

Regional Sensing & Actuation of Fractional Order Distributed Parameter Systems

YangQuan Chen, Ph.D., Director, MESA (Mechatronics, Embedded Systems and Automation) LAB ME/EECS/SNRI/HSRI/UCSolar, School of Engineering, University of California, Merced

E: yqchen@ieee.org; *or*, yangquan.chen@ucmerced.edu T: (209)228-4672; O: SE2-273; Lab: CAS Eng 820 (T: 228-4398)

October 21, 2016. Friday. 11am-12noon

A Workshop on Future Directions in Fractional Calculus Research and Applications, MSU, East Lansing, MI. Slide-2/1024

UCMERCED

MESALAB

Thanks

- Mark! Congratulations!
- All invited lecturers! I learned a lot!
- You all for staying.
- Colors on MSU campus!

Slide-3/1024

UCMERCED

MESALAB

Two questions

- So what? / Why bother?
- What else I/you/we can do?

Slide-4/1024

So what? / Why bother?

• Three answers

- Complexity
- Better than the best
- XXX

Slide-5/1024

ROECOM

Of what use is fractional calculus? Fractional calculus can help physical, life and social scientists

- Small
- Slow
- Fast

10/21/2016

- **Remote in time**
- Remote in space
- Complex
- **Dangerous** or unethical

(the bio- and social-spheres) (molecular structure, individuals) (macroevolution of species, societies..) (photosynthesis, phase transitions) (early extinctions, genetics, memory) (life at extremes, heterogeneity) (human brain, IoBT) (infectious agents, cyber fog)

UCMERCED

Slide-6/1024

Source:

https://www.flickr.com/photos/atheism_christian_apologetics/11 078762214/in/photostream/

10/21/2016

UCMERCED

Slide-7/1024

Slide-8/1024

http://220.178.124.24:8080/wbbbs/archiver/?tid-16226.html

UCMERCED

New wisdom equipped with FC

道可道,非常道。-----世间万物的运行规律是 可以被描述的,但它们并非一成不变的。 Non-normal way: **Fractional Calculus!** Heavytailedness way by non-normal iew of Complexity be explained omorrow's Science could The nature's rule (of complexity) 10/21/2016 Regional Sensing and Actuation of Fractional Order Distributed Parameter Systems

Slide-9/1024

http://220.178.124.24:8080/wbbbs/archiver/?tid-16226.html

UCMERCED

New wisdom equipped with FC

• 玄之又玄,众妙之门。-----了解这类对立统 一体相互转变的规律,就是通向对世间万物理 解的大门。

Root of long (algebraic) tail, or

inverse power law

Fractional Calculus!

Non-normal way:

Heavytailedness

Fractional Calculus

View of Complexity omorrow's Science

ruce J. West

rder Distributed Parameter

New wisdom equipped with FC

• "God is in the detail"

UCMERCED

- "The Devil is in the detail"
 - <u>http://en.wikipedia.org/wiki/The_Devil_is_in_the_deta</u> il

"God is in the tail" "The Devil is in the tail"

10/21/2016

Slide-11/1024

So what? / Why bother?

• Three answers

- Complexity
- Better than the best
- XXX

Slide-12/1024

Better than the best, "more optimal"

UCMERCED

2012

ternational Symposium on Fractional PDEs: Theory, Numerics and Applications, June -5, 2013, Salve Regina University, 100 Ochre Point Avenue, Newport RI 02840

More Optimal Image Processing by Fractional Order Differentiation and Fractional Order Partial Differential Equations

Dali Chen, Dingyu Xue, YangQuan Chen

yqchen@ieee.org, ychen53@ucmerced.edu ME/EECS/SNRI/UCSolar MESA LAB, School of Engineering, University of California, Merced, USA xuedingyu@ise.neu.edu.cn, chendali@ise.neu.edu.cn Information Science and Engineering Northeastern University Shenyang 110004, P R China

10/21/2016

Slide-13/1024

So what? / Why bother?

• Three answers

- Complexity
- Better than the best
- XXX

UCMERCED

Slide-14/1024

"Physics is like sex: sure, it may give some practical results, but that's not why we do it."

