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Introduction I

From the point of view of stochastic analysis the Caputo and
Riemann-Liouville derivatives of order β ∈ (0, 2) can be viewed
as (regularized) generators of stable Lévy motions ’interrupted’
on crossing a boundary.

−

This interpretation naturally suggests fully mixed, two-sided or
even multidimensional generalizations of these derivatives, as
well as a probabilistic approach to the analysis of the related
equations.

2 / 82



Introduction II

In this talk we will present current theory for such generalised
operators, and address questions concerning the role of this
theory in the literature.

−

Key highlights:

I Provide a unified treatment of a variety of differential
equations of fractional type within a probabilistic
framework.

I Provide stochastic representations for the solutions to a
variety boundary value problems for a variety of fractional
differential operators (useful for numerics).
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Introduction III

This talk is based on the following papers

I ’On fully mixed and multidimensional extensions of the
Caputo and Riemann-Liouville derivatives, related Markov
processes and fractional differential equations’
V. N. Kolokoltsov, Fract. Calc. Anal. Appl., Vol 18, Issue
4 (Aug 2015)

I ’On the probabilistic approach to the solution of
generalized fractional differential equations of Caputo and
Riemann-Liouville type’
M. E. Hernández-Hernández, V. N. Kolokoltsov, Journal
of Fractional Calculus and Applications, 7 (1) 2016.
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Introduction IV

I ’Probabilistic solutions to nonlinear fractional differential
equations of generalised Caputo and Riemann-Liouville
type’
M. E. Hernández-Hernández, V. N. Kolokoltsov.
Submitted to ”Stochastics. An International Journal of
Probability and Stochastic Processes”.

I ’On the solution of two-sided fractional ordinary
differential equations of Caputo type’
M. E. Hernández-Hernández, V. N. Kolokoltsov.
Submitted to the ” Fractional Calculus and Applied
Analysis”.

I Part of the speaker’s future PhD thesis.
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Plan of the talk 1/2

In the first half of the talk we present a toy-version of the
theory to show the key ideas.
The steps are

I Introduce D
(ν)
a+∗, the generalised (right) Caputo operator

for β ∈ (0, 1), a ∈ R.

I Theorem: D
(ν)
a+∗ generates a Feller semigroup on

C∞[a,∞).

I Application: well-posedness for a (generalised fractional)
ordinary differential equation and stochastic
representation of its solution.

Keep in mind that a variety of generalised operators is available
(R-L, β ∈ (1, 2), left/right versions, linear combinations on
bounded domains, multidimensional extensions,...).
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Plan of the talk 2/2

In the second half of the talk we present other results and
address some open questions for other classes of fractional
derivatives and BVPs.
Namely

I Other results:
I Left/right, two-sided, multidimensional, β ∈ (1, 2)

generalised operators.
I some related wellposedness results.

I Future directions:

I Cauchy problems and time changes.
I Wellposedness of fractional differential equations on

bounded domains.
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Probabilistic Intuition I

Consider the generator D
(ν)
+ of an R-valued jump-type Feller

process (with negative jumps) of the form

D
(ν)
+ f (x) :=

∫ ∞
0

(f (x − y)− f (x))ν(x , dy), x ∈ R, (1)

for a Lévy kernel ν(·, ·).
Now let us heuristically force all jumps that fall below a to fall
exactly on a by modifying D(ν) as follows

D
(ν)
a+∗f (x) :=

∫ x−a

0

(f (x − y)− f (x))ν(x , dy)

+ (f (a)− f (x))

∫ ∞
x−a

ν(x , dy), x > a.

(2)
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Probabilistic Intuition II

Questions:

I how is operator D
(ν)
a+∗ related to a right Caputo derivative

(of order β ∈ (0, 1), a ∈ R)?

I Under what conditions (on ν) is D
(ν)
a+∗ the generator of a

Feller process on [a,∞)?

9 / 82



Caputo derivative in Generator form
Consider a right Caputo fractional derivative of order
β ∈ (0, 1), a ∈ R

Dβ
a+∗f (x) :=

1

Γ(1− β)

∫ x

a

f ′(y)(x − y)−βdy , x > a. (3)

For f ’nice’ (say C 1), we can rewrite Dβ
a+∗f as

Dβ
a+∗f (x) =

∫ x−a

0

(f (x − y)− f (x))
β

Γ(1− β)

dy

y 1+β

+ (f (a)− f (x))

∫ ∞
x−a

β

Γ(1− β)

dy

y 1+β
, x > a.

(4)

which equals D
(ν)
a+∗f if ν(x , dy) = β

Γ(1−β)
dy

y1+β .
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Definition of a Generalised derivative

The previous suggests the following
Definition 1.
For a Lévy kernel ν(·, ·) such that∫

R
min{1, |y |}ν(x , dy) <∞, x ∈ [a,∞), (5)

We call D
(ν)
a+∗ the generalised right Caputo fractional derivative

of order β ∈ (0, 1) for a ∈ R, where

D
(ν)
a+∗f (x) :=

∫ x−a

0

(f (x − y)− f (x))ν(x , dy)

+ (f (a)− f (x))

∫ ∞
x−a

ν(x , dy), x > a.

(6)
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Examples: Lévy Kernels

Which Lévy kernels ν are included in our theory?

ν(x , y) =



cy−(1+β)∑N−1
n=0 y−(1+βn)

y−(1+β(x))

w(x)y−(1+β)

e−λyy−(1+β)

(7)

where c is a positive constant, λ > 0, w a non-negative
function, β : [a,∞)→ (0, 1) , such that the assumptions of
Theorem 1 (which we present next) are satisfied.
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Well-posedness Theorem for D
(ν)
a+∗

Theorem 1.(Kolokoltsov ’15)
Assume that ν(x , dy) has a density ν(x , y) which is a
continuous function of two variables, continuously
differentiable in the x-variable and has the following uniform
bounds and tightness property

sup
x

∫
1∧|y |ν(x , y) dy <∞, sup

x

∫
1∧|y |

∣∣∣∣ ∂∂x ν(x , y)

∣∣∣∣ dy <∞,
and

lim
δ→0

sup
x

∫
|y |≤δ
|y |ν(x , y) dy = 0.

