# Space-Time Duality and Medical Ultrasound 

James F. Kelly and Mark M. Meerschaert

A Workshop on Future Directions in
Fractional Calculus Research and Applications
Michigan State University

October 21, 2016
(1) Power-Law Attenuation in Ultrasound
(2) Space-Time Duality
(3) General Space-Time Duality and $\alpha=1$.
(4) Conclusions

## Acknowledgments

- Robert J. McGough and Xiaofeng Zhao, Department of Electrical and Computer Engineering, MSU
- Harish Sankaranarayanan and Lorick Huang, Department of Probability and Statistics, MSU
- Thomas Szabo, Department of Biomedical Engineering, Boston University
- John P. Nolan, Department of Mathematics and Statistics, American University


## Time-Fractional vs. Space-Fractional

Time-Fractional PDEs Models sub-diffusion via long waiting times ("hold-ups")

$$
\left(\frac{\partial}{\partial t}\right)^{\gamma} C=A_{x} C
$$

$C(x, t)=\int_{0}^{\infty} h_{\gamma}(x, u) g(u, t) d u$
where $\partial_{t} g=A_{x} g$ and $h_{\gamma}(x, u)$ is the inverse stable subordinator density.

Space-Fractional PDEs: Models super-diffusion via long particle jumps ("fast-paths")

$$
\frac{\partial}{\partial t} C(x, t)=\frac{\partial^{\alpha}}{\partial x^{\alpha}} C(x, t)
$$

$$
C(x, t)=f_{\alpha, 1}(x, t)
$$

where $f_{\alpha, \beta}(x, t)$ is a stable density (with scaling parameter $t)$.

## Ultrasound: Two Applications

B-Mode Ultrasound Imaging (Webb, 2003)

## Histotripsy (Maxwell, 2012)



## Ultrasound: Power Law Attenuation

- Ultrasound waves attenuate as they travel through tissue.
- Limits maximum imaging depth for B-mode imaging.
- Influences maximum focal pressure for histotripsy.
- Attenuation coefficient $\alpha(\omega)$ fits a power-law

$$
\alpha(\omega)=\alpha_{0}|\omega|^{y}
$$



Figure: Measured attenuation (Goss, 1979)


Figure: Meassured dispersion (Gurumurthy and Arthur, 1982)

## Stokes Wave Equation

- Stokes Wave Equation (1845) is a classical PDE model:

$$
\nabla^{2} p-\frac{1}{c_{0}^{2}} \frac{\partial^{2} p}{\partial t^{2}}+\tau \frac{\partial}{\partial t} \nabla^{2} p=0
$$

- Wave attenuation is proportional to relaxation time $\tau[\mu \mathrm{s}]$.
- Take FTs with respect to space and time, yielding

$$
\left[-k^{2}+\omega^{2} / c_{0}^{2}+i \omega \tau k^{2}\right] \bar{p}(k, \omega)=0 .
$$

- Dispersion relationship is $k(\omega)=\omega / c_{0}(1-i \omega \tau)^{-1 / 2}$.
- Attenuation is $\alpha(\omega)=\operatorname{lm} k(\omega) \sim \tau /\left(2 c_{0}\right) \omega^{2}$ for $\omega \tau \ll 1$.
- Phase velocity $c(\omega)$ is constant for $\omega \tau \ll 1$ (no dispersion).


## Models for Attenuation in Ultrasound

- Early models (Gurumurthy and Arthur, 1982) modeled attenuation/dispersion in the frequency domain.
- Szabo (1994) proposed a phenomenological model for ultrasound in power law media $(0 \leq y \leq 2)$.

$$
\nabla^{2} p-\frac{1}{c_{0}^{2}} \frac{\partial^{2} p}{\partial t^{2}}-\frac{2 \alpha_{0}}{c_{0} \cos (\pi y / 2)} \frac{\partial^{y+1} p}{\partial t^{y+1}}=0
$$

- Interpolates between the integer-ordered telegrapher's equation ( $y=0$ ) and the (viscous) Blackstock (1967) equation $(y=2)$ using a time-fractional derivative. Invalid for $y=1$.


