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Brownian Motion

• British botanist Robert Brown (1827),

• Louis Bachelle 1900 Ph.D thesis: Theory of Speculations

(advisor: Henri Poincaré).

• British statistician Karl Pearson (1905) asked the following

question in Nature: A man starts from the point O and walks L

yards in a straight line; he then turns through any angle

whatever and walks another L yards in a second straight line.

He repeats this process n times. I require the probability that

after n stretches he is at a distance between r and r + δr from

his starting point O.

In fact, Pearson was interested in the way that mosquitoes

spread malaria.
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BM and Heat Equation

• Albert Einstein (1905): derive equation for BM based on the

kinetic-molecular conception of matter

p(t , x , y) = (2πt)−d/2 exp(−|x − y |2/(2t)).

• French scientist Joseph Fourier studied heat conductance in

solids and derived the partial differential equation
∂p

∂t
= a

∂2p

∂x2
.

in 1807. (Book “Analytic Theory of Heat" in 1822)

• German physiologist Adolf Fick, who was interested in the

way that water and nutrients travel through membranes in living

organisms, published in 1855 the famous diffusion (or heat)

equation.

• Norbert Wiener (1923) gave a rigorous mathematical

construction of BM.
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Probabilistic representation

Mathematically, a Brownian motion Bt is a continuous process

that has independent stationary increments. The increment is

of Gaussian distribution.

Give initial data (temperature) f , u(t , x) = Ex [f (Bt)] solves the

heat equation
∂u(t , x)

∂t
=

1

2
∆u(t , x) with u(0, x) = f (x).

Brownian motion is the scaling limit of random walks whose

step size has finite second moment.
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Random walk

Random walk model: Sn =
∑n

k=1 ξk , Tn =
∑n

j=1 ηj , where ξk is

the k th displacement and ηj is the j th waiting or holding time.

Let Nt = max{n : Tn ≤ t}. Then Xt = SNt
.

Key assumption for Brownian approximation: finite second

moment displacement for each ξk and finite mean time for each

ηj .

An increasing number of natural phenomena do not fit into the

standard diffusion model. That is, either |ξk |
2, or ηj , or both has

infinite mean, such as stable diffusion. (Pareto-Lévy or

power-law distribution.)
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Subdiffusion

Particle moves slower than Brownian motion, for example, due

to particle sticking and trapping.

Example: (i) xerox machine, electrons in amorphous media

tend to get trapped by local imperfections and then released

due to thermal fluctuations.

(ii) hydrology: travel times of contaminants in groudwater are

much longer than that of diffusion.

(iii) biology: proteins diffuse across cell membranes.

It can be described by an equation involving fractional time

derivative:
∂βp

∂tβ
= a

∂2p

∂x2
.
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Caputo fractional derivative

∂β f (t)

∂tβ
=

1

Γ(1 − β)

d

dt

∫ t

0

(t − s)−β (f (s)− f (0)) ds,

where Γ is the Gamma function defined by

Γ(λ) =
∫∞

0
tλ−1e−tdt .

A little physics: Let u(t , x), e(t , x) and ~F (t , x) denote the body

temperature, internal energy and flux density, respectively.

Then the relations

e(t , x) = βu(t , x), ~F (t , x) = −λ∇u(t , x), β, λ > 0,

∂e

∂t
(t , x) = −div ~F (conservation law)

yield the classical heat equation β ∂u
∂t = λ∆u.
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Material of thermal memory

However in real modeling, heat flow can be disrupted by the

response of the material. It has been shown (e.g. in Lunardi

and Sinestrari (1988), von Wolfersdorf (1994)) that in a material

with thermal memory, the internal energy

e(t , x) = βu(t , x) +

∫ t

0

n(t − s)u(s, x)ds.

Typically, n(t) is a positive decreasing function that blows up

near t = 0, indicating the nearer past affects the present more.