⇒ the operator D
(ν)
a+∗ generates a Feller process on [a,∞) and

a Feller semigroup on C∞[a,∞) with invariant core C 1
∞[a,∞).
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Well-posedness Theorem for D
(ν)
a+∗ II

Theorem 1.(continued)
Moreover, if ∫ 0

−∞
min(|y |, ε)ν(a, y) dy > C εr

for some C > 0, r ∈ (0, 1), then the point a is regular in
expectation for the process above.
A process X x

t is regular in expectation at a if

E[τ x ,(ν)
a ] <∞, x ∈ [a,∞), & lim

x→a
E[τ x ,(ν)

a ] = 0.

where τ
x ,(ν)
a is the first hitting time of X x

t of {a}.
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Well-posedness Theorem for D
(ν)
a+∗ III

Remarks about the proof:
- Approximate D

(ν)
a+∗ with D

(ν),h
a+∗ for the existence of a Feller

semigroup.
Fix h > 0. Define the operator

D
(ν),h
a+∗ f (x) :=

∫ x−a

h

(f (x − y)− f (x))ν(x , y)dy

+ (f (a)− f (x))

∫ ∞
(x−a)∨h

ν(x , y)dy .

(8)

Then D
(ν),h
a+∗ is bounded and by perturbation theory this

operator generates a Feller semigroup {T h
t }t∈R+ on C∞[a,∞).
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Well-posedness Theorem for D
(ν)
a+∗ IV

By considering ∂xD
(ν),h
a+∗ f (x) we can recover bounds uniform in

h > 0 for ∂xT
h
t f (x) for appropriate class of functions f then

we obtain that T h
t → Tt using the equality

(T h
t − T h′

t )f =

∫ t

0

(T h
t−s((D

(ν),h
b−∗ − D

(ν),h′

b−∗ )T h′

s )f ds, (9)

for some semigroup Tt which turns out to be Feller. Then we
show that the generator of Tt agrees with D

(ν)
a+∗ on C 1

∞[a,∞)
and that C 1

∞[a,∞) is an invariant core.
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Well-posedness Theorem for D
(ν)
a+∗ V

Remarks about the proof:
- Lyapunov functions for regularity in expectation.
If Lf (x) ≤ −c , c > 0 and f (a) = 0 f ≥ 0 by Dynkin
martingale and Optional Stopping we obtain

−f (x) ≤ E[f (X x
τ xa

)]− f (x) = E

[∫ τ xa

0

Lf (X x
s )ds

]
≤ −cE[τ xa ]

(10)
and so

E[τ xa ] ≤ f (x)

c
→ 0, x → a. (11)
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Examples: generalised operators on bounded

domains

With a similar procedure we can define operators/generators
of the type

D
(ν)
ab∗f (x) := (D

(ν)
a+∗ + D

(ν)
b−∗)f (x), x ∈ (a, b),

acting on a subset of C [a, b], where D
(ν)
b−∗ is a left version of

the generalised Caputo operator D
(ν)
a+∗ (more details later).

Notice that this theory offers a general framework for the
treatment of fractional diffusions on bounded domains.
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Application: An Initial Value problem I
Consider the Initial Value Problem (IVP)

D
(ν)
a+∗u(x) = λu(x) + g(x), x ∈ (a, b], u(a) = ua, (12)

for λ > 0, g ∈ B[a, b] and ν(·, ·) satisfying the assumptions of
Theorem 1.
Suppose g ∈ C ([a, b]), then (given Theorem 1) we have a
natural notion of solution for (12) without the boundary
condition, given by the resolvent operator.

u(x) = Rλg(x) = E

[∫ ∞
0

e−λsg(X x ,(ν)
s )ds

]
, (13)

where the expectation is taken with respect to the probability
measure corresponding to the semigroup generated by D

(ν)
a+∗.

We call such a solution u a solution in the domain of the
generator.
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Application: An Initial Value problem II

Exploiting the specific properties of the form of the
generator/generalised fractional derivative D

(ν)
a+∗ we have that

the underlying process is monotone so that u takes the
representation

u(x) =
g(a)

λ
E
[
e−λτ

x,(ν)
a

]
+E

[∫ τ
x,(ν)
a

0

e−λsg(X x ,(ν)
s )ds

]
, (14)

where τ
x ,(ν)
a is the first time of X

x ,(ν)
t hits the set {a}.
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Application: An Initial Value problem III

Consider the following solution concept for the initial value
problem (12).
Definition 2. For a given g ∈ B([a, b]) ua ∈ R, u ∈ B[a, b] is
a generalised solution to the ivp (12) if ∀{gn}n∈N ∈ C ([a, b])
such that

sup
n
||gn||∞ <∞, gn → g a.e., gn(a) = λua ∀n ∈ N,

we have un → u a.e.,
where un is the (unique) solution in the domain of the
generator to the ivp (12) for gn.
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Application: An Initial Value problem IV