## Power Law Wave Equation (PLWE)

Assume a dispersion relationship:

$$
k(\omega)=\frac{\omega}{c_{0}}-\frac{\alpha_{0}(-i)^{y+1} \omega^{y}}{\cos (\pi y / 2)}
$$

for $\omega \geq 0$ and $k(-\omega)=k^{*}(\omega)$ to ensure real solutions. Imaginary part of the dispersion relationship is

$$
\alpha(\omega)=\alpha_{0}|\omega|^{y}
$$

Compute the phase speed as

$$
\frac{1}{c(\omega)}=\frac{\operatorname{Re} k(\omega)}{\omega}=\frac{1}{c_{0}}+\alpha_{0} \tan \left(\frac{\pi y}{2}\right)|\omega|^{y-1}
$$

which is predicted by the Kramers-Krönig relationships and supported by measurements.

## PLWE: Derivation

Square the dispersion relationship and multiply by FT $\bar{p}(\mathbf{k}, \omega)$

$$
\left[-k^{2}+\frac{\omega^{2}}{c_{0}^{2}}-\frac{2 \alpha_{0}(-i \omega)^{y+1}}{c_{0} \cos (\pi y / 2)}-\frac{\alpha_{0}^{2}(-i \omega)^{2 y}}{\cos ^{2}(\pi y / 2)}\right] \bar{p}(\mathbf{k}, \omega)=0 .
$$

Perform an inverse FTs (space and time), yielding the PLWE (Kelly et. al., 2008)

$$
\nabla^{2} p-\frac{1}{c_{0}^{2}} \frac{\partial^{2} p}{\partial t^{2}}-\frac{2 \alpha_{0}}{c_{0} \cos (\pi y / 2)} \frac{\partial^{y+1} p}{\partial t^{y+1}}-\frac{\alpha_{0}^{2}}{\cos ^{2}(\pi y / 2)} \frac{\partial^{2 y} p}{\partial t^{2 y}}=0
$$

which satisfies the dispersion relationship exactly for $y \neq 1$. For mammalian tissue, power-law exponent $y$ is very close to one!

## PLWE: 3D Green's Function (1)

Solve PLWE subject to an impulse point-source with zero initial conditions in free-space
$\nabla^{2} g-\frac{1}{c_{0}^{2}} \frac{\partial^{2} g}{\partial t^{2}}-\frac{2 \alpha_{0}}{c_{0} \cos (\pi y / 2)} \frac{\partial^{y+1} g}{\partial t^{y+1}}-\frac{\alpha_{0}^{2}}{\cos ^{2}(\pi y / 2)} \frac{\partial^{2 y} g}{\partial t^{2 y}}=-\delta(\mathbf{R}) \delta(t)$,
where $\mathbf{R}$ is the relative displacement between the source and the observer and $R=|\mathbf{R}|$. Take Fourier transform wrt $t$

$$
\nabla^{2} \hat{g}+k^{2}(\omega) \hat{g}=-\delta(\mathbf{R})
$$

where $k(\omega)$ is our dispersion relationship. The Green's function for this Helmholtz equation is a spherical wave

$$
\hat{g}(R, \omega)=\frac{e^{i k(\omega) R}}{4 \pi R}
$$

## PLWE: 3D Green's Function (2)

Inserting the dispersion relationship into the spherical wave solution yields
$\hat{g}(R, \omega)=\left[\frac{\exp \left(i \omega R / c_{0}\right)}{4 \pi R}\right]\left[\exp \left(-\alpha_{0} R\left(|\omega|^{y}-i \tan (\pi y / 2) \omega|\omega|^{y-1}\right)\right)\right]$,
where the first factor solves the lossless Helmholtz equation. Evaluate inverse Fourier transform and apply the convolution theorem, yielding

$$
\begin{gathered}
g(R, t)=\mathcal{F}^{-1}[\hat{g}(R, \omega)] \\
g(R, t)=g_{D}(R, t) * g_{L}(R, t)
\end{gathered}
$$

where $g_{D}(R, t)=\delta\left(t-R / c_{0}\right) / 4 \pi R$ is is the Green's function (transient spherical wave) for the lossless wave equation.