When n(t) = t−α for α ∈ (0, 1) and u(0, x) = 0, the heat

equation becomes

β
∂u

∂t
+

1

Γ(1 − α)

∂αu

∂tα
= −div~F = λ

∂2u

∂x2
.
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Fractional time SPDE

If in addition the internal energy e(t , x) depends also on past

random effects, then the internal energy is given by

e(t , x) = βu(t , x)+

∫ t

0

n(t−s)u(s, x)ds+

∫ t

0

ℓ(t−s)h(s, u(s, x))dWs,

where W is a random process, such as Brownian motion,

modeling the random effects. If u(0, x) = 0, β = 0,

n(t) = Γ(1 − β1)
−1t−β1 and ℓ(t) = Γ(2 − β2)

−1t1−β2 , we get

fractional time stochastic partial differential equation

∂β1

t u = λ∆u + ∂β2

t

∫ t

0

h(s, u(s, x))dWs.

This type SPDE has recently been introduced and studied in

C.-Kim-Kim, SPA 125, 2015.
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Superdiffusion

Another possibility for anomalous diffusion is that the random

walker remains in motion without changing direction for a time

that follows a Pareto-Lévy distribution.

Bird search: more effective

UCLA burglary hotspot model: study and predict burglary

location

• S. Chaturapruek et al, Crime modeling with Lévy flights.

SIAM J. Appl. Math. 73 (2013), 1703-1720.

Measured in terms of number of stretches, this corresponds to

ξj of Lévy distribution and ηj = 1. The limiting process is a Lévy

process. It can be described by an equation with fractional

derivative in space:
∂p

∂t
= a∆α/2p.
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Central Limit Theorem

Recall random walk St =
∑[t]

j=1 ξj . Assume ξ1 is spherically

symmetric.

• If σ2 := E[ξ2
1 ] < ∞, then λ−1/2Sλt converges weakly to

Brownian motion σBt .

• If P(|ξ1| ≥ λ) ∼ Cλ−α for some C > 0 and 0 < α < 2 as

λ → ∞, the (extended) central limit theorem tells us that

{λ−1/αSλt , t ≥ 0} converges weakly to a rotationally symmetric

α-stable Lévy motion {Yt , t ≥ 0} with

E[eiξ·Yt ] = e−C0|ξ|
αt for every ξ ∈ R

d and t ≥ 0,

where the constant C0 depends only on C and the dimension d .
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Stable process

The α-stable process Y has the following scaling property:

{λ1/αYt , t ≥ 0} has the same distribution as {Yλt , t ≥ 0}, it

represents a model for anomalous super-diffusion, where

particles spread faster than Brownian particles.

The infinitesimal generator of Y is ∆α/2 : ∆̂α/2f (ξ) = −|ξ|α f̂ (ξ).
Alternatively,

∆α/2u(x) =

∫

d

(u(x + z)− u(x)−∇u(x) · z1{|z|≤1})J(z)dz

where

J(z) =
A(d ,−α)

|z|d+α
= J(x , x + z)

with A(d ,−α) = α2α−1π−d/2Γ(d+α
2 )Γ(1 − α

2 )
−1 ≍ α(2 − α).
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Fractional Laplacian

It can be shown that u(t , x) = Ex [f (Yt)] solves the equation

∂u(t , x)

∂t
= ∆α/2u(t , x) with u(0, x) = f (x).

Fundamental solution (or transition density function of Y )

p(t , x , y):

u(t , x) = Ex [f (Yt)] =

∫

Rd

p(t , x , y)f (y)dy .
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Heat kernel

Transition density function p(t , x , y) of X encodes all the

information of the process.

Unlike Brownian motion, typically it is impossible to get its

explicit exact formula except for a very few special cases such

as Cauchy process. Estimates

p(t , x , y) ≍ t−d/α ∧
t

|x − y |d+α
≍

t

(t1/α + |x − y |)d+α
.
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Waiting time and Subordinator

Recall that the n-th jumping time is given by Tn =
∑n

k=1 ηk . The

number of jumps by time t > 0 is Nt = max{n : Tn ≤ t}, so the

position of the particle at time t > 0 is SNt
.

If P(η1 > t) ∼ Ct−β as t → ∞ for some 0 < β < 1, then the

scaling limit of c−1/βT[ct] ⇒ Zt as c → ∞ is a strictly increasing

stable Lévy motion with index β, called β-stable subordinator.

