Numerical Analysis for Time-Fractional Evolution Equations

Zhi Zhou
Department of Applied Physics and Applied Mathematics Columbia University

October 18, 2016

Outline

(1) Introduction and Preliminaries

- Problem formulation
- Motivation
(2) Spatial Semidiscrete Schemes
(3) Fully Discrete Schemes
- L1 scheme
- Convolution Quadrature
(4) Extensions and Future Works

Problem Formulation

Initial-boundary value problem: $0<\alpha<1$, for $u(x, t)$ for $T \geq t>0$:

$$
\begin{array}{rlrl}
\partial_{t}^{\alpha} u-\Delta u & =f, & & \text { in } \Omega \\
u & =0, & & \text { on } \partial \Omega \\
& T \geq t>0 \\
u(0) & =v, & & \text { in } \Omega
\end{array}
$$

Ω : a bounded and convex polygonal domain in $\mathbb{R}^{d}(d=1,2,3)$.
∂_{t}^{α} : the left-sided Caputo fractional derivative of order α

$$
\partial_{t}^{\alpha} u(t)=\frac{1}{\Gamma(1-\alpha)} \int_{0}^{t}(t-\tau)^{-\alpha} \frac{d}{d \tau} u(\tau) d \tau
$$

The model equation (1) is known to capture well the dynamics of anomalous diffusion known as sub-diffusion.

Background

Standard (local) diffusion ($\alpha=1$): mean squared displacement of a particle is proportional to time, i.e., $\sigma_{r}^{2} \propto t$.

Anomalous diffusion $\alpha \in(0,1)$ or $(1,2)$: $\quad \sigma_{r}^{2} \propto t^{\alpha}$

- $\alpha<1$, sub-diffusion;
- $\alpha>1$, super-diffusion.

Anomalous diffusion was found in several systems including

- ultra-cold atoms [16],
- single particle movements in cytoplasm [15],
- material with thermal memory [19],
- heartbeat intervals and DNA sequences [1],
- ...

Motivation

Goal:

- efficient numerical schemes (robust w.r.t weak data)
- theoretically verify the approximation

Challenge: limited smoothing properties in both time and space

Example:

$\partial_{t}^{\alpha} u(t)+\lambda u(t)=0, \alpha \in(0,1), \lambda>0$ and $u(0)=1$.
Solution:

$$
u(t)=E_{\alpha, 1}\left(-\lambda t^{\alpha}\right)=\sum_{k=0}^{\infty} \frac{(-1)^{k} \lambda^{k} t^{\alpha k}}{\Gamma(\alpha k+1)}=1-\lambda t^{\alpha} / \Gamma(\alpha+1)+O\left(t^{2 \alpha}\right) .
$$

$$
\alpha=1 \text { : solution } u(t)=E_{1,1}(-\lambda t)=e^{-\lambda t} .
$$

Motivation

Moreover, the Mittag-Leffler function decays linearly :

$$
\left|E_{\alpha, 1}\left(-\lambda t^{\alpha}\right)\right| \leq \frac{c}{1+\lambda t^{\alpha}}
$$

Therefore, for any $\lambda>0$ and fixed $t>0$

$$
\left|\lambda E_{\alpha, 1}\left(-\lambda t^{\alpha}\right)\right| \leq \frac{c \lambda}{1+\lambda t^{\alpha}} \leq c t^{-\alpha}
$$

Standard diffusion ($\alpha=1$)

$$
\left|\lambda^{m} e^{-\lambda t}\right| \leq t^{-m}\left|(\lambda t)^{m} e^{-\lambda t}\right| \leq c t^{-m} .
$$

Solution Representation

Go back to the FPDE:

$\left\{\lambda_{j}, \varphi_{j}\right\}$: eigenpairs of $-\Delta$ with homog. Dirichlet boundary condition.

Solution representation:

$$
u(t)=E(t) v+\int_{0}^{t} \widetilde{E}(t-s) f(s) d s
$$

where operators $E(t)$ and $\widetilde{E}(t)$ are defined by

$$
\begin{gathered}
E(t) v=\sum_{j=1}^{\infty} E_{\alpha, 1}\left(-\lambda_{j} t^{\alpha}\right)\left(v, \varphi_{j}\right) \varphi_{j}, \\
\tilde{E}(t) v=\sum_{j=1}^{\infty} t^{\alpha-1} E_{\alpha, \alpha}\left(-\lambda_{j} t^{\alpha}\right)\left(v, \varphi_{j}\right) \varphi_{j} .
\end{gathered}
$$

Regularity

Fractional diffusion: $(f \equiv 0, \quad v \neq 0)$:

$$
\left\|\left(\partial_{t}^{\alpha}\right)^{\ell} u(t)\right\|_{\dot{H}^{p}(\Omega)} \leq C t^{-\alpha\left(\ell+\frac{p-q}{2}\right)}\|v\|_{\dot{H}^{q}(\Omega)},
$$

where for $\ell=0, q \leq p$ and $0 \leq p-q \leq 2$ and for $\ell=1, p \leq q \leq p+2$.
Spatial regularity restriction (order 2)!!!