## Interlude: Stable Parameterizations

1. ST parameterization (Samoradnitsky and Taquu, 1994):

$$
\begin{gathered}
f_{\alpha, \beta}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i k x} \exp \left(i \mu k+\sigma^{\alpha} \psi_{\alpha, \beta}(k)\right) d k \\
\psi_{\alpha, \beta}(k)=-|k|^{\alpha}\left(1-i \beta \operatorname{sgn}(k) \tan \left(\frac{\pi \alpha}{2}\right)\right) \text { for } \alpha \neq 1 \\
\psi_{\alpha, \beta}(k)=-|k|\left(1+\frac{2 i \operatorname{sgn}(k)}{\pi} \ln |k|\right) \text { for } \alpha=1 \\
\sigma^{\alpha}=|\cos (\pi \alpha / 2)|
\end{gathered}
$$

2. Zolotarev C-Parameterization (for duality)

$$
p_{\alpha}(x ; \eta, b)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i \lambda x} \exp \left[-b|\lambda|^{\alpha} \exp \left(-\frac{i \pi \eta \lambda}{2|\lambda|}\right)\right] d \lambda
$$

## Loss Function

The second term is a loss function defined as

$$
\begin{aligned}
g_{L}(R, t) & =\mathcal{F}^{-1}\left[\exp \left(-\alpha_{0} R\left(|\omega|^{y}-i \tan (\pi y / 2) \omega|\omega|^{y-1}\right)\right)\right] \\
& =\frac{1}{\left(\alpha_{0} R\right)^{1 / y}} f_{y, 1}\left(\frac{t}{\left(\alpha_{0} R\right)^{1 / y}}\right) .
\end{aligned}
$$

- Nice for engineers, since stable PDFs may be numerically evaluated using STABLE toolbox (Nolan, 1997) or MATLAB 2016a.
- Solution of a time-fractional equation involves a stable density, not an inverse stable density. Not what we expected!
- Solution involves a PDF: What is the random variable?


## Numerical Results: Green's Functions


(a) $t=20 \mu \mathrm{~s}$

(b) $t=50 \mu \mathrm{~s}$

Figure: Snapshots of the 3D power law Green's function for $y=0.5,1.5$, and 2.0 for $\alpha_{0}=0.05 \mathrm{~mm}^{-1} \mathrm{MHz}^{-y}$. Snapshots of the Green's function are shown for $t=20$ and $50 \mu \mathrm{~s}$.

## Ultrasound Pulse Propagation in Tissue

Given an input pulse $v(t)$, the velocity potential $\phi(\mathbf{r}, t)$ is

$$
\phi(\mathbf{r}, t)=v(t) * g(\mathbf{r}, t)
$$


(a) $R=10 \mathrm{~mm}$

(b) $R=100 \mathrm{~mm}$

Pulse experiences a frequency downshift and distortion as depth increases.

## Causality

Physics demands causality. The Green's function is causal if $g(R, t)=0$ for all $t<0$. PLWE Green's function is

$$
g(R, t)=\frac{1}{4 \pi R} \frac{1}{\left(\alpha_{0} R\right)^{1 / y}} f_{y, 1}\left(\frac{t-R / c_{0}}{\left(\alpha_{0} R\right)^{1 / y}}\right) .
$$

- If $y<1$, then $f_{y, 1}(z)=0$ is $z<0$. Then $g(R, t)=0$ if $t<R / c_{0}$, implying causality.
- If $y \geq 1$, then $f_{y, 1}(z)>0$ for all $z$. Then $g(R, t)>0$ for $t<0$, violating causality!
- However, $f_{y, 1}(z)$ decays with exponential order for $t \rightarrow-\infty$ :

$$
f_{y, 1}(z) \approx A|z|^{\nu} \exp \left(-B|z|^{\mu}\right)
$$

where $A, B, \mu$, and $\nu$ are functions of $y$ only.