FC

Richard Feynman

10/21/2016

Slide-15/1024

Outline (What else I can do?)

• Motivations

- Why Regional?
- Some recent results
- Future topics

What makes "measurement" so hard?

- For distributed parameter systems (DPS), the system dynamics evolves along time as well as spatial variables, usually governed by partial differential equations (PDEs) and usually it is required to discuss the modeling and control problems in terms of a <u>specified domain</u>.
- Additionally, for sensing and actuation, we also need to consider the cases of effective domains such as point-wise sensing/actuation, zone distributed sensing/actuation, and whole domain distributed sensing/actuation. Additionally, we can also consider sensors/actuator can be movable within the domain of interest.

Slide-17 of 1024

Measurement – It is no longer as simple and straightforward as before any more! WWWWWH issues

• Why measure?

UCMERCED

- What to measure?
- Who to measure
- Where to measure?
- When to measure?
- How to measure?

10/21/2016

Slide-18 of 1024

UCMERCED

MESALAB

2x2x5x5 = 100 cases

10/21/2016

Slide-19 of 1024

UCMERCED

MESALAB

x 2

x2: sensors and actuators are collocated or noncollocated

x 4

x4: communicating (sensor-to-sensor, actuator-to-actuator, sensor-to actuator, actuator-to-sensor).

Note: scanning an array of sensors/actuators is considered as "mobile"!

So, total cases: 2x2x5x5x2x4=800.

10/21/2016

Slide-20 of 1024

UCMERCED

MESALAB

Example-1

- For a simple room heater control system, we have
- one static point-wise sensor (thermostat)
- one static zonal actuator (heater).
- In this case, sensor and actuator are placed at different places, also known as "non-collocated".

10/21/2016

UCMERCED

Slide-21 of 1024

DPS: distributed parameter systems Features:

- Domain of interest
- Sensor configuration
- •Sensor effective region
- Actuator configuration
- •Actuator effective region
- Mobile or static
- Communicating or not
- Collocated or not

MAS-net Project:

Smart Sniffing and Spraying Problem Sensors and actuators are all mobile

Credit: Drs. YangQuan Chen and Kevin L. Moore, 2002

10/21/2016

Slide-23 of 1024

Fractional Order Controls

• IO Controller + IO Plant

UCMERCED

- FO Controller + IO Plant
- FO Controller + FO Plant
- IO Controller + FO Plant

D. Xue and Y. Chen*, "A Comparative Introduction of Four Fractional Order Controllers".
 Proc. of The 4th IEEE World Congress on Intelligent Control and Automation (WCICA02), June 10-14, 2002, Shanghai, China. pp. 3228-3235.
 10/21/2016

Slide-24/1024

UCMERCED

MESALAB

x 4

- Process is integer order or fractional order
- Controller is integer order or fractional order

x 4

- Controller is regional or not
- Observer is regional or not

800x16 = 12,800 cases (PhDs)

10/21/2016

Initial layout of actuators and sensors.

- Strategy: 1) Form Voronoi tessellation
 - 2) Move each robot to the mass centroid of its region
 - **3**) Spray neutralizing chemical in amount proportional to concentration in region

10/21/2016

UCMERCED

Slide-27/1024

4 robots sprayers, one contaminant source, moving obstacle.

Normal potential field.

4 robots sprayers, one contaminant source, moving obstacle.

Fractional order potential field.

Can specify the "degree of danger" of the obstacle in potential field method

Slide-28/1024

Slide-30/1024

My submission - "Computational" can be put in front of almost every thing

- Computational intelligence
- Computational material

UCMERCED

- Computational neuron science
- Computational psychology
- Computational fluid dynamic
- Computational biology
- Computational chemistry
- Computational ecology
- Computational social science
- Computational virology

10/21/2016

Slide-31/1024

My submission - "Control" can be put after almost every thing

Speed Control

UCMERCED

- Diet Control
- Weight Control
- Emotion Control
- Arm Control
- Microclimate Control
- Machine Control
- Human Gait Control
- Blood-pressure Control
- Aging Control
- Evacuation Control/Traffic Control/Conggestion Control