Meerschaert and Scheffler (2004) showed that {c−βNct , t ≥ 0}
converges weakly to the process {Et , t ≥ 0}, where

Et = inf{s : Zs > t} and so the scaling limit of the particle

location {c−β/αSN[ct]
, t ≥ 0} is {BEt

, t ≥ 0}, Brownian motion

time-changed by an inverse β-stable subordinator.

Thus BEt
provides a model for anomalous sub-diffusion, where

particles spread slower than Brownianian particles.
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Inverse subordinator

In general, given a Markov process Yt and an independent

β-subordinator Z , one can do time change to get a new

process Xt = YEt
, where Et = inf{x : Zx > t}.

Question: What is the marginal distribution of Xt?

Denote by gβ(u) the density of Z1. Then by scaling, Zs has

density s−1/βgβ(s
−1/βu) for any s > 0. Using the inverse

relation P(Et ≤ s) = P(Zs ≥ t) and taking derivatives, it follows

that Et has the density

ft(s) =
d

ds
P(Zs ≥ t) = tβ−1s−1−1/βgβ(ts

−1/β).
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Marginal distribution

For φ ≥ 0,

u(t , x) := Ex [φ(Xt)] = Ex [φ(YEt
)]

=

∫ ∞

0

Ex [φ(Ys)]P(Et ∈ ds) =

∫ ∞

0

Psφ(x)ft(s)ds

=

∫ ∞

0

P(t/s)βφ(x)gβ(s)ds.

Theorem (Baeumer and Meerschaert, 2001):

∂βu(t , x)

∂tβ
= Lxu(t , x).

C.-Meerschaert-Nane (J. Math. Anal. Appl. 2012): Space-time

fractional diï¬usiononboundeddomains
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Symmetric non-local operator

Since the media can have impurities, of composite media, we

need to consider stochastic processes whose movements are

state-dependent.

An effective way to model a Markov process is through its

infinitesimal generator.

There are two versions of state-dependent non-local operators:

symmetric and non-symmetric.

• Symmetric operator on Rd :

Lf (x) = lim
ε→0

∫

{y∈Rd :|y−x |>ε}
(f (y)− f (x))J(x , y)dy .

Probabilistic meaning of J(x , y): jumping intensity from x to y .

It can be viewed as a counterpoart of divergence form operator.
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Non-symmetric non-local operator

• Non-symmetric operator (counterpart of non-divergence form

elliptic operators)

Lu(x) = lim
ε↓0

∫

{z∈Rn: |z|>ε}
(u(x + z)− u(x))j(x , z)dz,

where j(x , z) is a non-negative measurable kernel that is

symmetric in z.

Probabilistic meaning of j(x , z): jumping intensity from x to

x + z.
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Symmetric stable-like operator

Symmetric operator on Rd :

Lf (x) = lim
ε→0

∫

{y∈Rd :|y−x |>ε}
(f (y)− f (x))

c(x , y)

|x − y |d+α
dy ,

where c(x , y) is a symmetric function bounded between two

positive constants and 0 < α < 2.
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Heat kernel estimates

Theorem (C.-Kumagai, SPA 2003)

L admits a jointly Hölder continuous heat kernel p(t , x , y) with

respect to the Lebesgue measure on Rd , which satisfies

C−1 t

(t1/α + |x − y |)d+α
≤ p(t , x , y) ≤ C

t

(t1/α + |x − y |)d+α

for every t > 0 and x , y ∈ Rd . The constant C depends only on

the “ellipticity" of c(x , y) and (d , α).

• Approach: Dirichlet form, Nash’s inequality, Davies method,

probabilistic approach by estimating various hitting probabilities.

• stability result. Holds on Ahlfors d-sets as well.

• Can be viewed as DeGiorgi-Nash-Moser-Aronson type theory

for symmetric non-local operators.
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Some history and further developments

• Kolokoltsov (2000): Two-sided HK estimate for stable-like

processes on Rn with smooth symbols.