- For observation points only one wavelength from the radiating source, the relative magnitude of $g(R, t)$ is less than -136 dB for all $1<y \leq 2$.


## Many Models: Which is the "Right" One?

The Szabo (1994) wave equation

$$
\nabla^{2} p=\frac{1}{c_{0}^{2}} \partial_{t}^{2} p+\frac{2 \alpha_{0}}{c_{0} b} \partial_{t}^{y+1} p
$$

is a simplified PLWE. Chen and Holm (2004) recommend

$$
\nabla^{2} p+\alpha_{0} \partial_{t}\left(-\nabla^{2}\right)^{y / 2} p=\frac{1}{c_{0}^{2}} \partial_{t}^{2} p
$$

using a fractional Laplacian. Caputo (1967) and Wismer (2006) propose

$$
\nabla^{2} p=\frac{1}{c_{0}^{2}} \partial_{t}^{2} p+\tau^{y-1} \partial_{t}^{y-1} \nabla^{2} p
$$

while Treeby and Cox (2010) consider

$$
\nabla^{2} p+\alpha_{0} \partial_{t}\left(-\nabla^{2}\right)^{y / 2} p+\alpha_{1} \partial_{t} \nabla^{(\beta+1) / 2} p=\frac{1}{c_{0}^{2}} \partial_{t}^{2} p
$$

All exhibit power law attenuation $\alpha(\omega)=\alpha_{0}|\omega|^{\beta}$ for $1<y<2$.

## Solutions

Analytical comparison (Kelly and McGough, 2016)


Numerical comparison (Zhao and McGough, 2016)



## Model Unification and Duality

- Many models proposed that agree with experiments, but who's right, and who's wrong?
- The idea of duality: two ways of looking at the same thing (Atiyah, 2008).
- Famous Example: wave-particle duality of light. Light behaves like a particle (Democritus) and a wave (Descartes). These contrary viewpoints were unified by quantum mechanics.
- Perhaps this duality principle can resolve (and unify) these alternative time-fractional and space-fractional models?


## A Brief History of Space-Time Duality

- Zolotarev (1961) noted an equivalence between stable densities of index $\alpha$ and $1 / \alpha$ in the C parameterization:
Theorem
(Duality Principle) For any pairs of admissible parameters $\alpha \geq 1, \theta$ and any $u>0$

$$
p_{\alpha}(u ; \eta, 1)=u^{-(1+\alpha)} p_{\alpha^{*}}\left(u^{-\alpha} ; \eta^{*}, 1\right)
$$

where $\alpha^{*}=1 / \alpha$ and $1+\eta^{*}=\alpha(1+\theta)$.

- Feller (1971) gave a simplified proof of this "curious by-product" using infinite series
- Baeumer et. al. (2009) recognized that (negatively skewed) space-fractional diffusion equations are solved by inverse stable densities, while time-fractional diffusion equations are solved by stable densities:

$$
f_{\alpha,-1}(x, t)=\gamma h_{\gamma}(x, t) \text { where } \gamma=1 / \alpha
$$

## A Heuristic Argument

Let $1<\alpha \leq 2$ and $1 / 2 \leq \gamma=1 / \alpha<1$. Consider negatively skewed FDE:

$$
\frac{\partial C_{0}}{\partial t}=\frac{\partial^{\alpha} C_{0}}{\partial(-x)^{\alpha}}
$$

Apply the Fourier transform in both variables

$$
\left[(i \omega)-(-i k)^{\alpha}\right] \hat{C}_{0}=0
$$

Dispersion relationship: $i \omega-(-i k)^{\alpha}=0$. Dual dispersion relationship: $(i \omega)^{\gamma}=(-i k)$. Inverting the FTs leads to the dual equation

$$
\frac{\partial^{\gamma} C_{0}}{\partial t^{\gamma}}=-\frac{\partial C_{0}}{\partial x} .
$$

- Heaviside (1871) noted this relationship for the classical diffusion equation $(\alpha=2)$.
- Baeumer et. al. (2009) noted this equivalence from $f_{\alpha,-1}(x, t)=\gamma h_{\gamma}(x, t)$.