Consider a sequence {gn}n∈N as above.
Given the boundedness and convergence properties of the
sequence {gn}n∈N along with the stochastic representation of
un we obtain by Dominated Convergence

u(x) = lim
n→∞

un(x) = uaE
[
e−λτ

x,(ν)
a

]
+E

[∫ τ
x,(ν)
a

0

e−λsg(X x ,(ν)
s )ds

]
,

(15)
from which uniqueness of the generalised solution follows
along with continuity on the initial conditions.
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Application: An Initial Value problem V
The following Theorem summarises the above.
Theorem 2.(Hernandez-Hernandez, Kolokoltsov ’16)
Let ν be a Lévy kernel satisfying the conditions of Theorem 1
and suppose λ > 0.
(i) If g ∈ C ([a, b]), then the ivp (12) has a unique solution in
the domain of the generator given by

u = Rλg

the resolvent operator for λ.
(ii) For any g ∈ B([a, b]) and ua ∈ R, the IVP (??) is
well-posed in the generalized sense and the solution admits the
stochastic representation

u(x) = uaE
[
e−λτ

x,(ν)
a

]
+ E

[∫ τ
x,(ν)
a

0

e−λg(X x ,(ν)
s )ds

]
, (16)

for the definitions given above, wiht continuous dependence on
initial conditions. 23 / 82



Application: An Initial Value problem VI

Theorem 2.(continued)
(iii) Moreover, if additionally ν satisfies condition (C) below,
then

u(x) =ua

∫ ∞
0

e−λsµx ,(ν)
a (s)ds

+

∫ x−a

0

g(x − r)

(∫ ∞
0

e−λsp+(ν)
s (x , x − r)ds

)
dr

(17)

where µ
x ,(ν)
a (s) is the density of τ

x ,(ν)
a .

(C)- The transition probabilities of the process X are
absolutely continuous w.r.t. Lebesgue & the transition density
function p

+(ν)
s (r , y), the density of X , is continuously

differentiable in the variable s.
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Application: An Initial Value problem VII
Now set ν(x , y) = β

Γ(1−β)
1

y1+β β ∈ (0, 1). Then we obtain the
following formula.
Corollary 1.(Hernandez-Hernandez, Kolokoltsov ’16)
Let x ∈ (a, b] and λ > 0. Then the Laplace transform of τ x ,βa ,
the first exit time from (a, b] for the inverted β-stable
subordinator started at x is given by

E[e−λτ
x,β
a ] = Eβ(λ(x − a)β)

where Eβ(x) =
∑∞

n=0
xn

Γ(βn+1)
is the (one parameter)

Mittag-Laffler function, and

E[e−λτ
x,(ν)
a ] =

x − a

β

∫ ∞
0

eλss−
1
β
−1ωβ((x − a)s−

1
β ); 1; 1)ds,

for ωβ(·; ·; ·) the density of the inverted β-stable subordinator.
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Key features of the theory (again)

I Unified probabilistic framework to deal with fractional
differential equations.

I Obtaining stochastic representations for solutions (good
for numerics).

I Giving natural probabilistic generalisations to many
fractional differential and integral operators on intervals
and multi-dimensional bounded domains.
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Second part of the Talk

I Other results:
I Left/right, two-sided, multidimensional, β ∈ (1, 2)

generalised operators.
I some related wellposedness results.

I Future directions:

I Cauchy problems and time changes.
I Wellposedness of fractional differential equations on

bounded domains.
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Definitions: Generalised Fractional differential

operators (1-dimension) β ∈ (0, 1)
Generalised right R-L fractional derivative of order β ∈ (0, 1),
a ∈ R

D
(ν)
a+ f (x) :=

∫ x−a

0

(f (x − y)− f (x))ν(x , dy)

− f (x)

∫ ∞
x−a

ν(x , dy), x > a.

(18)

Generalised right Caputo fractional derivative of order
β ∈ (0, 1), a ∈ R (same as the previous operator)

D
(ν)
a+∗f (x) :=

∫ x−a

0

(f (x − y)− f (x))ν(x , dy)

(f (a)− f (x))

∫ ∞
x−a

ν(x , dy), x > a.

(19)
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Definitions: Generalised Fractional differential

operators (1-dimension) β ∈ (0, 1)
Generalised left R-L fractional derivative of order β ∈ (0, 1),
b ∈ R

D
(ν)
b− f (x) :=

∫ b−x

0

(f (x + y)− f (x))ν(x , dy)

− f (x)

∫ ∞
b−x

ν(x , dy), x < b.

(20)

Generalised left Caputo fractional derivative of order
β ∈ (0, 1), b ∈ R

D
(ν)
b−∗f (x) :=

∫ b−x

0

(f (x + y)− f (x))ν(x , dy)

+ (f (b)− f (x))

∫ ∞
b−x

ν(x , dy), x < b.

(21)
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Definition of Generalised Fractional differential

operators (two-sided) β ∈ (0, 1)

Generalised two-sided Caputo fractional derivative of order
β ∈ (0, 1), a, b ∈ R, a < b

D
(ν)
ab∗f (x) := (D

(ν)
a+∗ + D

(ν)
b−∗)f (x), x ∈ (a, b). (22)

Generalised two-sided R-L fractional derivative of order
β ∈ (0, 1), a, b ∈ R, a < b

D
(ν)
ab f (x) := (D

(ν)
a+ + D

(ν)
b− )f (x), x ∈ (a, b). (23)
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Well-posedness theorem for the two-sided operator

D
(ν)
ab∗ I

Theorem 4.(Hernández-Hernández, Kolokoltsov ’16)
Suppose ν(x , y) satisfy the conditions of Theorem 1.
Suppose that γ ∈ C 3

0 [a, b], α ∈ C 3[a, b] with first derivative
α′ ∈ C0[a, b], α > 0.

