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“There is a rhythm and a pattern between the 

phenomena of nature which is not apparent to 

the eye, but only to the eye of analysis; and it 
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Physical Laws.”
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By age 15, Feynman had mastered 

differential and integral calculus, and 

frequently experimented and re-created 

mathematical topics such as the half-

derivative before even entering college.

http://www.atomicarchive.com/Bios/Feynman.shtml



How Does Microstructure Affect Water 

Diffusion In Brain Tissue?

Dr Thomas. R. Barrick

St. George’s, University of London
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Overview

 Diffusion weighted MRI and DTI are used to 
detect and stage neurodegenerative, 
malignant and ischemic disease.

 Correlation between pathology and the 
apparent diffusion coefficient relies on a model 
to design an efficient phase encoding pulse 
sequence.

 A common empirical approach to model the 
data encodes the diffusion coefficient as a 
stretched exponential, exp[-(bD)a and the 
Mittag-Leffler, Ea[-(bD)a] functions.

 Here, we show how this functional behavior is 
a natural consequence of the Bloch-Torrey 
equation by using fractional-order calculus.
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Anomalous Behaviour

Why do we expect fractional 

calculus to be useful in 

describing relaxation and 

diffusion in biological tissues?



Universal power-law scaling of water diffusion in 

human brain defines what we see with MRI

Jelle Veraart, Els Fieremans and Dmitry S. Novikov

Dept. of Radiology, NYU School of Medicine

https://arxiv.org/pdf/1609.09145.pdf



“The remarkably slow decay of the signal, retaining much SNR even for 

very high b, provides an exciting avenue for probing brain tissue 

microstructure with extremely strong diffusion gradients on clinical 

systems, such as on Human Connectom scanners, …

…. thereby fostering the translation of advanced diffusion MRI methods 

into basic neuroscience research and clinical practice.”



Anomalous Behaviour

“It was ever thus: whenever you introduce a new idea 

it is discredited. Then after it is accepted it is said to 

be obvious. And the final stage is that it was their idea 

all along, so why reference another person’s work?”

Email from Bruce West, 10/13/2016

Surprisingly, the above paper does not mention 

fractional calculus as a potential tool for deriving 

and expressing their results.
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Development of Fractional Magnetic 
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Bloch Equation / Relaxation
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Fractional NMR Relaxation

Fractional T1 Relaxation

Fractional T2 Relaxation
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Magin, et al.. JMR 45: 200-233, 2011.



Fractional T1 Relaxation

Fractional-order T1 relaxation curves. Plots of Mz(TI) versus TI (inversion recovery) for 

different values of b in the range from b = 0.6 (bottom curve) to b = 1 in steps of 0.1 

(M0 = 1, T1 = 1.5 s, A = 1).



Fractional T2 Relaxation

Fractional-order T2 relaxation curves. Plots of Mxy(TE) versus TE (Spin Echo) for 

different values of a in the range from a = 0.6 (top curve at TE = 1,200 ms) to a = 
1 in steps of 0.1 (Mxy(0) = 1, T2 = 80 ms).



Fractional T2 Relaxation

Fractional-order T2 relaxation curves. Plots of Mxy(TE) versus TE (Spin Echo) for 

different values of a in the range from a = 0.6 (top curve at TE = 1,200 ms) to a = 
1 in steps of 0.1 (Mxy(0) = 1, T2 = 80 ms).

Decay appears to be 

multi-exponential, 

which suggests 

multiple 

compartments.



Anomalous Relaxation

Anomalous T2 relaxation in normal and degraded cartilage

David A. Reiter, Richard L. Magin, Weiguo Li, Juan J. Trujillo, 

M. Pilar Velasco, and Richard G. Spencer

Magnetic Resonance in Medicine. 2016;76:953-962.

Anomalous NMR relaxation in cartilage matrix components and 

native cartilage: fractional-order models.

Magin RL, Li W, Pilar Velasco M, Trujillo J, Reiter DA, 

Morgenstern A, Spencer RG.

J Magn Reson 2011;210:184-191.

reiterda@nia.nih.gov



Cartilage UItrastructure

• Collagen provides tissue integrity and tensile strength

• Proteoglycans (PGs) provide compressive resistance

• Water exists in several compartments of different mobility

Courtesy of Basic Biomechanics of the Musculoskeletal System (1989)

Relaxation time
of water protons
is influenced

by its local 
environment

reiterda@nia.nih.gov



T2 Relaxation Models

Stretched Exponential

Stretched Mittag-Leffler

Two Exponential

reiterda@nia.nih.gov



Stretched Exponential T2 Relaxation
Chondroitin Sulfate (CS) Solutions
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Anomalous T2 Relaxation in Normal and 

Degraded Cartilage

Comparison of different 

models: i) the exponential 

function exp(-t), ii) the 

stretched exponential 

function exp(-t0.5), iii) the

stretched Mittag-Leffler 

function E1/2(-t
0.5), and iv) the 

power function t-0.5/G(1/2).

