
ln |k|

)
for α = 1

σα = | cos (πα/2) |

2. Zolotarev C-Parameterization (for duality)

pα(x ; η, b) =
1

2π

∫ ∞

−∞
e−iλx exp

[
−b|λ|α exp

(
− iπηλ

2|λ|

)]
dλ
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Loss Function

The second term is a loss function defined as

gL(R, t) =F−1
[
exp

(
−α0R(|ω|y − i tan(πy/2)ω|ω|y−1)

)]
=

1

(α0R)1/y
fy ,1

(
t

(α0R)1/y

)
.

• Nice for engineers, since stable PDFs may be numerically
evaluated using STABLE toolbox (Nolan, 1997) or MATLAB
2016a.

• Solution of a time-fractional equation involves a stable
density, not an inverse stable density. Not what we expected!

• Solution involves a PDF: What is the random variable?



. . . . . .

Numerical Results: Green’s Functions
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Figure: Snapshots of the 3D power law Green’s function for y = 0.5, 1.5,
and 2.0 for α0 = 0.05 mm−1MHz−y . Snapshots of the Green’s function
are shown for t = 20 and 50 µs.
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Ultrasound Pulse Propagation in Tissue
Given an input pulse v(t), the velocity potential ϕ(r, t) is

ϕ(r, t) = v(t) ∗ g(r, t)

(a) R = 10 mm (b) R = 100 mm

Pulse experiences a frequency downshift and distortion as depth
increases.
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Causality
Physics demands causality. The Green’s function is causal if
g(R, t) = 0 for all t < 0. PLWE Green’s function is

g(R, t) =
1

4πR

1

(α0R)1/y
fy ,1

(
t − R/c0
(α0R)1/y

)
.

• If y < 1, then fy ,1(z) = 0 is z < 0. Then g(R, t) = 0 if
t < R/c0, implying causality.

• If y ≥ 1, then fy ,1(z) > 0 for all z . Then g(R, t) > 0 for
t < 0, violating causality!

• However, fy ,1(z) decays with exponential order for t → −∞:

fy ,1(z) ≈ A|z |ν exp (−B|z |µ) ,

where A, B, µ, and ν are functions of y only.

• For observation points only one wavelength from the radiating
source, the relative magnitude of g(R, t) is less than -136 dB
for all 1 < y ≤ 2.
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Many Models: Which is the “Right” One?
The Szabo (1994) wave equation

∇2p =
1

c20
∂2t p +

2α0

c0b
∂y+1
t p

is a simplified PLWE. Chen and Holm (2004) recommend

∇2p + α0∂t(−∇2)y/2p =
1

c20
∂2t p

using a fractional Laplacian. Caputo (1967) and Wismer (2006)
propose

∇2p =
1

c20
∂2t p + τ y−1∂y−1

t ∇2p

while Treeby and Cox (2010) consider

∇2p + α0∂t(−∇2)y/2p + α1∂t∇(β+1)/2p =
1

c20
∂2t p.

All exhibit power law attenuation α(ω) = α0|ω|β for 1 < y < 2.
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Solutions
Analytical comparison (Kelly and McGough, 2016)

Numerical comparison (Zhao and McGough, 2016)



. . . . . .

Model Unification and Duality

• Many models proposed that agree with experiments, but
who’s right, and who’s wrong?

• The idea of duality: two ways of looking at the same thing
(Atiyah, 2008).

• Famous Example: wave-particle duality of light. Light behaves
like a particle (Democritus) and a wave (Descartes). These
contrary viewpoints were unified by quantum mechanics.

• Perhaps this duality principle can resolve (and unify) these
alternative time-fractional and space-fractional models?
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A Brief History of Space-Time Duality
• Zolotarev (1961) noted an equivalence between stable
densities of index α and 1/α in the C parameterization:

Theorem
(Duality Principle) For any pairs of admissible parameters α ≥ 1, θ
and any u > 0

pα (u; η, 1) = u−(1+α)pα∗
(
u−α; η∗, 1

)
,

where α∗ = 1/α and 1 + η∗ = α(1 + θ).