⇒ Aab∗ := γ d
dx

+ α d2

dx2 + D
(ν)
ab∗ generates a Feller semigroup on

C [a, b] such that {f ∈ C 2[a, b] : f ′ ∈ C0[a, b]} ⊂ Dom(Aab∗).
Moreover the points {a, b} are regular in expectation for the
process generated by (Aab∗,Dom(Aab∗)) on C [a, b].
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GFODE for the two-sided operator D
(ν)
ab (R-L on

bounded domain)
Theorem 5.(Hernández-Hernández, Kolokoltsov ’16)
Suppose ν satisfies the conditions of Theorem 4 then

D
(ν)
ab u(x) = λu(x) + g(x), x ∈ (a, b), u(a) = u(b) = 0, (24)

I if g ∈ C0[a, b] bvp (24) has a unique solution in the
domain of the generator and

I if g ∈ B[a, b] bvp (24) has a unique generalised solution
with the stochastic representation

u(x) = E

[∫ τ xa,b

0

e−λsg(X x
s )ds

]
(25)

where λ > 0 and X x
t is the process induced by the

semigroup generated by D
(ν)
ab on C0[a, b].
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Definition: Generalised operators β ∈ (1, 2)

(1-dimension)

Let ν(·, ·) be a Lévy kernel such that∫
R
|y | ∧ |y |2ν(x , dy) <∞, x ∈ R. (26)

Generalised right R-L fractional derivative of order β ∈ (1, 2),
a ∈ R

2D
(ν)
a+ f (x) :=

∫ x−a

0

(f (x − y)− f (x) + yf ′(x))ν(x , dy)

− f (x)

∫ ∞
x−a

ν(x , dy) + f ′(x)

∫ ∞
x−a

yν(x , dy), x > a.

(27)
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Definition: Generalised operators β ∈ (1, 2)

(1-dimension) II

Generalised right Caputo fractional derivative of order
β ∈ (1, 2), b ∈ R

2D
(ν)
b−∗f (x) :=

∫ b−x

0

(f (x − y)− f (x) + yf ′(x))ν(x , dy)

+ (f (a)− f (x))

∫ ∞
x−a

ν(x , dy) + f ′(x)

∫ ∞
x−a

yν(x , dy),

(28)

x > a.
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Definition: Generalised Fractional differential

operators β ∈ (1, 2) (1-dimension) III

Generalised left R-L fractional derivative of order β ∈ (1, 2),
b ∈ R

2D
(ν)
b− f (x) :=

∫ b−x

0

(f (x + y)− f (x)− yf ′(x))ν(x , dy)

− f (x)

∫ ∞
b−x

ν(x , dy)− f ′(x)

∫ ∞
x−a

yν(x , dy), x < b.

(29)
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Definition: Generalised Fractional differential

operators β ∈ (1, 2) (1-dimension) IV

Generalised left Caputo fractional derivative of order
β ∈ (1, 2), b ∈ R

2D
(ν)
b−∗f (x) :=

∫ b−x

0

(f (x + y)− f (x)− yf ′(x))ν(x , dy)

+ (f (a)− f (x))

∫ ∞
b−x

ν(x , dy)− f ′(x)

∫ ∞
x−a

yν(x , dy),

(30)

x < b.
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Definition: Generalised Fractional differential

operators β ∈ (1, 2) (1-dimension) V

Generalised two-sided R-L fractional derivative of order
β ∈ (1, 2), a, b ∈ R

2D
(ν)
ab f (x) :=(2D

(ν)
a+ +2 D

(ν)
b− )f (x), a < x < b. (31)

Generalised two-sided Caputo fractional derivative of order
β ∈ (1, 2), a, b ∈ R

2D
(ν)
ab∗f (x) :=(2D

(ν)
a+∗ +2 D

(ν)
b−∗)f (x), a < x < b. (32)
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Definition: Generalised Fractional differential

operators β ∈ (1, 2) (1-dimension) VI
Remark. Fix ν(x , dy) = 1−β

Γ(2−β)
dy

y1+β .

The (right) Caputo fractional derivative for β ∈ (1, 2), CDβ
a+

when rewritten in Generator/Marchaud/Itô form equals

CDβ
a+f (x) :=

∫ x−a

0

(f (x − y)− f (x) + yf ′(x))ν(x , dy)

(f (a)− f (x))

∫ ∞
x−a

ν(x , dy)

+ (f ′(a)− f ′(x))

∫ ∞
x−a

yν(x , dy), x > a,

(33)

The extra term f ′(a) is incompatible with a Markov generator
structure. Notice also that so

CDβ
a+∗f (x) =2 Dβ

a+∗f (x) ⇐⇒ f ′(a) = 0.
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Existence Theorems for two-sided operator

β ∈ (1, 2)
Theorem 5.(Kolokoltsov, Toniazzi ’16)
Let ν be a Lévy kernel with density ν(x , y) continuous in x
and y and ν(·, y) ∈ C 2 all y ,

sup
x

∫
R
|y |∧|y |2ν(x , y)dy <∞, sup

x

∫
R
|y |∧|y |2|νx(x , y)|dy <∞,

sup
x

∫
R
|y |2|νxx(x , y)|dy <∞,

where νx(x , y) and νxx(x , y) are the first and second
derivatives (in the x variable) of ν(x , y), the following
boundary regularity conditions holds∫ ∞
x−a

ν(x , y)dy = Oa((x−a)−β),

∫ ∞
x−a

yν(x , y)dy = Oa((x−a)1−β),

for some β ∈ (1, 2) and similarly for b.
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Existence Theorems for two-sided operator

β ∈ (1, 2) II

(...Theorem 5 continued)
and (monotonicity condition) for any h > 0∫ ∞

h

νx(x , y)dy ≥ 0,

∫ −h
−∞

νx(x , y)dy ≤ 0. (34)

⇒ 2D
(ν)
ab∗ generates a Feller semigroup on C ([a, b]) such that

{f ∈ C 2[a, b] : f ′ ∈ C0[a, b]} ⊂ Dom(2D
(ν)
ab∗).