• Bass-Levin (2002): Two-sided HK estimate for random walk

on Zn with stable-like one-step transition distribution.

• Z.-Q. Chen and T. Kumagai, Heat kernel estimates for jump

processes of mixed types on metric measure spaces. Probab.

Theory Relat. Fields 140 (2008), 277-317.

• Z.-Q. Chen and T. Kumagai, A priori Hölder estimate,

parabolic Harnack principle and heat kernel estimates for

diffusions with jumps. Rev. Mat. Iberoam. 26 (2010), 551-589.

· · · · · ·

• Z.-Q. Chen, P. Kim and R. Song, Dirichlet heat kernel

estimates J. Euro. Math. Soc. 12 (2010), 1307-1329.

· · · · · ·

Zhen-Qing Chen University of Washington Anomalous Diffusions and Fractional Order Differential Equations



Some history and further developments

• Kolokoltsov (2000): Two-sided HK estimate for stable-like

processes on Rn with smooth symbols.

• Bass-Levin (2002): Two-sided HK estimate for random walk

on Zn with stable-like one-step transition distribution.

• Z.-Q. Chen and T. Kumagai, Heat kernel estimates for jump

processes of mixed types on metric measure spaces. Probab.

Theory Relat. Fields 140 (2008), 277-317.

• Z.-Q. Chen and T. Kumagai, A priori Hölder estimate,

parabolic Harnack principle and heat kernel estimates for

diffusions with jumps. Rev. Mat. Iberoam. 26 (2010), 551-589.

· · · · · ·

• Z.-Q. Chen, P. Kim and R. Song, Dirichlet heat kernel

estimates J. Euro. Math. Soc. 12 (2010), 1307-1329.

· · · · · ·

Zhen-Qing Chen University of Washington Anomalous Diffusions and Fractional Order Differential Equations



Some history and further developments

• Kolokoltsov (2000): Two-sided HK estimate for stable-like

processes on Rn with smooth symbols.

• Bass-Levin (2002): Two-sided HK estimate for random walk

on Zn with stable-like one-step transition distribution.

• Z.-Q. Chen and T. Kumagai, Heat kernel estimates for jump

processes of mixed types on metric measure spaces. Probab.

Theory Relat. Fields 140 (2008), 277-317.

• Z.-Q. Chen and T. Kumagai, A priori Hölder estimate,

parabolic Harnack principle and heat kernel estimates for

diffusions with jumps. Rev. Mat. Iberoam. 26 (2010), 551-589.

· · · · · ·

• Z.-Q. Chen, P. Kim and R. Song, Dirichlet heat kernel

estimates J. Euro. Math. Soc. 12 (2010), 1307-1329.

· · · · · ·

Zhen-Qing Chen University of Washington Anomalous Diffusions and Fractional Order Differential Equations



Non-symmetric stable-like operator

Lκf (x) = lim
ε→0

∫

{z∈Rd :|z|>ε}
(f (x + z)− f (x))

κ(x , z)

|z|d+α
dz.

is the counterpart of non-divergence form second order

differential operator.

Here d ≥ 1, 0 < α < 2, and κ(x , z) a measurable function on

Rd × Rd satisfying 0 < κ0 ≤ κ(x , z) ≤ κ1, κ(x , z) = κ(x ,−z). In

addition, κ(x , z) is uniformly Hölder continuous in x ; that is,

|κ(x , z)− κ(y , z)| ≤ κ2|x − y |β.

Such operators have also been studied extensively in analysis,

e.g., by Caffarelli, Silvestre, etc.

While heat kernels of differential operators have been studied

extensively and there are quite many progress recently for

symmetric non-local operators, there are very limited results on

heat kernels for non-symmetric non-local operators.
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HK for non-local operators

Theorem (C.-Zhang, PTRF 2016)

There exists a unique nonnegative continuous function

pκ(t , x , y) on (0, 1]× Rd × Rd solving

∂tp
κ(t , x , y) = Lκpκ(t , ·, y)(x),

and satisfying the following four properties:

(i) There is a constant c1 > 0 so that for all t ∈ (0, 1] and

x , y ∈ Rd ,

pκ(t , x , y) ≤
c1 t

(t1/α + |x − y |)d+α
.