10/21/2016

Slide-32/1024

So, here comes CPS

Computational Thinking + Control Thinking

=> Cyber Physical Systems

UCMERCED

Dr. Chen's Definition of CPS: <u>Computational thinking and integration of</u> <u>computation around the physical dynamic</u> <u>systems form the Cyber-Physical Systems</u> (CPS) where sensing, decision, actuation, <u>computation, networking, and physical</u> <u>processes are mixed.</u>

Common attributes of CPS's

- Computational thinking, not just "computational doing"
- Integration of computation around the physical dynamic systems
- Sensing, decision, actuation, computation, networking, and physical processes are mixed.
- Bigger **closed-loop** picture

UCMERCED

• Mostly infinite-dimensional spatial-temporal complex dynamic systems.

2 Springe

Outline (What else I can do?)

• Motivations

- Why Regional?
- Some recent results
- Future topics

10/21/2016

Slide-38/1024

MESALAB

"Physical": Distributed Parameter Systems (DPSs)

DPSs are systems where the parameters and the variables depend both on time and the location. They include inputs and outputs which allow the system to communicate and interact with its environment (controls and measurements). For example:

$$y_t(x,t) = -\Delta y(x,t) + u(x,t)$$
 in $\Omega \times [0,1]$

with initial and boundary conditions:

UCMERCED

$$y(\eta, t) = 0$$
 on $\partial \Omega \times [0, 1], \quad y(x, 0) = y_0(x) \in L^2(\Omega),$

where u is a control depends on the number and the structure of actuators.

The measurements $C : L^2(\Omega \times [0,1]) \to Z$ is given by z(x,t) = Cy(x,t) according to the number and the structure of sensors.

10/21/2016

MESALAB

Difficulties for classical investigation of CPSs

(1) For DPSs, the system evolves along time as well as spatial variables, usually governed by partial differential equations (PDEs).

(2) For sensors: It is not easy to make enough measurements-neither dangerously enough nor luxuriously enough.

(3) For actuators: It is not easy and not a good idea to control whole system. (waste time and cost consuming)

(4) Moreover, in the case of diffusion systems, in general, not all the states can be reached in the whole domain of interest.

Benefits of regional control and observation (a) Occurs naturally;

(b) Allow for a reduction in the number of physical actuators/sensors ;

(c) Help to reduce the computational requirements;

(d) Great help to study those non-controllable/nonobservable system since it interests in knowledge of the states only in a critical sub-region of the system domain;

(e) To improve the degree of controllability/observability of the system only on a sub-region;

10/21/2016

.

Regional controllability

Let Ω be an open bounded subset of \mathbb{R}^n with smooth boundary $\partial \Omega$ and consider the following Riemann-Liouville type time fractional diffusion systems

$$\begin{cases} {}_{0}D_{t}^{\alpha}z(t) + Az(t) = Bu(t), \ t \in [0, b], \ 0 < \alpha < 1, \\ \lim_{t \to 0^{+}} {}_{0}I_{t}^{1-\alpha}z(t) = z_{0} \in L^{2}(\Omega), \end{cases}$$
(1)
$$z(t) = t^{\alpha-1}K_{\alpha}(t)z_{0} + \int_{0}^{t} (t-s)^{\alpha-1}K_{\alpha}(t-s)Bu(s)ds,$$
(2)

Let $\omega \subseteq \Omega$ be a given region of positive Lebesgue measure and $z_b \in L^2(\omega)$ (the target function) be a given element. Consider now the restriction map

$$p_{\omega}: L^2(\Omega) \to L^2(\omega),$$
 (3)

defined by $p_{\omega}z = z|_{\omega}$, is the projection operator on ω .