Moreover 2D
(ν)
ab generates a sub-Feller semigroup on C0([a, b])

such that
{f ∈ C 2[a, b] ∩ C0([a, b]) : f ′ ∈ C0[a, b]} ⊂ Dom(2D

(ν)
ab ).
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Existence Theorems for two-sided operator

β ∈ (1, 2)

(...Theorem 5 continued)
If in addition ν satisfies the following conditions: ∃ ω < 1 s.t.

(b − x)ω
∫ ∞
b−x

(
ω

y

(b − x)
− 1

)
ν(x , y)dy → −∞ as x → b,

(35)
and ∃ ω′ < 1 such that

(x − a)ω
′
∫ ∞
x−a

(
ω′

y

(x − a)
− 1

)
ν(x , y)dy → −∞ as x → a,

(36)
then the boundary points for the processes above are regular
in expectations.

41 / 82



Examples of Concrete operators I

2Dtemp,β
a+∗ f (x) :=

∫ x−a

0

(f (x − y)− f (x) + yf ′(x))
e−λy

y 1+β
dy

+ (f (a)− f (x))

∫ x−a

0

e−λy

y 1+β
dy+

+ f ′(x)

∫ x−a

0

y
e−λy

y 1+β
dy , x > a.

(37)
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Examples of Concrete operators II

2Dtemp
ab∗ f (x) :=

N∑
n=1

2Dtemp,βi
ab∗ f (x), x ∈ (a, b) (38)

where

Dtemp,βi
ab∗ f (x) := (2Dtemp,βi

a+∗ +2 Dtemp,βi
b−∗ ) (39)

for λ > 0, βi ∈ (1, 2) for all i ≤ N .
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Application: Generalised fractional Cauchy problem

β ∈ (1, 2)

Theorem 6. Consider Cauchy problem

∂tu(t, x) =x D
(ν)
ab∗u(t, x), x ∈ (a, b),

u(0, x) = f (x), x ∈ [a, b],
(40)

where ν satisfies the conditions of Theorem 5 and
f ∈ Dom(D

(ν)
ab∗) we require, then the Cauchy problem (40) is

wellposed in the sense of semigroup theory.
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Generalised fractional Cauchy problem β ∈ (1, 2)

with Dirichlet boundary conditions

Theorem 7. Consider Cauchy problem

∂tu(t, x) =x D
(ν)
ab u(t, x), x ∈ (a, b),

u(0, x) = f (x), x ∈ [a, b],

0 = f (x) = u(t, x), (t, x) ∈ R+ × {a, b},
(41)

where ν satisfies the conditions of Theorem 5 and
f ∈ Dom(D

(ν)
ab ), then the Cauchy problem is wellposed in the

sense of semigroup theory.
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Definition of Generalised Fractional differential

operators (multidimensional) β ∈ (0, 1) I

Let us now turn to the multidimensional extension of this
interruption procedure.
The analog of RL derivative arising from a process in Rd and a
domain D ⊂ Rd is the generator of the process killed on
leaving D.
For Caputo version this is more subtle, as we have to specify a
point where a jump crosses the boundary. The most natural
model assumes that a trajectory of a jump follows shortest
path (a straight line in Euclidean case).
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Definition of Generalised Fractional differential

operators (multidimensional) β ∈ (0, 1) II

Suppose L(ν) is a generator of a Feller process Xt(x) in Rd

with the generator of type

L(ν)f (x) = (γ(x),∇)f (x) +

∫
Rd

(f (x + y)− f (x))ν(x , dy)

with a kernel ν(x , .) on Rd \ {0} such that

sup
x

∫
Rd

min(1, |y |)ν(x , dy) <∞,

that is, a generator or order at most one.
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Multidimensional versions, III

Let D be an open convex subset of Rd with B = Rd \ D. For
x ∈ Rd , let

D(x) = {y ∈ Rd : x + λy ∈ D for all sufficiently small λ}.

In particular, D(x) = Rd for all x ∈ D. Let

λ(x , y/|y |) = min{R > 0 : x + Ry/|y | ∈ B},

RD(x , y) =

{
x + y , if |y | ≤ λ(x , y/|y |)
x + λ(x , y/|y |)y/|y |, if |y | ≥ λ(x , y/|y |)
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Multidimensional versions, IV

The process Xt(x) with jumps interrupted on crossing B can
be defined by the generator

D
(ν)
D∗ f (x) := (γ(x),∇)f (x)+

∫
D(x)

[f (RD(x , y))−f (x)]ν(x , dy),

which represents an analog of the Caputo-type boundary
operator, that is the modification of the process on Rd

obtained by interrupting jumps on an attempt to cross B .
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Mixed BVP (FPDE) (multidimensional) β ∈ (0, 1)
Consider the GFPDE

x1D
(ν)
0+ u(x1, x2) +x2 D

(ν)
0+∗u(x1, x2) =λu(x1, x2) + g(x1, x2),

(x1, x2) ∈ (0, b2)× (0, b2),

u(0, x2) =0, x2 ∈ [0, b2]

u(x1, 0) =φ(x1), x1 ∈ [0, b1].

(42)

Theorem 8. (Hernandez-Hernandez, Kolokoltsov ’16)
Suppose that λ > 0, ν = (ν1, ν2) where ν1, ν2 are both Lévy
kernels satisfying the conditions of Theorem 1 and satisfies the
conditions of Theorem 1 and φ ∈ C0[0, b1].
(i) If g ∈ C [0,b] satisfies g(·, 0) = λφ(·) then ∃! solution in
the domain of the generator to GFPVP (42) of the process
Y (x1,x2),(ν) := (X x1,(ν1),X x2,(ν2)) given by the resolvent operator.
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Mixed BVP (FPDE) (multidimensional) β ∈ (0, 1)

II

(...Theorem 8 continued )
(ii) For any g ∈ B[0,b] mixed linear problem is wellposed in
the generalised sense and the solution admits the stochastic
representation

u(x1, x2) =E
[
e−λτ

x2,(ν2)
0 φ(X x1,(ν1)(τ

x2,(ν2)
0 ))1(τ

x2,(ν2)
0 < τ

x1,(ν1)
0 )

]
E

[∫ τ
x,(ν)
0

0

e−λsg(X x1,(ν1)(s),X x2,(ν2)(s))ds

]
+ 0.