(ii) For every γ ∈ (0, α ∧ 1), there is a constant c2 > 0 so that

for every t ∈ (0, 1] and x , x ′, y ∈ Rd ,
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HKE

Theorem (C.-Zhang, PTRF 2016)

|pκ(t , x , y)− pκ(t , x ′, y)|

≤ c2|x − x ′|γ t1− γ
α

(
t1/α + |x − y | ∧ |x ′ − y |

)−d−α
.

(iii) For all x , y ∈ Rd , the mapping t 7→ Lκpκ(t , ·, y)(x) is

continuous on (0, 1], and

|Lκpκ(t , ·, y)(x)| ≤ c3(t
1/α + |x − y |)−d−α.

(iv) For any bounded and uniformly continuous function

f : Rd → R,

lim
t↓0

sup
x∈Rd

∣∣∣∣
∫

Rd

pκ(t , x , y)f (y)dy − f (x)

∣∣∣∣ = 0.
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HKE

Theorem (C.-Zhang, PTRF 2016)

Moreover, we have the following conclusions.

• The constants c1, c2 and c3 in (i)-(iii) above can be chosen so

that they depend only on (d , α, β, κ0, κ1, κ2, γ).

• pκ(t , x , y) ≥ 0 and
∫
Rd pκ(t , x , y)dy = 1.

• pκ(t , x , y) satisfies the Chapman-Kolmogorov’s equation.

• For all t ∈ (0, 1] and x , y ∈ Rd ,

pκ(t , x , y) ≥
c4t

(t1/α + |x − y |)d+α
.
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Theorem (C.-Zhang, PTRF 2016)

• If α ∈ [1, 2), for all x , y ∈ Rd and t ∈ (0, 1],

|∇x log pκ(t , x , y)| ≤ c5t−1/α.

• For any f ∈ C2
b(R

d ),

lim
t↓0

1

t

∫

Rd

pκ(t , x , y)(f (y)− f (x))dy = Lκf (x),

and the convergence is uniform.
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Some history

• Kochubei (1998) studied the existence of heat kernel of Lκ

under strong smoothness assumption on κ(x , y) in y and

requires α ∈ [1, 2).

• C.-Jieming Wang (2014) studied the sharp HKE for ∆α/2

perturbed by lower order non-local operators, corresponds to

the case where κ(x , z) = a + b(x , z)|z|α−δ for some constant

a > 0 and a bounded measurable b(x , z) with

b(x , z) = b(x ,−z). It includes the following as a special case.

dXt = dYt + b(Xt−)dZt .

• C.-Ting Yang (2015): Dirichlet heat kernel estimates for above

operator with non-local perturbation in smooth domains.
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SDE driven by stable process

Suppose that A(x) = (aij(x))1≤i,j≤d is a bounded continuous

d × d-matrix-valued function on Rd that is non-degenerate at

every x ∈ Rd , and Y is a (rotationally) symmetric α-stable

process on Rd for some 0 < α < 2.

Theorem (Bass-C. PTRF 2006)

For every x ∈ Rd , SDE

dXt = A(Xt−)dYt , X0 = x ,

has a unique weak solution.

These weak solutions form a strong Markov process X . Does

X have a transition density function? What is its estimates?
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Infinitesimal generator

of X is

Lf (x) = p.v.

∫

Rd

(f (x + A(x)y)− f (x))
A(d ,−α)

|y |d+α
dy

= p.v.

∫

Rd

(f (x + z)− f (x))
κ(x , z)

|z|d+α
dz,

where

κ(x , z) =
A(d ,−α)

|detA(x)|

(
|z|

|A(x)−1z|

)d+α

.
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Application to SDE

Theorem (C.-Zhang, PTRF 2016)

Suppose that A(x) = (aij(x)) is uniformly bounded and elliptic

and there are constants β ∈ (0, 1) and λ2 > 0 so that

|aij(x)− aij(y)| ≤ λ2|x − y |β for 1 ≤ i , j ≤ d .