Definition 1

The system (1) is said to be regionally exactly (approximately) controllable in ω at time b if for any $z_b \in L^2(\omega)$, given $\varepsilon > 0$, there exists a control $u \in U$ such that

$$p_{\omega}z(b,u) = z_b\left(\|p_{\omega}z(b,u) - z_b\| \le \varepsilon\right). \tag{4}$$

10/21/2010

Slide-42/1024

Lemma 3.1.1. For any given $f \in L^2(0,b;Z)$, $0 < \alpha < 1$, a function $v \in L^2(0,b;Z)$ is said to be a mild solution of the following system

$$\begin{cases} {}_{0}D_{t}^{\alpha}v(t) + Av(t) = f(t), \ t \in [0,b], \\ \lim_{t \to 0^{+}} {}_{0}I_{t}^{1-\alpha}v(t) = v_{0} \in Z, \end{cases}$$

if it satisfies $v(t) = t^{\alpha-1}K_{\alpha}(t)v_0 + \int_0^t (t-s)^{\alpha-1}K_{\alpha}(t-s)f(s)ds$, where

$$K_{\alpha}(t) = \alpha \int_0^\infty \theta \phi_{\alpha}(\theta) \Phi(t^{\alpha}\theta) d\theta.$$

Here $\{\Phi(t)\}_{t\geq 0}$ is the strongly continuous semigroup generated by operator -A, $\phi_{\alpha}(\theta) = \frac{1}{\alpha} \theta^{-1-\frac{1}{\alpha}} \psi_{\alpha}(\theta^{-\frac{1}{\alpha}})$ and ψ_{α} is a probability density function defined by $\psi_{\alpha}(\theta) = \frac{1}{\pi} \sum_{n=1}^{\infty} (-1)^{n-1} \theta^{-\alpha n-1} \frac{\Gamma(n\alpha+1)}{n!} \sin(n\pi\alpha), \ \theta > 0$ such that

$$\int_0^\infty \psi_\alpha(\theta) d\theta = 1 \text{ and } \int_0^\infty \theta^\nu \phi_\alpha(\theta) d\theta = \frac{\Gamma(1+\nu)}{\Gamma(1+\alpha\nu)}, \ \nu \ge 0.$$

Proof. Omitted. 10/21/2016

UCMERCED

Zhou Y, Jiao F (2010) Existence of mild solutions for fractional neutral evolution equations. Comput Math Appl 59(3):1063–1077 Regional Sensing and Actuation of Fractional Order Distributed Parameter Systems

Slide-43/1024

Consider the following attainable set D(t) in $L^2(\Omega)$:

$$D(t) = \left\{ d(t, \cdot) \in L^2(\Omega) : d(t, x) = \int_0^t (t - s)^{\alpha - 1} K_{\alpha}(t - s) Bu(s) ds \right\}$$

and we have

Lemma 2

For any given b > 0, the necessary and sufficient condition for the exact (approximate) controllability of the system (1) at time b is that

$$D(b) = L^{2}(\Omega) \left(\text{respectively, } \overline{D(b)} = L^{2}(\Omega) \right),$$

where D(t) (t > 0) is a linear manifold and D(b) is the closure of D(b).

By Lemma 2, it suffices to suppose that $z_0 = 0$ in the following discussion.

10/21/2016

Slide-44/1024

UCMERCED

Why regional?

Consider the following example, which is not controllable on the whole domain but regionally controllable on ω .

$$\begin{cases} {}_{0}D_{t}^{\alpha}z(x,t) - \frac{\partial^{2}}{\partial x^{2}}z(x,t) = p_{[a_{1},a_{2}]}u(t) & \text{in } [0,1] \times [0,b], \\ \lim_{t \to 0^{+}} {}_{0}I_{t}^{1-\alpha}z(x,t) = z_{0}(x) & \text{in } [0,1], \\ z(0,t) = z(1,t) = 0 & \text{in } [0,b], \end{cases}$$
(5)

where $0 < \alpha < 1$, $Bu = p_{[a_1, a_2]}u$ and $0 \le a_1 \le a_2 \le 1$. Moreover, since $A = -\frac{\partial^2}{\partial x^2}$, from [Pazy(2012)], we get that $\lambda_i = i^2 \pi^2$, $\xi_i(x) = \sqrt{2} \sin(i\pi x)$ are respectively, the eigenvalue and eigenfunction of A. What's more, we have

$$(H^*z)(t) = (b-t)^{\alpha-1} \sum_{i=1}^{\infty} E_{\alpha,\alpha}(-\lambda_i(b-t)^{\alpha})(z,\xi_i)_{L^2(0,1)} \int_{a_1}^{a_2} \xi_i(x) dx.$$

By $\int_{a_1}^{a_2} \xi_i(x) dx = \frac{\sqrt{2}}{i\pi} \sin \frac{i\pi(a_1+a_2)}{2} \sin \frac{i\pi(a_2-a_1)}{2}$, we get that $\overline{Im(H)} \neq L^2(\omega)$ when $a_2 - a_1 \in \mathbf{Q}$. Then the system (5) is not controllable on [0, 1].