DA Reiter et al. Magn Reson Med 2016;76:953-962

MSE

reiterda@nia.nih.gov



Anomalous Relaxation

Qin, S., Liu, F., Turner, I. W., Yu, Q., Yang, Q., & Vegh, V. 

(2016). Characterization of anomalous relaxation using the 

time‐fractional Bloch equation and multiple echo T2*‐weighted 

magnetic resonance imaging at 7 T. Magnetic Resonance in 

Medicine. DOI:10.1002/mrm.26222.

Centre for Advanced Imaging, the University of Queensland, 

Brisbane, Queensland, Australia

viktor.vegh@cai.uq.edu.au



o Our extended time-fractional model transverse magnitisation 

model

o Classical monoexponential model for transverse 

magnitisation

o Magin’s time-fractional model transverse magnitisation

CtMAtS   |)(|)( 0

o Fitting equation
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viktor.vegh@cai.uq.edu.au



o We take the frequency shift            into considerationw

o By using the matrix method and diagonalising the parameter 

matrix

Fractional model for T2
*

decay

viktor.vegh@cai.uq.edu.au



In vivo experiment

o Subjects: 5 healthy participants (two females and three 

males) aged 30-41 years were scanned

o MRI data: 7T MRI data collected on the Siemens 

Magnetom Research    scanner with a 32 channel head coil 

(Nova Medical, Wilmington, USA).

o Data processing: Individual channel data were combined 

using the sum-of-squares approach in a voxel-by-voxel 

manner

Qin, S., Liu, F., Turner, I. W., Yu, Q., Yang, Q., & Vegh, V. (2016). Characterization of anomalous 

relaxation using the time‐fractional Bloch equation and multiple echo T2*‐weighted magnetic resonance 

imaging at 7 T. Magnetic Resonance in Medicine. DOI:10.1002/mrm.26222.



Fitting method: lsqcurvefit (a standard nonlinear fitting 

function in Matlab)

Voxel-based fitting results

viktor.vegh@cai.uq.edu.au



(A)Sagittal, (B) Coronal and (C) Axial

fornix putamen pallidumcaudatethalamus

internal capsule

insula

substantia nigrared nucleus
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Anomalous Diffusion

Anomalous diffusion expressed through fractional order 

differential operators in the Bloch-Torrey equation.

Magin RL, Abdullah O, Baleanu D, and Zhou XJ. 

J Magnetic Resonance, 190(2):255-70 (2008).
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Fractional Generalization of Bloch-

Torrey Equation

where

- fractional order time derivative 

- fractional order spatial Laplacian

- fractional order time and space constants needed to    

maintain correct units

Note: for α = 1, β = 1, we recover the classical Bloch-Torrey equation 
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For fixed, bipolar and Stejskal-Tanner 

gradient pulses we find
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Note that here 0 < β < 1 and 

that for β = 1, we recover the 

classical results.



PGSE  (Stejskal-Tanner)



Changing b (0.3 – 1.0) and m (555 mm)



















Brain MRI at 3 T



Brain

DW-EPI at 3T TR/TE = 4000/97 ms, slice thickness  = 3 mm, matrix 256 x 256 

and FOV = 22 x 22 cm2. Max b-value = 3300 s/mm2



Mu

T2 ADC
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Fractional diffusion as a 

window into Duchenne

Muscular Dystrophy 

pathology

Matt G Hall
Developmental Imaging and Biophysics

University College, London, UK

Anomalous Diffusion

mattghall@gmail.com



Muscle structure

• Muscle tissue is hierarchical

 Myofibres, Myofibrils, 

Myofilaments

Images: Wiley

Duchenne Muscular Dystrophy (DMD) is a genetic muscle-

wasting condition affecting around 1 in 3,600 boys.

mattghall@gmail.com



Diffusion in muscle tissue

Image: pixgood.com
• Most diffusion is confined to small pores, 

but occasionally spins transition to 

neighbouring regions

• Changes to muscle structure change the 

distribution of pores and waiting times 

between transitions
mattghall@gmail.com



Diffusion MRI

•Regular diffusion imaging (including DTI) 

assumes that diffusion is averaged out across 

the sample

•This predicts that the log of the signal vs 

diffusion weighting will be a straight line

•If we measure this in tissue, however, we get 

the following, which we fit to the Mittag-Leffler

function, Ea(-Da,b qba)

mattghall@gmail.com



Preclinical results (mice)

Da,b a b

mattghall@gmail.com



Comparison with Histology

mattghall@gmail.com



Conclusions

The non-monoexponential curve contains information about the tissue

hierarchical structure, which provides a model of the decay curve.