Then the strong Markov process X formed by the unique weak

solution to SDE has a jointly continuous transition density

function p(t , x , y) with respect to the Lebesgue measure on Rd ,

and there is a constant C > 0 that depends only on

(d , α, β, λ0, λ1) so that

C−1 t

(t1/α + |x − y |)d+α
≤ p(t , x , y) ≤ C

t

(t1/α + |x − y |)d+α

for every t ∈ (0, 1] and x , y ∈ Rd . Moreover, p(t , x , y) enjoys all

the properties stated in the conclusion of the previous Theorem.
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HK Stability

Any mathematical model is an approximation and simplification

of the real model. How stable are the results in response to the

approximation error?

For two uniformly elliptic divergence form operators L = ∇(A∇)

and L̃ = ∇(Ã∇), C.-Hu-Qian-Zheng (JFA, 1998) showed that

|p(t , x , y)− p̃(t , x , y)| ≤ t−d/2 exp(−c|x −y |2/t)F (t , ‖A− Ã‖L2
loc
),

where F (t , r) is an explicit bounded continuous function such

that limr→0 F (t , r) = 0 for each t > 0.

Recently, Bass and H. Ren (JFA, 2013) extended the above

result to symmetric stable-like operators.
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HK stability for non-symmetric stable-like operators

Theorem (C.-Zhang, 2016+)

Suppose β ∈ (0, α/4], and κ(x , z) and κ̃(x , z) are two functions

that are β-Hölder continuous and bounded between two

positive constants κ1 and κ2. Then for every γ ∈ (0, β) and

η ∈ (0, 1), there exists a constant

C = C((d , α, β, κ0, κ1, κ2, γ, η) > 0 so that for all t ∈ (0, 1] and

x , y ∈ Rd ,

∣∣∣∣
pκ(t , x , y)

pκ̃(t , x , y)
− 1

∣∣∣∣ ≤ C‖κ− κ̃‖1−η
∞

(
1 + t−γ/α(|x − y | ∧ 1)γ

)
.
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Approach

We use an analytic method based on Levi’s freezing

coefficients argument to construct heat kernel of Lκ and obtain

its upper heat kernel estimates. From it we construct its

associated jump process X and identify its Lévy system of X .

We then using the Lévy system to derive the lower bound

estimate of the heat kernel through a probabilistic argument.

For fixed y ∈ Rd , let Lκ(y) be the freezing operator

Lκ(y)f (x) = p.v.

∫

Rd

(f (x + z)− f (x))
κ(y , z)

|z|d+α
dz.

It determines a Lévy process. Let py (t , x) := pκ(y)(t , x) be its

heat kernel, its existence and heat kernel estimates is known

from C.-Kumagai (2003).
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Levi’s method

We search for heat kernel pκ(t , x , y) of Lκ with the form:

pκ(t , x , y) = py (t , x − y) +

∫ t

0

∫

Rd

pz(t − s, x − z)q(s, z, y)dzds.

We want ∂tp
κ(t , x , y) = Lκ(x)pκ(t , x , y). We deduce from it

q(t , x , y) = q0(t , x , y) +

∫ t

0

∫

Rd

q0(t − s, x , z)q(s, z, y)dzds,

where

q0(t , x , y) = (Lκ(x) − Lκ(y))py (t , x − y).
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Recursive formula

Thus for the construction and upper bound HK estimates, the

main task is to solve q(t , x , y) recursively, and to make the

above argument rigorous. This relies on the fractional

derivative estimates on py (t , x − y) and strong continuity

results on stability results on pκ(t , x , y) and their derivatives for

symmetric κ(z).

Hard analysis.

For the lower bound heat kernel estimates, we use probabilistic

analysis via Lévy system that describes how the process jumps

and certain hitting probability estimates.
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HK Stability

The heat kernel stability result can be derived from the

construction of pκ(t , x , y) by carefully analyzing its dependence

first on κ(x0, z) when x0 is fixed and then on variable κ(x , z).

It in particular implies stability of heat semigroup in terms of

operator norms such as ‖Pκ
t − P κ̃

t ‖2→2
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Thank you!
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