Slide-45/1024

UCMERCED

MESALAB

Next, we show that there exists a sub-region $\omega \subseteq \Omega$ such that the system can be regionally controllable in ω at time *b*.

Without loss of generality, let $a_1 = 0$, $a_2 = 1/2$, $z_* = \xi_k$, $(k = 4j, j = 1, 2, 3, \cdots)$. Based on the argument above, z_* is not reachable on $\Omega = [0, 1]$. However, let $\omega = [1/4, 3/4]$, we see that

$$(H^* p^*_{\omega} p_{\omega} z_*)(t) = \sum_{i \neq 4j} \frac{\sqrt{2} E_{\alpha,\alpha} (-\lambda_i (b-t)^{\alpha})}{i\pi (b-t)^{1-\alpha}} \int_{1/4}^{3/4} \xi_i(x) \xi_{4j}(x) dx [1 - \cos(i\pi/2)] \\ \neq 0.$$

Then z_* can be regionally controllable in $\omega = [1/4, 3/4]$ at time *b*.

10/21/2016

Outline (What else I can do?)

• Motivations

UCMERCED

- Why Regional?
- Some recent results
- Future topics

Slide-47/1024

http://perso.univ-perp.fr/aej/index.html

Université de Perpignan

10/21/2016

UCMERCED

Professor Abdelhaq El Jai's works

• <u>ftp://169.236.9.29/El-Jai-collection/</u>

UCMERCED

- L. Afifi, A.El Jai et E. Zerrik. Systems Theory. Regional Analysis of Infinite Dimensional Linear Systems, PUP, ISBN : 978-2-35412-140-2, 440 pages. Janvier 2012
- A. El Jaï & A.J Pritchard. Sensors and Controls in the Analysis of Distributed Systems. Ellis Horwood Ltd - JOHN WILEY & SONS 1988

Why we made this collection of El Jai's works?

- Professor Abdelhaq EL JAI's papers on regional analysis of distributed parameter systems (DPS) are truly original and important. It is getting more and more important in this IoT (internet of things) and CPS (cyber-physical systems) age with cloud computing and big data movements. A dedicated conference was organized in his honor in 2014: http://cmacs2014.online.fr/
- My first reading of El Jai's work was in 2002. In my 2004 SPIE paper on mobile actuator and sensor networks (MAS-net), we first cited El Jai's work.
- Since 2014, with Fudong Ge, a visiting Ph.D. student from Donghua University, China, we started an exciting journey in exploring the regional analysis of fractional order DPS with DRONEMATH in mind (e.g. pest spreading in crop fields under drone remote sensing and cropdusting spraying control).

Slide-50/1024

- Fudong Ge, YangQuan Chen and Chunhai Kou.
 "Regional Analysis of Time-Fractional Order Diffusion Processes" (Springer London, to appear Winter 2016 or Spring 2017) [draft book ready, 270 pages]
 - JMAA, FCAA, Automatica, IET CTA, IMA JMCI, IJC, IEEE/CAA JAS etc.

Slide-51/1024

Pre	face .			13		
List	t of Fi	igures		15		
1	Intr	oductio	n	17		
	1.1	Cyber	-Physical Systems and Distributed Parameter Systems	17		
		1.1.1	Cyber-physical systems	17		
		1.1.2	Distributed parameter systems	19		
	1.2	New C	Challenges	22		
	1.3 Continuous Time Random Walk and Fractional Dynamics Ap					
		1.3.1	Continuous time random walk	23		
		1.3.2	Fractional dynamics approach	24		
	1.4	Region	nal Analysis via Actuators and Sensors	25		
		1.4.1	Actuators	26		
		1.4.2	Sensors	27		
		1.4.3	Regional analysis and the emerging research opportunities	29		
	Refe	erences		30		