• Feller (1971) gave a simplified proof of this “curious
by-product” using infinite series

• Baeumer et. al. (2009) recognized that (negatively skewed)
space-fractional diffusion equations are solved by inverse
stable densities, while time-fractional diffusion equations are
solved by stable densities:

fα,−1(x , t) = γhγ(x , t) where γ = 1/α.
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A Heuristic Argument
Let 1 < α ≤ 2 and 1/2 ≤ γ = 1/α < 1. Consider negatively
skewed FDE:

∂C0

∂t
=

∂αC0

∂(−x)α
.

Apply the Fourier transform in both variables

[(iω)− (−ik)α]Ĉ0 = 0.

Dispersion relationship: iω − (−ik)α = 0. Dual dispersion
relationship:(iω)γ = (−ik). Inverting the FTs leads to the dual
equation

∂γC0

∂tγ
= −∂C0

∂x
.

• Heaviside (1871) noted this relationship for the classical
diffusion equation (α = 2).

• Baeumer et. al. (2009) noted this equivalence from
fα,−1(x , t) = γhγ(x , t).
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Some New Results

..1 New proof of duality using Fourier-Laplace transforms (FLTs).

..2 Duality principle assumes x > 0. We extend duality to x < 0,
thereby covering the real line.

..3 Consider problems with drift: fractional advection dispersion
equation (FADE)

∂C

∂t
= −v

∂C

∂x
+ D

∂αC

∂(−x)α
.
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FLT Approach
Cauchy problem for fractional diffusion/dispersion equation (FDE)

∂C0

∂t
=

∂αC0

∂(−x)α
subject to C (x , 0) = δ(x).

Apply the Fourier-Laplace transform (FLT)

C0(k, s) =

∫ ∞

0

∫ ∞

−∞
e−ste−ikxC0(x , t) dx dt

to get sC0(k, s)− 1 = (−ik)αC0(k, s). Rearrange as

C0(k , s) =
1

s − (−ik)α
.

Apply an inverse LT followed to inverse FT:

C0(x , t) =
1

t1/α
fα,−1

( x

t1/α

)
.
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FLT Approach (Cont’d)
Why not apply the inverse FT first? The inverse FT can be
expressed as (Morse and Feschbach, 1953)

C̃0(x , s) =
1

2π
lim

T→∞

∫ T+iτ

−T+iτ

e ikx

s − (−ik)α
dk ,

where τ > 0 is chosen to avoid the branch cut along the negative
real axis. Integrand has a single pole at k∗ = is1/α and remains
analytic for all other points in the upper half-plane.

..
kr

.

ki

.

LT

.

CT

.

◦

.

k∗ = isγ

.O.

T

Figure: Contour C = LT + CT for x > 0.
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FLT Approach (Cont’d)
Evaluate the contour integral, yielding

C̃0(x , s) = γsγ−1 exp (−xsγ) for x > 0,

where γ = 1/α ∈ [1/2, 1). Invert using

h̃γ,+(x , s) = sγ−1 exp (−xsγ)

for the LT of the inverse stable subordinator density (see
Meerschaert and Sikorskii, 2012)

hγ,+(x , t) =
t

γx1+1/γ
fγ,1

(
tx−1/γ

)
.

Compare and use the uniqueness of the LT to get

C0(x , t) = γhγ,+(x , t) for all x > 0.

For x > 0, the negatively skewed diffusion (dispersion) equation is
solved by a positively skewed stable PDF with index γ = 1/α.
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FLT Approach (Cont’d)

Take FT of h̃γ,+(x , s) = H(x)sγ−1 exp (−xsγ), yielding

h̄γ,+(k , s) =
sγ−1

ik + sγ
.

Rewrite sγ h̄γ,+(k, s)− sγ−1 = −(ik)h̄γ,+(k, s) and invert(
∂

∂t

)γ

hγ,+(x , t) = − ∂

∂x
h+(x , t); hγ,+(x , 0) = δ(x).