(43)
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Variable coefficient IVP β ∈ (0, 1)

D
(ν)
a+∗u(x) = λ(x)u(x) + g(x), x ∈ (a, b), u(a) = ua. (44)

Theorem 9. (Hernandez-Hernandez, Kolokoltsov ’16)
Suppose that ν satisfies the conditions of Theorem 1 and
λ ∈ C [a, b] is a positive function.
(i) If g ∈ C [a, b] and g(a) = uaλ(a) then ∃! solution in the
domain of the generator.
(ii) For any g ∈ B[a, b] and ua ∈ R, the linear problem 44 has
a unique generalised solution given by the Feynman-Kac type
formula

u(x) =uaE

[
exp

{
−
∫ τ x,νa

0

λ(X x ,ν
r )dr

}]

E

[∫ τ x,νa

0

exp

{
−
∫ s

0

λ(X x ,ν
r )dr

}
g(X x ,ν

s )ds

]
.

(45)
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Summary of Boundary Value Problems already

approached
The following BVPs have already been studied:

I

D
(ν)
a+∗u(x) = λ(x)u(x) + g(x), x ∈ (a,∞], (46)

I

D
(ν)
ab∗u(x) = λu(x) + g(x), x ∈ (a, b), (47)

I

N∑
i=1

xiD
(ν)
a∗ u(x) = λ(x)u(x) + g(x), x ∈ D ⊂ RN , (PDE)

(48)
I

2D
(ν)
ab∗u(x) = λu(x) + g(x), x ∈ (a, b), (49)

for λ ≥ 0 with the corresponding boundary conditions (along
with the R-L versions).
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Summary of Boundary Value Problems already

approached
The following Cauchy problems (along with the R-L versions):

I

∂tu(t, x) =xD
(ν)
a+∗u(t, x), (t, x) ∈ R+ × [a,∞),

f (x) =u(0, x) ∀x ∈ [a,∞),
(50)

I

∂tu(t, x) =xD
(ν)
ab∗u(t, x), (t, x) ∈ R+ × [a, b],

f (x) =u(0, x) ∀x ∈ [a, b],
(51)

and the non-linear problem

I

D
(ν)
ab∗u(x) = F (u)(x), x ∈ (a, b) (52)
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Future Directions

I Cauchy problems and time changes (a Dynkin martingale
approach).

I Wellposedness of Fractional differential equations on
bounded domains.
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Cauchy problems and time changes

One main Question:

I Can we obtain unified generalised time changes results
with respect to stochastic representations of solutions to
fractional boundary value problems? (through the
application of Dynkin martingale).
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Differential equations that can be approached I

Let β ∈ (0, 1), α ∈ (1, 2). Some possible equations to be
considered are:

I Fractional in (space and time) diffusion equations

tD
β
0+∗u(t, x) = −|x∆|αu(t, x), (t, x) ∈ (0,∞)× Rn,

(53)

I Fractional in (space and time) diffusion equations on
bounded domains

tD
β
a+∗u(t, x) =2

x D
α
ab∗u(t, x), (t, x) ∈ (0,∞)× (a, b),

(54)

with the boundary conditions u = φ on {0} × Rn in (40) and
u = φ′ on ({0} × [a, b]) ∪ ([0,∞)× {a, b}) in (41), and
−|x∆|α is the fractional Laplacian.
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Differential equations that can be approached

... and their generalised versions

I Generalised Fractional in (space and time) diffusion
equations

tD
(ν)
−∞∗u(t, x) =2

x D
(ν)u(t, x), (t, x) ∈ (0,∞)×Rn, (55)

I Generalised Fractional in (space and time) diffusion
equations on bounded domains

tD
(ν)
0+∗u(t, x) =2

x D
(ν′)
ab∗ u(t, x), (t, x) ∈ (0,∞)× (a, b),

(56)

along with their boundary conditions.
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Stochastic representation for solutions and

time-change arguements to Cauchy problems

(through Dynkin martingale)
Consider the problem

−tD
(ν)
0+∗u(t, x) = Lu(t, x), (t, x) ∈ (0,∞)×Rn, u = φ on {0}×Rd ,

(57)
where L is the generator of an Rn-valued Feller process.
By Dynkin Martingale (if a solution in the domain of the
generator exists) the solution u to the above problem (57) has
the representation

u(t, x) = E
[
φ
(
X x ,L(τ

t,(ν)
0 )

)]
, (58)

where τ
t,(ν)
0 is the first time the Feller process generated by

D
(ν)
0+∗ hits 0.
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Stochastic representation for solutions and

time-change arguements to Cauchy problems

(through Dynkin martingale) II

Formal argument: rewrite problem the previous differential
equation in stationary form (D

(ν)
0+∗ + L)u = 0. Through the

(successful) application of Dynkin martingale

u(t, x) = E

[
u(T t,(ν)

s ,X x ,L
s )−

∫ s

0

(D
(ν)
0+∗ + L)u(T t,(ν)

r ,X x ,L
r )dr

]
,

(59)
for all s ∈ R+, where T t,(ν) is the R+-valued process generated
by D

(ν)
0+∗ started at t, X x ,L is the Rd -valued process generated

by L started at x and the two processes are independent.
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Stochastic representation for solutions and

time-change arguements to Cauchy problems

(through Dynkin martingale) III

Now the first time Y t,x
s := (T t,(ν)(s),X x ,L(s)) hits the

boundary {0} × Rd equals the first time T
t,(ν)
s hits 0, call it

τ
t,(ν)
0 = Zt . By Optional Stopping

u(t, x) =E
[
u(T t,(ν)(τ

t,(ν)
0 ),X x ,L(τ

t,(ν)
0 ))

]
= E

[
u(0,X x ,L(τ

t,(ν)
0 ))

]
=E
[
φ(X x ,L(Zt))

]
.