Changes in fibre distribution, packing, and permeability change the signal’s 

curvature The Mittag-Leffler function can capture these changes.

Parameter maps for mouse data show darkened regions in Mdx models 

which are not present in wild type. These regions are observed consistently 

across N=8 subjects.

Comparison with histology suggests we’re seeing changes in fibre size 

distribution.

mattghall@gmail.com



Fractional Order Calculus 

(FROC) Model for Pediatric

Brain Tumor Differentiation

Muge Karaman
Department of Radiology

University of Illinois at Chicago

Anomalous Diffusion

mkaraman@uic.edu



53

• The diffusion weighted signal attenuation according to the FROC Model

• Application of the FROC Model to Differentiate Low- and High-grade Pediatric Brain Tumors

Low-grade (WHO II  - 4y) Astrocytoma High-grade (WHO IV  - 6y) Medulloblastoma

Sui et al., Radiology, 2015.

T1-weighted
Contrast enhanced 

T1-weighted T2-weighted

D 𝛽

T1-weighted
Contrast enhanced 

T1-weighted T2-weighted

D 𝛽

Brain Tumor Differentiation

mkaraman@uic.edu



54

• Group Comparison on the Basis of the FROC Model

Sui et al., Radiology, 2015.

Fractional Order Calculus (FROC) Model for Pediatric Brain Tumor 

Differentiation

Scatter diagrams and box plots of the mean values
Receiver operating 

characteristics (ROC) curves

mkaraman@uic.edu
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Low-grade 

(WHO I  - 41y) 

Oligodendroglioma

High-grade 

(WHO IV  - 38y) 

Glioblastoma

Multiforme

Sui et al., AJNR, 2016.

Fractional Order Calculus (FROC) Model for Glioma

Differentiation

D 𝛽T2-weighted

D 𝛽T2-weighted

mkaraman@uic.edu



Continuous-time Random Walk (CTRW) Model for Brain Tumor   

Differentiation

56

• The diffusion weighted signal attenuation according to the CTRW Model

• Application of the CTRW Model to Differentiate Low- and High-grade Pediatric Brain Tumors

Dm : anomalous diffusion coefficient

α : diffusion waiting time parameter (temporal heterogeneity)

β : diffusion jump length parameter (spatial heterogeneity)

α

α

Dm

Dm

β

β

Low-grade 

(WHO II  - 17m)

Ependymoma

High-grade 

(WHO IV  - 18m)

Medulloblastom

a

Karaman et al., MRM, 2015.mkaraman@uic.edu
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• Group Comparison on the Basis of the CTRW Model

Karaman et al., MRM, 2015.

Receiver operating characteristics (ROC) curvesBox and whisker plots of the mean values

Continuous-time Random Walk (CTRW) Model for Brain Tumor 

Differentiation

The area under the curves are 0.951 (Dm,

α), 0.952 (Dm, β), 0.898 (α, β), 0.957 (Dm, α, 

β), and 0.804 (ADC).

mkaraman@uic.edu



An Alternative Non-Gaussian Diffusion Model: 

Fractional Motion Model

58

*Y. Fang and J. Gao. Physical Review E 92, 2015. 
Karaman et al., NeuroImage:Clinical, accepted, 2016.

The diffusion weighted signal attenuation according to the FM Model*

We would like to compare CTRW and FM diffusion models at the level of an imaging voxel 

unlike recent studies performed in cell culture**.

**Magdziarz et al., Phys. Rev. Lett. 2009; 
Szymanski and Weiss, Phys. Rev. Lett. 2009; 

Weiss, Phys. Rev. E. 2015; Ernst et al., Soft Matter 2012

mkaraman@uic.edu



An Alternative Non-Gaussian Diffusion Model: Fractional 

Motion Model

59

Karaman et al., NeuroImage:Clinical, accepted, 2016.

• Comparison of the CTRW and FM Models to Differentiate Low- and High-grade Pediatric Brain Tumors

ROC Results:

The CTRW and FM models provide similar 

performance for discriminating malignancy of 

pediatric brain tumors, which challenges 

several reports on the drastic difference 

between the two models observed in cell 

cultures.

mkaraman@uic.edu



Anomalous Diffusion

Parsimonious continuous time random walk 

models and kurtosis for diffusion in magnetic 

resonance of biological tissue. 