## Some New Results

(1) New proof of duality using Fourier-Laplace transforms (FLTs).
(2) Duality principle assumes $x>0$. We extend duality to $x<0$, thereby covering the real line.
(3) Consider problems with drift: fractional advection dispersion equation (FADE)

$$
\frac{\partial C}{\partial t}=-v \frac{\partial C}{\partial x}+D \frac{\partial^{\alpha} C}{\partial(-x)^{\alpha}} .
$$

## FLT Approach

Cauchy problem for fractional diffusion/dispersion equation (FDE)

$$
\frac{\partial C_{0}}{\partial t}=\frac{\partial^{\alpha} C_{0}}{\partial(-x)^{\alpha}} \text { subject to } C(x, 0)=\delta(x)
$$

Apply the Fourier-Laplace transform (FLT)

$$
\overline{C_{0}}(k, s)=\int_{0}^{\infty} \int_{-\infty}^{\infty} e^{-s t} e^{-i k x} C_{0}(x, t) d x d t
$$

to get $s \overline{C_{0}}(k, s)-1=(-i k)^{\alpha} \overline{C_{0}}(k, s)$. Rearrange as

$$
\overline{C_{0}}(k, s)=\frac{1}{s-(-i k)^{\alpha}}
$$

Apply an inverse LT followed to inverse FT:

$$
C_{0}(x, t)=\frac{1}{t^{1 / \alpha}} f_{\alpha,-1}\left(\frac{x}{t^{1 / \alpha}}\right)
$$

## FLT Approach (Cont'd)

Why not apply the inverse FT first? The inverse FT can be expressed as (Morse and Feschbach, 1953)

$$
\tilde{C}_{0}(x, s)=\frac{1}{2 \pi} \lim _{T \rightarrow \infty} \int_{-T+i \tau}^{T+i \tau} \frac{e^{i k x}}{s-(-i k)^{\alpha}} d k
$$

where $\tau>0$ is chosen to avoid the branch cut along the negative real axis. Integrand has a single pole at $k^{*}=i s^{1 / \alpha}$ and remains analytic for all other points in the upper half-plane.


## FLT Approach (Cont'd)

Evaluate the contour integral, yielding

$$
\tilde{C}_{0}(x, s)=\gamma s^{\gamma-1} \exp \left(-x s^{\gamma}\right) \quad \text { for } x>0
$$

where $\gamma=1 / \alpha \in[1 / 2,1)$. Invert using

$$
\tilde{h}_{\gamma,+}(x, s)=s^{\gamma-1} \exp \left(-x s^{\gamma}\right)
$$

for the LT of the inverse stable subordinator density (see Meerschaert and Sikorskii, 2012)

$$
h_{\gamma,+}(x, t)=\frac{t}{\gamma x^{1+1 / \gamma}} f_{\gamma, 1}\left(t x^{-1 / \gamma}\right)
$$

Compare and use the uniqueness of the LT to get

$$
C_{0}(x, t)=\gamma h_{\gamma,+}(x, t) \quad \text { for all } x>0
$$

For $x>0$, the negatively skewed diffusion (dispersion) equation is solved by a positively skewed stable PDF with index $\gamma=1 / \alpha$.