(60)
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Insurance-relevant example

Consider the problem

(xD
β
0+∗+yD

α
0+∗)u(x , y) = 0 on Ω := (0,∞)×(0,∞), φ = u on ∂Ω.

(61)
The stochastic representation of the solution of this BVP
under a Dynkin martingale example is given by

u(x , y) =E
[
u(X x ,β(τ y ,α0 ), 0)1(τ x ,β0 > τ y ,α0 )

]
+ E

[
u(0, (X y ,α(τ x ,β0 ))1(τ x ,β0 < τ y ,α0 )

] (62)
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More general case

Au = g , x ∈ Ω, u = φ on ∂Ω, Ω ⊂ RN , (63)

where A :=
∑N

i=1 xiLi then

u(x) = E[φ(X x1,L1

τ x,A
∂Ω

, ...,X xN ,LN

τ x,A
∂Ω

)]−E

[∫ τ x,A
∂Ω

0

g(X x1,L1
s , ...,X xN ,LN

s )ds

]
.

(64)
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A cross-dependency example

Consider the problem

(xD
β(y)
a+∗ +yD

α(x)
b+∗ )u(x , y) = 0 on Ω := (a,∞)×(b,∞), φ = u on ∂Ω.

(65)
The solution of this problem under a Dynkin martingale
example is given by

u(x , y) =E
[
u(X x ,β(y)(τ

y ,α(x)
b ), b)1(τ x ,β(y)

a > τ
y ,α(x)
b )

]
+ E

[
u(a,X y ,α(x)(τ x ,β(y)

a ))1(τ x ,β(y)
a < τ

y ,α(x)
b )

]
(66)
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Well-posedness of Fractional differential equations

on bounded domains I

Two main topics

I Clarify which processes are related to the Caputo
(generator) in terms of the free generator and its domain
(interrupted, stopped, reflected, censored processes).

I Probabilistic wellposedness of Cauchy problems on
bounded domains with non-zero-Dirichlet boundary
conditions.
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Well-posedness of Fractional differential equations

on bounded domains II

For recent research on well-posedness fractional (diffusion)
equations on bounded domains and their probabilistic
counterpart see for example:

I ’Fractional diffusion on bounded domains’
O. Defterli, M. D’Elia, Q. Du, M. Gunzburger, R.
Lehoucq, M.M. Meerschaert, Frac. Cal. and Appl. An,
Vol 18, 2, 2015.

I ’Space-time fractional Dirichlet problems’
B. Baeumer, T. Luks, M. M. Meerschaert,
arXiv:1604.06421, 2016.
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I ’Reflected spectrally negative stable processes and their
governing equations’
B. Beaumer, M. Kovács, M.M. Meerschaert, R.L.
Schilling, P. Straka. Transactions of the American
Mathematical Society Vol 368, 1, Jan 2016.

I ’Fractional Cauchy problems on bounded domains’
M.M. Meerschaert, E. Nane. Annals of Probability Vol
37, no. 3, 2009.

I ’Space-time fractional diffusion on bounded domain’
Z.-Q. Chen, M.M. Meerschaert, E. Nane. Jurnal of
Mathematical Analysis and Applications, Vol 393, 2012.
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Recover interrupted process from Free process: the

R-L case
Question 1: can we recover the process generated by D

(ν)
ab∗

from the free process on R generated by

D(ν)f (x) :=

∫
R

(f (x − y)− f (x) + yf ′(x))ν(x , y)dy ? (67)

Results in [Baeumer et al. 2016] is likely to solve this issue for
generalised R-L.
Roughly speaking [Baeumer et al. 2016] gives conditions for a
general strong-Feller Feller process to describe the generator of
the respective killed process, and they obtain the two-sided
R-L fractional derivative as the generator of the killed free
motion by applying their results to the kernel

ν(x , y) :=
α(α− 1)

Γ(2− α)

1

|y |1+α
, α ∈ (1, 2).
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Recover interrupted process from Free process:

The Caputo case
[Baeumer, Kovácset al. 2016] show that the Caputo derivative
of order α ∈ (1, 2), Dα

0+∗ is the generator of the process

Yt := Xα
t − inf

s≤t
Xα
s

on C∞[a,∞), where Xα is a spectrally negative α-stable Lévy
process, and they provide a core D.
If Xα

t∧τ x0
is Feller process then the action of its generator Lstop

will equal the action of Dα
0+∗ on functions such that

Dα
0+∗f (0) = 0,

which is the case if f ∈ C 2[0,∞) ∩ D, for example.
Question 2: which processes are generated by a Caputo type
fractional differential operator?
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Wellposedness of fractional differential equations

and bounded domains III

Consider the BVP for α ∈ (1, 2) with zero-Dirichlet boundary
conditions

∂tu(t, x) =x D
α
abu(t, x), (t, x) ∈ (0,∞)× (a, b), (68)

f (x) = u(0, x) ∀x ∈ [a, b], u(t, a) = u(t, b) = 0 ∀t ≥ 0,

where xD
α
ab :=x D

α
a+ +x D

α
b− the sum of left and right R-L

derivatives.
It is a non-trivial task to impose boundary conditions to BVPs
like (68). As it is shown in [Baeumer et al. 2016] the
probabilistic framework provides a setting to obtain
wellposedness of BVP (68).
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If we require f ∈ Dom(xD
α
ab), the domain of the respective

killed free-process and the solution u(t, ·) ∈ C0[a, b] ∀t ≥ 0
then the solution is unique and is given by