10/21/2016

Slide-52/1024

2	Prel	iminary	Results		35			
	2.1	Specia	ns and Their Properties	35				
		2.1.1	The Gar	nma function and its related special functions	35			
		2.1.2 The Mittag-Leffler functions and their properties						
	2.2	Fractio	nal Calci	ılus	42			
		2.2.1	Backgro	ounds	42			
		2.2.2	Rieman	n-Liouville fractional integrals	44			
		2.2.3	Riemann	n-Liouville fractional derivatives	45			
			2.2.3.1	Definition of Riemann-Liouville fractional				
				derivatives	45			
			2.2.3.2	The law of exponents for Riemann-Liouville				
				fractional derivatives	46			
			2.2.3.3	The Laplace transforms of Riemann-Liouville				
				fractional integrals and derivatives	50			
		2.2.4	Caputo	fractional derivatives	50			
			2.2.4.1	Definition of Caputo fractional derivatives	51			
			2.2.4.2	The law of exponents for Caputo fractional				
				derivatives	52			
			2.2.4.3	The Laplace transforms of Caputo fractional				
				derivatives	54			
	2.3	C_0 -Se	migroup	s	55			
	2.4	Hilbert	Uniquer	ness Methods	57			
	Refe	erences .			59			

10/21/2016

$IICM1^3$	Reg	ional C	ontrollability
	5.1	3.1.1	Riemann-Liouville type time fractional diffusion systems 64
			3.1.1.1 Problem statement
			3.1.1.2 Regional strategic actuators
			3.1.1.3 An approach for regional target control
			3.1.1.4 Simulation example
		3.1.2	Caputo type time fractional diffusion systems 77
			3.1.2.1 Problem statement 77
			3.1.2.2 Regional strategic actuators
			3.1.2.3 An approach for regional target control
			3.1.2.4 Examples 95
	3.2	Region	nal Gradient Controllability
		3.2.1	Riemann-Liouville type time fractional diffusion systems 98
			3.2.1.1 Problem statement
			3.2.1.2 Regional gradient strategic actuators 103
			3.2.1.3 An approach for regional gradient target control 107
		5.2.2	3.2.1.4 Examples 110
		3.2.2	Caputo type time fractional diffusion systems
			3.2.2.1 Problem statement
			3.2.2.2 Regional gradient strategic actuators 117
			3.2.2.3 An approach for regional gradient target control 120
	2.2	D	3.2.2.4 An example
	3.3	Region	nal Boundary Controllability
		3.3.1	Riemann-Liouville type time fractional diffusion systems 124
			3.3.1.1 Problem statement
			3.3.1.2 Regional boundary strategic actuators
			3.3.1.4 The connection between internal and boundary
			regional controllability 120
		332	Caputo type time fractional diffusion systems 131
		5.5.4	Capato type time inactional diffusion systems

10/21/2016

Slide-54/1024

	3.3.2.1	Problem statement
	3.3.2.2	Regional boundary strategic actuators
	3.3.2.3	An approach for regional boundary target control . 132
	3.3.2.4	The connection between internal and boundary
		regional controllability 134
3.4	Notes and Rema	arks
Refe	erences	

UCME

4	Reg	ional O	bservabi		D
	4.1	Regio	nal Obser	vability	D
		4.1.1	Riemann	n-Liouville type time fractional diffusion systems 140	
			4.1.1.1	Problem statement	
			4.1.1.2	Regional strategic sensors	
			4.1.1.3	An approach for regional reconstruction 144	
			4.1.1.4	An example	
		4.1.2	Caputo	type time fractional diffusion systems 148	
			4.1.2.1	Problem statement	
			4.1.2.2	Regional strategic sensors	
			4.1.2.3	An approach for regional reconstruction 152	
			4.1.2.4	An example 154	
	4.2	Regio	nal Gradie	ent Observability 155	
		4.2.1	Rieman	n-Liouville type time fractional diffusion systems 155	
			4.2.1.1	Problem statement	
			4.2.1.2	Regional strategic sensors	
			4.2.1.3	An approach for regional gradient reconstruction 164	
			4.2.1.4	Examples	
		4.2.2	Caputo	type time fractional diffusion systems	
			4.2.2.1	Problem statement	
			4.2.2.2	Regional strategic sensors	
			4.2.2.3	An approach for regional gradient reconstruction 177	
			4.2.2.4	Examples	
	4.3	Regio	lary Observability		
		4.3.1	Rieman	n-Liouville type time fractional diffusion systems 182	
			4.3.1.1	Problem statement	
			4.3.1.2	Regional boundary strategic sensors	
			4.3.1.3	An approach for regional boundary reconstruction. 187	
		4.3.2	Caputo	type time fractional diffusion systems	
			4.3.2.1	Problem statement	
			4.3.2.2	Regional boundary strategic sensors 190	
			4.3.2.3	An approach for regional boundary reconstruction. 192	
	4.4	Notes	and Rema	arks	
	Refe	erences			