Since C0(x , t) is proportional to hγ,+(x , t) for all x > 0 and t > 0,(
∂

∂t

)γ

C0(x , t) = − ∂

∂x
C0(x , t) for x > 0 and t > 0.

Agrees with heuristic argument and Baeumer et. al. (2009) result.
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Duality for x < 0

Apply the reflection property pα(−x ; η, b, 0) = pα(x ;−η, b, 0) for
stable densities for x < 0:

pα (x ; η, 1, 0) = pα (−|x |; η, 1, 0)
= pα (|x |;−η, 1, 0)
= |x |−1−αpγ

(
|x |−α; η∗, 1, 0

)
with γ = 1/α and η∗ = 2− 3γ. In ST parameterization

fα,−1(x , 0) = |x |−1−1/γfγ,β∗

(
|x |−1/γ

)
.

Hence, C0(x , t) = γh−,γ(−x , t) for x < 0 where

hγ,−(x , t) =
t

γx1+1/γ
fγ,β∗

(
tx−1/γ

)
H(x).
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Duality for FADE

Consider the negatively-skewed FADE (Benson et. al., 2000)

∂C

∂t
= −v

∂C

∂x
+ D

∂αC

∂(−x)α

on the real line. Then C (x , t) has a traveling wave solution

C (x , t) = C0(x − vt,Dt)

where C0(x , t) solves the FDE. Apply duality on the positive and
negative axes:

C (x , t) = γhγ,+(x−vt,Dt)H(x−vt)+γhγ,−(x−vt,Dt)H(vt−x).

where H(x) is the Heaviside function.
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Dual Solution for FADE

C (x , t) = γhγ,+(x−vt,Dt)H(x−vt)+γhγ,−(x−vt,Dt)H(vt−x).

-5 0 5 10
x
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0.2
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C
(x

,t)

(a) snapshot

0 2 4 6 8 10
t

0
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0.2

0.3

0.4

C
(x

,t)

(b) breakthrough curve

Figure: Comparison of FADE solution (solid) with dual solution (markers)
with parameters are α = 3/2, v = 1, t = 2, and D = 1.
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The Governing Equation
For x > vt, we can show the FLT relationship (Kelly and
Meerschaert, 2016)

C̄ (k, s) =
γ(s + ikv)γ−1

Dγ ik + (s + ikv)γ
.

Invert using the FLT formula (Meerschaert et. al., 2002)(
∂

∂t
+ v

∂

∂x

)γ

f (x , t) 7→ (s + ikv)γ f̄ (k, s)

and the LT formula t−γ/Γ(1− γ) 7→ sγ−1, yielding a coupled
space-time fractional governing equation for x > vt(

∂

∂t
+ v

∂

∂x

)γ

C (x , t) = −Dγ ∂

∂x
C (x , t) + γδ(x − vt)

t−γ

Γ(1− γ)
.

This space-time operator is a fractional material derivative
(Sokolov and Metzler, 2003).
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Physical Explanation

• Negatively skewed FADE models large negative (upstream)
jumps. Zhang (2009) noted this is unphysical!

• The dual space-time fractional equation resolves this problem.
Consider the fractional material derivative:(

∂

∂t
+ v

∂

∂x

)γ

• Material derivative is the time-rate of change in a moving
coordinate system.

• The Caputo derivative models waiting times (retention) in this
moving frame.
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Space-Time Duality: Generalizations

Can we extend these results?

..1 Space-fractional PDEs: ∂tu(x , t) = p∂αx u(x , t) + q∂α−xu(x , t).

..2 Tempered FDEs: ∂tu(x , t) = ∂α,λ−x u(x , t), where ∂
α,λ
−x is the

tempered fractional RL derivative (Baeumer and Meerschaert,
2010) and (Li et. al, 2015).