## FLT Approach (Cont'd)

Take FT of $\tilde{h}_{\gamma,+}(x, s)=H(x) s^{\gamma-1} \exp \left(-x s^{\gamma}\right)$, yielding

$$
\bar{h}_{\gamma,+}(k, s)=\frac{s^{\gamma-1}}{i k+s^{\gamma}} .
$$

Rewrite $s^{\gamma} \bar{h}_{\gamma,+}(k, s)-s^{\gamma-1}=-(i k) \bar{h}_{\gamma,+}(k, s)$ and invert

$$
\left(\frac{\partial}{\partial t}\right)^{\gamma} h_{\gamma,+}(x, t)=-\frac{\partial}{\partial x} h_{+}(x, t) ; \quad h_{\gamma,+}(x, 0)=\delta(x) .
$$

Since $C_{0}(x, t)$ is proportional to $h_{\gamma,+}(x, t)$ for all $x>0$ and $t>0$,

$$
\left(\frac{\partial}{\partial t}\right)^{\gamma} C_{0}(x, t)=-\frac{\partial}{\partial x} C_{0}(x, t) \quad \text { for } x>0 \text { and } t>0
$$

Agrees with heuristic argument and Baeumer et. al. (2009) result.

## Duality for $x<0$

Apply the reflection property $p_{\alpha}(-x ; \eta, b, 0)=p_{\alpha}(x ;-\eta, b, 0)$ for stable densities for $x<0$ :

$$
\begin{aligned}
p_{\alpha}(x ; \eta, 1,0) & =p_{\alpha}(-|x| ; \eta, 1,0) \\
& =p_{\alpha}(|x| ;-\eta, 1,0) \\
& =|x|^{-1-\alpha} p_{\gamma}\left(|x|^{-\alpha} ; \eta^{*}, 1,0\right)
\end{aligned}
$$

with $\gamma=1 / \alpha$ and $\eta^{*}=2-3 \gamma$. In ST parameterization

$$
f_{\alpha,-1}(x, 0)=|x|^{-1-1 / \gamma} f_{\gamma, \beta^{*}}\left(|x|^{-1 / \gamma}\right) .
$$

Hence, $C_{0}(x, t)=\gamma h_{-, \gamma}(-x, t)$ for $x<0$ where

$$
h_{\gamma,-}(x, t)=\frac{t}{\gamma x^{1+1 / \gamma}} f_{\gamma, \beta^{*}}\left(t x^{-1 / \gamma}\right) H(x)
$$

## Duality for FADE

Consider the negatively-skewed FADE (Benson et. al., 2000)

$$
\frac{\partial C}{\partial t}=-v \frac{\partial C}{\partial x}+D \frac{\partial^{\alpha} C}{\partial(-x)^{\alpha}}
$$

on the real line. Then $C(x, t)$ has a traveling wave solution

$$
C(x, t)=C_{0}(x-v t, D t)
$$

where $C_{0}(x, t)$ solves the FDE. Apply duality on the positive and negative axes:
$C(x, t)=\gamma h_{\gamma,+}(x-v t, D t) H(x-v t)+\gamma h_{\gamma,-}(x-v t, D t) H(v t-x)$.
where $H(x)$ is the Heaviside function.

## Dual Solution for FADE

$$
C(x, t)=\gamma h_{\gamma,+}(x-v t, D t) H(x-v t)+\gamma h_{\gamma,-}(x-v t, D t) H(v t-x)
$$



Figure: Comparison of FADE solution (solid) with dual solution (markers) with parameters are $\alpha=3 / 2, v=1, t=2$, and $D=1$.

## The Governing Equation

For $x>v t$, we can show the FLT relationship (Kelly and Meerschaert, 2016)

$$
\bar{C}(k, s)=\frac{\gamma(s+i k v)^{\gamma-1}}{D^{\gamma} i k+(s+i k v)^{\gamma}}
$$

Invert using the FLT formula (Meerschaert et. al., 2002)

$$
\left(\frac{\partial}{\partial t}+v \frac{\partial}{\partial x}\right)^{\gamma} f(x, t) \mapsto(s+i k v)^{\gamma} \bar{f}(k, s)
$$

and the LT formula $t^{-\gamma} / \Gamma(1-\gamma) \mapsto s^{\gamma-1}$, yielding a coupled space-time fractional governing equation for $x>v t$

$$
\left(\frac{\partial}{\partial t}+v \frac{\partial}{\partial x}\right)^{\gamma} C(x, t)=-D^{\gamma} \frac{\partial}{\partial x} C(x, t)+\gamma \delta(x-v t) \frac{t^{-\gamma}}{\Gamma(1-\gamma)}
$$

This space-time operator is a fractional material derivative (Sokolov and Metzler, 2003).