10/21/2016

Slide-56/1024

UCM	ER	CE	D	Slide-56/1024	MESAL
5	Reg	ional D	etection	of Unknown Sources	
	5.1	Prelin	ninary Re	sults	
		5.1.1	Sources	5	
		5.1.2	Detectio	on	
	5.2	Riema	nn-Liouv	ville Type Time Fractional Diffusion Sy	stems 200
		5.2.1	Problem	n statement	
		5.2.2	Regiona	al strategic sensors and regional spy sen	sors 200
			5.2.2.1	Regional strategic sensors	
			5.2.2.2	Regional spy sensors	
			5.2.2.3	The relationships between ω -spy set	nsors and
				ω -strategic sensors	
		5.2.3	Reconst	truction of a regionally detectable sourc	e 203
		5.2.4	An exa	mple	
	5.3	Caput	o Type Ti	ime Fractional Diffusion Systems	
		5.3.1	Problem	n statement	
		5.3.2	Regiona	al strategic sensors and regional spy sen	sors 206
			5.3.2.1	Regional strategic sensors	
			5.3.2.2	Regional spy sensors	
			5.3.2.3	The relationships between ω -spy set	nsors and
				ω -strategic sensors	
		5.3.3	Recons	truction of a regionally detectable sourc	e 208
		5.3.4	An exai	mple	
	5.4	Notes	and Rem	narks	
	Refe	erences			
10/01/0016					

10/21/2016

Slide-57/1024

Spre	eadabili	ity				
6.1	The Basic Concepts of Spreadability					
6.2	Riemann-Liouville Type Time Fractional Diffusion Systems 21					
	6.2.1	Spreading control problem				
	6.2.2	Weak spreadability				
	6.2.3	Adaptive spreading control problems				
		6.2.3.1 Problem formulation				
		6.2.3.2 Solution of the adaptive spreading control problem 216				
6.3	Caputo	Type Time Fractional Diffusion Systems				
	6.3.1	Spreading control problem				
	6.3.2	Weak spreadability				
	6.3.3	Adaptive spreading control problems				
		6.3.3.1 Problem formulation				
		6.3.3.2 Solution of the adaptive spreading control problem 221				
6.4 Notes and Remarks						
References						

10/21/2016

6

7	Reg	ional St	tability a	nd Regional Stabilizability			
	7.1	Introduction					
	7.2	Regional Stability and Regional Stabilizability					
		7.2.1	Caputo (type time fractional diffusion systems			
			7.2.1.1	Regional stability			
			7.2.1.2	Regional stabilizability 229			
		7.2.2	Riemani	n-Liouville type time fractional diffusion systems 234			
			7.2.2.1	Regional stability			
			7.2.2.2	Regional stabilizability			
	7.3	Regional Boundary Stability and Regional Boundary Stabilizability 238					
		7.3.1	Caputo 1	type time fractional diffusion systems			
			7.3.1.1	Regional boundary stability			
			7.3.1.2	Regional boundary stabilizability			
		7.3.2	Rieman	n-Liouville type time fractional diffusion systems 244			
			7.3.2.1	Regional boundary stability			
			7.3.2.2	Regional boundary stabilizability			
	7.4	Notes	and Rema	arks			
	Refe	erences					