Carson Ingo, Yu Fen Chen, Todd B. Parrish, 

Andrew G. Webb, and Itamar Ronen

Front. Phys. 3:11.(2015)

C.J. Gorter Center for High Field MRI, Univ. of 

Leiden, The Netherlands

Northwestern University, Chicago



Fourier Transform Solution

61

Ingo C, et al. (2015). Front. Phys. 3:11. doi: 10.3389/fphy.2015.00011

Fourier Transform Solution

Partial Differential

Equation

Fractional Partial 

Differential Equation

Mittag-Leffler Function (MLF)

Anomalous Subdiffusion

Metzler and Klafter, Phys Rev Lett, 2000.

Ingo et al., Magn Reson Med, 2014.

Gaussian Diffusion

carson.ingo@northwestern.edu
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Ingo C, et al. (2015). Front. Phys. 3:11. doi: 10.3389/fphy.2015.00011

Diffusional Kurtosis Imaging (DKI)

WM

GM

CSF

carson.ingo@northwestern.edu



Ingo C, et al. (2015). Front. Phys. 3:11. doi: 10.3389/fphy.2015.00011

Kurtosis in the Mittag-Leffler function

carson.ingo@northwestern.edu
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Ingo C, et al. (2015). Front. Phys. 3:11. doi: 10.3389/fphy.2015.00011

carson.ingo@northwestern.edu



Methods

65

Ingo C, et al. (2015). Front. Phys. 3:11. doi: 10.3389/fphy.2015.00011

 Northwestern University Memorial Hospital

 1 chronic stroke patient

 3T Siemens Trio 

 Diffusion weighted SE–EPI sequence 

 3 diffusion directions

 b-values: 0, 500, 1000, 3000, 4000 s/mm2 with NA = 6

 TE = 102 ms, TR = 6 s, Δ = 41.2 ms, δ = 30.6 ms

 In-plane resolution = 2x2 mm, slice thickness = 4 mm 

 20 slices, scan time ~ 4 min

carson.ingo@northwestern.edu



Results

66

Ingo C, et al. (2015). Front. Phys. 3:11. doi: 10.3389/fphy.2015.00011

WM GM CSF

carson.ingo@northwestern.edu

carson.ingo@northwestern.edu



Conclusions and Future Work

67

WM GM CSF

• Established mathematical connection between subdiffusion and kurtosis

• No limit on maximum b-value to estimate kurtosis

• KMLF provided improved tissue contrast compared to Kapp

• Quantify microstructural plasticity with language therapy in chronic stroke patients

carson.ingo@northwestern.edu



Anomalous Diffusion

Tissue microstructure features derived from 

anomalous diffusion measurements in magnetic 

resonance imaging. 

Yu, Q., Reutens, D., O’Brien, K., & Vegh, V

Human Brain Mapping, accepted 8-Oct-2016.

Centre for Advanced Imaging, the University of 

Queensland, Brisbane, Queensland, Australia

viktor.vegh@cai.uq.edu.au



Extract axon radius and volume 

fraction using tissue model

o Corpus callosum is a white matter structure consisting 
of highly oriented fibre bundles of varying radii and 
volume fractions

o We aimed to map axon radii and volume fraction 
across the corpus callosum using a tissue model 
and space fractional anomalous diffusion

viktor.vegh@cai.uq.edu.au



Ex vivo experiment

o Subject: A single brain was obtained from the Queensland Brain Bank, 
Australia (male aged 60). 

o EM: Electron microscopy images were used to evaluate axon radius and 
volume fraction in specific regions-of-interest

o MRI structural data: 7T Siemens Clinscan animal scanner was used to 
acquire 100 micron3 gradient recalled echo structural data

o MRI  diffusion data: 7T Siemens Clinscan animal scanner was used to 
acquire 300 micron3 diffusion data with b-values from 0 to 5,000s/mm2 in 
steps of 500s/mm2, and number of directions increased with b-value to 
ensure trace of data had consistent SNR across all b-values

Yu, Q., Reutens, D., O’Brien, K., & Vegh, V (2016): Tissue microstructure features derived from anomalous 

diffusion measurements in magnetic resonance imaging. Human Brain Mapping, accepted 8-Oct-2016.