## Physical Explanation

- Negatively skewed FADE models large negative (upstream) jumps. Zhang (2009) noted this is unphysical!
- The dual space-time fractional equation resolves this problem. Consider the fractional material derivative:

$$
\left(\frac{\partial}{\partial t}+v \frac{\partial}{\partial x}\right)^{\gamma}
$$

- Material derivative is the time-rate of change in a moving coordinate system.
- The Caputo derivative models waiting times (retention) in this moving frame.


## Space-Time Duality: Generalizations

Can we extend these results?
(1) Space-fractional PDEs: $\partial_{t} u(x, t)=p \partial_{x}^{\alpha} u(x, t)+q \partial_{-x}^{\alpha} u(x, t)$.
(2) Tempered FDEs: $\partial_{t} u(x, t)=\partial_{-x}^{\alpha, \lambda} u(x, t)$, where $\partial_{-x}^{\alpha, \lambda}$ is the tempered fractional RL derivative (Baeumer and Meerschaert, 2010) and (Li et. al, 2015).
(3) FDEs with boundary conditions: $\partial_{t} u(x, t)=\partial_{-x}^{\alpha} u(x, t)$ on $x>0$ with $\partial_{-x}^{\alpha-1} u(0, t)=0$.

## General space-FDEs

Consider FPDE for $x>0$

$$
\begin{equation*}
\frac{\partial}{\partial t} C(x, t)=p \frac{\partial^{\alpha}}{\partial x^{\alpha}} C(x, t)+q \frac{\partial^{\alpha}}{\partial(-x)^{\alpha}} C(x, t) \tag{1}
\end{equation*}
$$

where $p+q=1, \beta=p-q$, and the fractional derivatives are Riemann-Liouville. Solution is

$$
\begin{equation*}
C(x, t)=\frac{1}{t^{1 / \alpha}} f_{\alpha, \beta}\left(\frac{x}{t^{1 / \alpha}}\right) . \tag{2}
\end{equation*}
$$

Rewrite in Zolotarev's C parameterization, apply duality, and transform back to ST parameterization:

$$
\begin{equation*}
C(x, t)=\frac{t}{x^{1+1 / \gamma}} \frac{1}{x^{1 / \gamma}} f_{\gamma, \beta^{*}}\left(\frac{t}{x^{1 / \gamma}}\right) H(x) \tag{3}
\end{equation*}
$$

with $\gamma=1 / \alpha$ and skew $\beta^{*}=\beta^{*}(\beta, \alpha)$.

## General space-FDEs

This dual solution solves a time-fractional PDE:

$$
p^{*} \frac{\partial^{\gamma}}{\partial t^{\gamma}} C(x, t)+q^{*} \frac{\partial^{\gamma}}{\partial(-t)^{\gamma}} C(x, t)=-\frac{\partial}{\partial x} C(x, t)+p^{*} \delta(x) b(t)
$$

where $\beta^{*}=p^{*}-q^{*}$ and $b(t)$ is a source term. Several questions:
(1) Is this time-fractional equation the scaling limit of some CTRW? For example, a time-reversed subordinator? (Lorick Huang)
(2) Is it possible to transform only the negative jumps into a positive time-fractional derivative, yielding a governing equation without the negatively-skewed time-fractional derivative?