10/21/2016

10/21/2016

8	Conclusions and Future Work						
	8.1	Concl	lusions				
	8.2	Severa	al Genera	lized Systems and Their Related Potential			
		Research Directions					
		8.2.1	Several generalized systems				
			8.2.1.1	Space fractional diffusion systems			
			8.2.1.2	Space-time fractional diffusion systems			
			8.2.1.3	Variable order and distributed order fractional			
				diffusion systems			
			8.2.1.4	Nonlinear fractional diffusion systems			
			8.2.1.5	Fractional wave equations			
		8.2.2	Related	potential research opportunities			
			8.2.2.1	Essential problems on fractional diffusion systems 253			
			8.2.2.2	Topics related to actuators/sensors			
			8.2.2.3	Rank conditions for fractional diffusion systems 254			
			8.2.2.4	Communication topology influence			
			8.2.2.5	Regional identifiability theory			
			8.2.2.6	Regional trajectory planning and regional			
				trajectory tracking			
	Refe	erences					
Inc	lex						
		Regio	nal Sensing	and Actuation of Fractional Order Distributed Parameter Systems			

Outline (What else I can do?)

• Motivations

UCMERCED

- Why Regional?
- Some recent results
- Future topics

10/21/2016

Slide-61/1024

UCMERCED

MESALAB

cyber

- Communication topology
- Communication induced uncertainties

Slide-62/1024

UCMERCED

physical

- Space fractional diffusion systems
- Space-time fractional diffusion systems
- Variable order and distributed order fractional diffusion systems
- Nonlinear fractional diffusion systems

10/21/2016

systems

- How many actuators/sensors are sufficient when there exists communication among them and how to best configure them for the fractional diffusion control processes?
- The optimal positioning problem of the actuators/sensors;
- Given the desirable zone shape, is it possible to control or contain the fractional diffusion process with static/mobile actuators/sensors within the given zone?

Slide-64/1024

reminder x 4

- Process is integer order or fractional order
- Controller is integer order or fractional order

x 4

• Controller is regional or not

UCMERCED

• Observer is regional or not

800x16 = 12,800 cases (PhDs)

10/21/2016

Slide-65/1024

Minds like

parachutes function only when open

10/21/2016

UCMERCED

Slide-66/1024

Cyb	er part	Physical p					
N	Adeling of evacuation	ensing (CCTV, Segways,…)	Cor	Controlling of evacuation			
	Ordinary differential equations			Movement of each pedestrian			
Fractional	Partial differential equations	Cyber-pedestrian system		Smoothing fluids of crowds			
	Integral differential equations	, i		Granular fluids of crowds			
	Coupling equations	Actuations (Segways, block	5,)	Actions based on games			

Kecai Cao, Yangquan Chen, Dan Stuart, and Dong Yue. **Cyber-physical modeling and control of crowd of pedestrians: a review and new framework**. *Automatica Sinica, IEEE/CAA Journal of*, 2(3):334–344, 2015. http://arxiv.org/abs/1506.05340. ^{10/21/2016} Regional Sensing and Actuation of Fractional Order Distributed Parameter Systems Slide-67/1024

New research monographs

 Kecai Cao and YangQuan Chen. "Fractional Order Crowd Dynamics: Cyber Human System Modeling, and Control" (Invited book project. Volume #1 of the De Gryuter Monograph Series "Fractional Calculus in Applied Sciences and Engineering" ISBN 9783110472813)

UCMERCED

Slide-68/1024

10/21/2016

Slide-69/1024

UCMERCED

New robotics research from controlling crop dynamics to crowd dynamics ...

MAS-net to CPS to CHS: Robots as Sensors and Actuators

Figure: Stampede in Nigeria

Figure: Stampede in Shanghai

MESALAB

10/21/2016

UCMERCEDSlide-70/1024MESALABIn the next a few years...

10/21/2016

UCMulti-campus Synergy on CIDERS

<u>California</u> Institute of Data-drone Engineering and Services

UCM, UCSC,UCB, UCSD, LLNL

CIDERS in Scientific data-drones: platforms, operation, and certification

UCM UCD UCSD

CIDERS in precision agriculture

CIDERS in environmental monitoring: water, fire, soil, dust, AQ. Regional Sensing and Actuation of Fractional Order Distributed Parameter Systems

MESALAB

Thank you for attending my talk!

For more information, check

http://mechatronics.ucmerced.edu/

10/21/2016