..3 FDEs with boundary conditions: ∂tu(x , t) = ∂α−xu(x , t) on
x > 0 with ∂α−1

−x u(0, t) = 0.
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General space-FDEs

Consider FPDE for x > 0

∂

∂t
C (x , t) = p

∂α

∂xα
C (x , t) + q

∂α

∂(−x)α
C (x , t), (1)

where p + q = 1, β = p − q, and the fractional derivatives are
Riemann-Liouville. Solution is

C (x , t) =
1

t1/α
fα,β

( x

t1/α

)
. (2)

Rewrite in Zolotarev’s C parameterization, apply duality, and
transform back to ST parameterization:

C (x , t) =
t

x1+1/γ

1

x1/γ
fγ,β∗

( t

x1/γ

)
H(x) (3)

with γ = 1/α and skew β∗ = β∗(β, α).
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General space-FDEs

This dual solution solves a time-fractional PDE:

p∗
∂γ

∂tγ
C (x , t) + q∗

∂γ

∂(−t)γ
C (x , t) = − ∂

∂x
C (x , t) + p∗δ(x)b(t),

where β∗ = p∗ − q∗ and b(t) is a source term. Several questions:

..1 Is this time-fractional equation the scaling limit of some
CTRW? For example, a time-reversed subordinator? (Lorick
Huang)

..2 Is it possible to transform only the negative jumps into a
positive time-fractional derivative, yielding a governing
equation without the negatively-skewed time-fractional
derivative?
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Tempered FDEs

Truncated power-laws can be modeled using with tempered time
derivatives or tempered space derivatives. Consider

∂tu = ∂α,λ−x u where u(x , 0) = δ(x).

where ∂α,λ−x has Fourier symbol ψ(k) = (λ− ik)α − λα, 1 < α ≤ 2,
and λ > 0. Solve using FLTs and apply Zolotarev duality, yielding

u(x , t) =eλxe−λαt fα,−1(x , t)

=γeλxe−λαthγ(x , t),

Solves (
∂

∂t

)γ,λ

u(x , t) = −∂xu(x , t) + b(x , t)
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FDEs with boundary conditions

• Boundary-value problems for space-fractional PDEs are
difficult.

• Is it possible to transform a space FDE with boundary
conditions to an equivalent time-fractional FDE with
boundary conditions?

•
∂tu(x , t) = ∂α−xu(x , t)

on x > 0 subject to a fractional flux boundary condition

∂α−1
−x u(0, t) = 0
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“Fractional Derivative” of order 1
What is the governing equation of Lévy motion of order one and
skewness one? Define an operator

D1
+f (x) = F−1

[
ψ1,1(−k)f̂ (k)

]
,

where ψ1,1(k) is the log characteristic function of a stable law with
α = 1 and β = 1:

ψ1,1(k) = −|k |
(
1 +

2i sgn(k)

π
ln |k |

)
.

By Lemma 7.3.9 in (Meerschaert and Scheffler, 2001)

ψ1,1(k) =
2

π

∫ ∞

0

(
e iky − 1− ik sin y

)
y−2 dy .

Invert FT, yielding the generator form:

D1
+f (x) =

∫ ∞

0

(
f (x − y)− f (x) + f ′(x) sin y

)
y−2 dy .
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Caputo Form and an example

Integrate by parts with u = f (x − y)− f (x) + f ′(x) sin y and
dv = y−2dy , to yield the Caputo form

D1
+f (x) =

2

π

∫ ∞

0

[
f ′(x) cos y − f ′(x − y)

]
y−1 dy .

Example

Let f (x) = eλx , where λ > 0.

D1
+f (x) =

2

π

∫ ∞

0

[
λeλx cos y − λeλ(x−y)

]
y−1 dy

=
2λ

π
eλx

∫ ∞

0

(
cos y − e−λy

)
y−1 dy

=
2

π
λ lnλeλx

If λ = 1, this “derivative” is zero!
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Summary

• Fractional wave equations (e.g. PLWE) are used to model
attenuation and dispersion in biomedical ultrasound.

• Both TF and SF power-law models exist, prompting the
question: ”What is the correct model?”

• Space-time duality, which links SF and TF PDEs, allows
models to be unified.

• We have applied duality to the negatively-skewed FDE and
the spatial FADE.

• Many questions remain regarding general FDEs, FDEs with
boundary conditions, etc.
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