Electron microscopy 

validation (ex vivo experiment)

viktor.vegh@cai.uq.edu.au



Results

ex vivo

viktor.vegh@cai.uq.edu.au



In vivo experiment

o Subjects: 9 healthy males aged 23-66 years were scanned

o Structural MRI data: 7T MRI gradient recalled echo collected on the 
Siemens Magnetom Research scanner at 750 micron3 resolution 

o Anomalous diffusion data: 1.5mm3 DWI data with b-values from 0 to 
5,000s/mm2 in steps of 500s/mm2, number of directions increased 
with b-value such that SNR does not degrade 

o Tractography data: DWI with b-value = 3,000s/mm2 and 64 
directions

o Segmentation of the corpus callosum: MRtrix-based probabilistic 
tractorgraphy was performed to segment the corpus callosum into 
areas projecting into various cortical regions

viktor.vegh@cai.uq.edu.au



Segment corpus callosum using 

tractography (in vivo experiment)  

viktor.vegh@cai.uq.edu.au



Data Processing

viktor.vegh@cai.uq.edu.au



Results

in vivo

viktor.vegh@cai.uq.edu.au



Probing Features Of Tissue 

Microstructure Using The 

Continuous Time Random Walk 

Diffusion Model

Dr Thomas. R. Barrick

St. George’s, University of London

Anomalous Diffusion



How Does Microstructure Affect Water 

Diffusion In Brain Tissue?

30th June 2015Anomalous Diffusion Imaging

Typical length 

scale for MRI

Diffusion Time



Image Acquisition

30th June 2015 Anomalous Diffusion Imaging

• 3T diffusion-weighted MRI data

• 2 scanners 

• St George’s, University of London (SGUL)

• Philips Achieva TX clinical system 

• 80 mTm-1 maximum gradient strength

• Human Connectome Project (HCP)

• Purpose built enhanced Siemens system 

• 300 mTm-1 maximum gradient strength

Dr Thomas. R. Barrick

St. George’s, University of London



Image Acquisition

30th June 2015 Anomalous Diffusion Imaging

• SGUL

• HCP 

Van Essen et al., 2012

Dr Thomas. R. Barrick

St. George’s, University of London



Data Fitting
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Parameter Maps
HCP DataSt George’s Data

Trace of 180 diffusion gradient directionsTrace of 6 diffusion gradient directions

30th June 2015Anomalous Diffusion Imaging
Dr Thomas. R. Barrick

St. George’s, University of London



Tissue Histograms

30th June 2015
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Brain Tissue Signatures

30th June 2015Anomalous Diffusion Imaging

HCP data 

(N=10) 

D1,2 shows

significant 

differences 

between 

acquisitions 

Dr Thomas. R. Barrick

St. George’s, University of London



Corpus Callosum

9th February 2014 Anomalous Diffusion in MRI

Group Average 

Tractography

(N=40)

Human Connectome Project Data

3T HARDI , =10.6ms, 

=41.7ms

180 diffusion directions, 

b=0,1000, 2000, 

3000 s mm-2

1 hour

30th June 2015

Van Essen et al., 2012
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Corpus Callosum

9th February 2014 Anomalous Diffusion in MRI

Group Average 

Tractography

(N=40)

Human Connectome Project Data 30th June 2015

Van Essen et al., 2012
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Brain Tumour Patients

30th June 2015

Grade I Meningioma

Grade II Astrocytoma

Grade I Glioblastoma

Grade IV Metastasis

aDWI, trace of 3 diffusion gradient directions,  6.5 minutesDr Thomas. R. Barrick

St. George’s, University of London



Acute Stroke Patient

aDTI , 6 diffusion gradient directions,  13 minutes

MLF computed in each direction, tensor fitted to each parameter

Dr Thomas. R. Barrick
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Conclusions

30th June 2015Anomalous Diffusion Imaging

• CTRW diffusion model provide parameters that may 

be interpreted in terms of tissue microstructure

• Provides tissue contrast

• Similar parameter values for SGUL and HCP

• Different effective diffusion times

• Different voxel sizes

• Relationship between a and b in tissue?

• Identifies pathological brain regions

• Consistent with kurtosis and stretched 

MLF/exponential results for brain tumour

• Rodent data for stroke

• Needs further studies with large patient 

numbers to identify utility

Kwee et al., 2009

Yi Sui et al., 2015

Grinberg et al., 2014

Rudrapatna et al., 2014
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Brownian 

Motion

Development of Fractional Magnetic 

Resonance Models: What next?

Bloch -Torrey

Equation

Bloch 

EquationdB0

2

dx2
CTRW 

Model

a, b

Fractional

Bloch-Torrey

Spin Translation

Pr(x,t)

Spin Rotation
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G(t)

J(w)
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Linear and Complex Systems
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