Ef (X x ,kill
t ), (69)

where X x ,kill
t is the Feller process obtained by killing the

process X x
t on the attempt of leaving (a, b).
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Zero-Dirichlet boundary conditions and R-L

In our framework each Cauchy problem with with
zero-Dirichlet boundary conditions involving R-L type
generators

∂tu(t, x) =xD
(ν)
ab u(t, x), (t, x) ∈ Ω,

f (x) =u(0, x), ∀x ∈ [a, b],

0 = u(t, a) =u(t, b), ∀t ≥ 0,

(70)

where Ω = (0,∞)× (a, b), is well-posed in the sense above
and the underlying process is a killed process.
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NON-Zero-Dirichlet boundary conditions and

Caputo

As we already mentioned, if we consider a generalised Caputo
diffusion equation we obtain a (probabilistic) well-posedness to
the IVP

∂tu(t, x) =xD
α
a+∗u(t, x), (t, x) ∈ (0,∞)× (a,∞)

f (x) =u(0, x), ∀x ∈ [0,∞),
(71)

for f ∈ Dom(xD
α
a+∗), but we have no control over the values

at the boundary points [0,∞)× {a} in the sense that we do
NOT have

u(t, a) = E[f (X a
t )] = constant.
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NON-Zero-Dirichlet boundary conditions and

Caputo

Question 3: how do we obtain wellposedness of the problem

∂tu(t, x) =xD
(ν)
ab∗u(t, x), (t, x) ∈ Ω,

f (x) =u(0, x), ∀x ∈ [a, b],

f (a) =u(t, a), f (b) = u(t, b), ∀t ≥ 0.

(72)

where Ω = (0,∞)× (a, b)?
Guess: Stop the free process.
where xD

(ν)
ab∗ is a generalised two-sided Caputo operator of

order β ∈ (1, 2).
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Reasons for the guess

I Heuristic argument: Definition and R-L case.

I Stopped Feller process that is a Feller process.

I Dynkin Martingale + Characteristic operator.

I Resolvent equation.

(Almost all the following pseudo-arguments are independent of
the non-locality of the differential operators, only assumption
is that the differential operators are generators of Markov
processes on [a, b].)
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I Dynkin Martingale + Characteristic operator (not present
in this slides).

Consider the problem

(−∂t+xD
(ν)
0+∗)u(t, x) = 0, on Ω := (0,∞)×(0,∞), φ = u on ∂Ω.

(73)
The stochastic representation of the solution of the Caputo
type BVP under a Dynkin martingale/Optional Stopping
Theorem framework the solution has the representation

u(t, x) =E
[
u(0,X x ,(ν)(τ t0 ))1(τ

x ,(ν)
0 > τ t0 )

]
+ E

[
u(t,X x ,(ν)(τ

x ,(ν)
0 ))1(τ

x ,(ν)
0 < τ t0 )

]
=E
[
u(0,X x ,(ν)(t))1(τ

x ,(ν)
0 > t)

]
+ E

[
u(t,X x ,(ν)(τ

x ,(ν)
0 ))1(τ

x ,(ν)
0 < t)

]
(74)
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Resolvent equation

In the case of a Resolvent equation

xD
α
ab∗u(x) = λu(x)+g(x), x ∈ (a, b), g(x) = u(x) x ∈ {a, b},

(75)
if we impose the (non-local) boundary condition

xD
α
abu(a) =x D

α
abu(b) = 0 (76)

we obtain that the solution is given by the resolvent of the
stopped underlying process which equals...
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...

u(x) = Rλg(x) =E[

∫ τ
x,(ν)
a,b

0

e−λsg(X x ,(ν)
s )]

+
g(a)

λ
E[e−λτ

x,(ν)
a 1(τ x ,(ν)

a < τ
x ,(ν)
b )]

g(b)

λ
E[e−λτ

x,(ν)
b 1(τ x ,(ν)

a > τ
x ,(ν)
b )]

(77)
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Proposition 2. Let X x be a Feller process with semigroup
acting on C∞[a,∞) and (L,D) the pair of generator and its
domain. Let τ xa the first time X x hits {a} and assume it is
finite. Denote X x

t∧τ xa to be the stopped process and suppose it
also is a Feller process with semigroup acting on C∞[a,∞)
and denote by (Lstop,Dstop) its generator and the respective
domain.
Suppose that there exists f ∈ D such that Lf (a) = 0,
⇒ f ∈ Dstop, Lf = Lstopf and Rλg = Rλ

stopg .
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Summary: Wellposedness Cauchy problems and

bounded domains III
Questions:

I What processes are associated to this probabilistic
generalised fractional derivatives in terms of the free
process?

I Can we obtain a classification of the domains for
stopped/interrupted/reflected/censored processes
associated to Caputo-type fractional derivatives?

I How do we obtain wellposedness of the problem

∂tu(t, x) =x D
(ν)
ab∗u(t, x), (t, x) ∈ (0,∞)× (a, b),

f (x) = u(0, x), ∀x ∈ [a, b],

f (a) = u(t, a), f (b) = u(t, b), ∀t ≥ 0,

(78)
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Key features of the theory (re-again)

I Unified probabilistic framework to deal with fractional
differential equations.

I Obtaining stochastic representations for solutions (good
for numerics).

I Giving natural probabilistic generalisations to many
fractional differential and integral operators on intervals
and multi-dimensional bounded domains.
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End

Thank you.

82 / 82