## Tempered FDEs

Truncated power-laws can be modeled using with tempered time derivatives or tempered space derivatives. Consider

$$
\partial_{t} u=\partial_{-x}^{\alpha, \lambda} u \text { where } u(x, 0)=\delta(x) .
$$

where $\partial_{-x}^{\alpha, \lambda}$ has Fourier symbol $\psi(k)=(\lambda-i k)^{\alpha}-\lambda^{\alpha}, 1<\alpha \leq 2$, and $\lambda>0$. Solve using FLTs and apply Zolotarev duality, yielding

$$
\begin{aligned}
u(x, t) & =e^{\lambda x} e^{-\lambda^{\alpha} t} f_{\alpha,-1}(x, t) \\
& =\gamma e^{\lambda x} e^{-\lambda^{\alpha} t} h_{\gamma}(x, t),
\end{aligned}
$$

Solves

$$
\left(\frac{\partial}{\partial t}\right)^{\gamma, \lambda} u(x, t)=-\partial_{x} u(x, t)+b(x, t)
$$

## FDEs with boundary conditions

- Boundary-value problems for space-fractional PDEs are difficult.
- Is it possible to transform a space FDE with boundary conditions to an equivalent time-fractional FDE with boundary conditions?
- 

$$
\partial_{t} u(x, t)=\partial_{-x}^{\alpha} u(x, t)
$$

on $x>0$ subject to a fractional flux boundary condition

$$
\partial_{-x}^{\alpha-1} u(0, t)=0
$$

## "Fractional Derivative" of order 1

What is the governing equation of Lévy motion of order one and skewness one? Define an operator

$$
D_{+}^{1} f(x)=\mathcal{F}^{-1}\left[\psi_{1,1}(-k) \hat{f}(k)\right]
$$

where $\psi_{1,1}(k)$ is the log characteristic function of a stable law with $\alpha=1$ and $\beta=1$ :

$$
\psi_{1,1}(k)=-|k|\left(1+\frac{2 i \operatorname{sgn}(k)}{\pi} \ln |k|\right) .
$$

By Lemma 7.3.9 in (Meerschaert and Scheffler, 2001)

$$
\psi_{1,1}(k)=\frac{2}{\pi} \int_{0}^{\infty}\left(e^{i k y}-1-i k \sin y\right) y^{-2} d y
$$

Invert FT, yielding the generator form:

$$
\mathcal{D}_{+}^{1} f(x)=\int_{0}^{\infty}\left(f(x-y)-f(x)+f^{\prime}(x) \sin y\right) y^{-2} d y
$$

## Caputo Form and an example

Integrate by parts with $u=f(x-y)-f(x)+f^{\prime}(x) \sin y$ and $d v=y^{-2} d y$, to yield the Caputo form

$$
\mathcal{D}_{+}^{1} f(x)=\frac{2}{\pi} \int_{0}^{\infty}\left[f^{\prime}(x) \cos y-f^{\prime}(x-y)\right] y^{-1} d y
$$

Example
Let $f(x)=e^{\lambda x}$, where $\lambda>0$.

$$
\begin{aligned}
\mathcal{D}_{+}^{1} f(x) & =\frac{2}{\pi} \int_{0}^{\infty}\left[\lambda e^{\lambda x} \cos y-\lambda e^{\lambda(x-y)}\right] y^{-1} d y \\
& =\frac{2 \lambda}{\pi} e^{\lambda x} \int_{0}^{\infty}\left(\cos y-e^{-\lambda y}\right) y^{-1} d y \\
& =\frac{2}{\pi} \lambda \ln \lambda e^{\lambda x}
\end{aligned}
$$

If $\lambda=1$, this "derivative" is zero!

## Summary

- Fractional wave equations (e.g. PLWE) are used to model attenuation and dispersion in biomedical ultrasound.
- Both TF and SF power-law models exist, prompting the question: "What is the correct model?"
- Space-time duality, which links SF and TF PDEs, allows models to be unified.
- We have applied duality to the negatively-skewed FDE and the spatial FADE.
- Many questions remain regarding general FDEs, FDEs with boundary conditions, etc.