Standard diffusion: $(f \equiv 0, \quad v \neq 0)$:

$$
\left\|\left(\partial_{t}\right)^{\ell} u(t)\right\|_{\dot{H}^{p}(\Omega)} \leq C t^{-\left(\ell+\frac{p-q}{2}\right)}\|v\|_{\dot{H}^{q}(\Omega)}, \quad 0 \leq q \leq p, \quad \ell \geq 0
$$

Solution behavior

1-D example: $\partial_{t}^{\alpha} u-u_{x x}=0, v(x)=\delta_{1 / 2}(x) \in \dot{H}^{-1 / 2-\epsilon}(\Omega)$
Plot of $u(t)$ at $t=10^{-1}, 10^{-2}$ and 10^{-3};

(a) $t=10^{-3}$

(b) $t=10^{-2}$

(c) $t=10^{-1}$
$\alpha \in(0,1)$: continuous and piecewise smooth for all $t>0$
$\alpha=1$: infinitely differentiable for all $t>0$

Outline

Introduction and Preliminaries

- Problem formulation
- Motivation
(2) Spatial Semidiscrete Schemes
(3) Fully Discrete Schemes
- L1 scheme
- Convolution Quadrature
(4) Extensions and Future Works

Galerkin FE Approx.

$\left\{\mathcal{T}_{h}\right\}_{0<h<1}$: family of regular partitions of Ω into d-simplexes.

$$
X_{h}=\left\{\chi \in H_{0}^{1}(\Omega): \chi \text { is a linear function over } \tau, \quad \forall \tau \in \mathcal{T}_{h}\right\}
$$

The semidiscrete Galerkin FEM: find $u_{h}(t) \in X_{h}$ such that

$$
\begin{align*}
\left(\partial_{t}^{\alpha} u_{h}, \chi\right)+\left(\nabla u_{h}, \nabla \chi\right) & =(f, \chi), \quad \forall \chi \in X_{h}, T \geq t>0, \tag{2}\\
u_{h}(0) & =v_{h},
\end{align*}
$$

where $v_{h} \in X_{h}$ is a given approximation of the initial data v. The choice of v_{h} will depend on the smoothness of the initial data v.
By defining $\Delta_{h}: X_{h} \rightarrow X_{h}$ s.t. $\left(\Delta_{h} \psi, \chi\right)=(\nabla \psi, \nabla \chi) \quad \forall \psi, \chi \in X_{h}$ Then we write the spatially discrete problem (2) as

$$
\begin{equation*}
\partial_{t}^{\alpha} u_{h}(t)-\Delta_{h} u_{h}(t)=f_{h}(t) \quad \text { for } \quad t \geq 0 \quad \text { with } \quad u_{h}(0)=v_{h} \tag{3}
\end{equation*}
$$

State of the Art: Available Numerical Methods and Tools

$$
\begin{equation*}
\partial_{t} u-\Delta u=0, \quad \text { in } \Omega \quad u=0 \text { on } \partial \Omega \quad u(x, 0)=v(x) \text { in } \Omega . \tag{4}
\end{equation*}
$$

Optimal estimates (see, monograph of Vidar Thomée [18]):

For smooth initial data, for $t \geq 0$:

$$
\begin{equation*}
\left\|u_{h}(t)-u(t)\right\|_{L^{2}(\Omega)}+h\left\|\nabla\left(u_{h}(t)-u(t)\right)\right\|_{L^{2}(\Omega)} \leq C h^{2}\|v\|_{H^{2}(\Omega)}, \tag{5}
\end{equation*}
$$

nonsmooth data, i.e. $v \in L^{2}(\Omega)$, for $t>0$:

$$
\begin{equation*}
\left\|u_{h}(t)-u(t)\right\|_{L^{2}(\Omega)}+h\left\|\nabla\left(u_{h}(t)-u(t)\right)\right\|_{L^{2}(\Omega)} \leq C h^{2} t^{-1}\|v\|_{L^{2}(\Omega)} . \tag{6}
\end{equation*}
$$

Our Main Results

In case of smooth initial data, $v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega), t \geq 0$

$$
\left\|u_{h}(t)-u(t)\right\|_{L^{2}(\Omega)}+h\left\|\nabla\left(u_{h}(t)-u(t)\right)\right\|_{L^{2}(\Omega)} \leq C h^{2}\|v\|_{H^{2}(\Omega)},
$$

In case of nonsmooth data, $v \in L^{2}(\Omega)$: for quasi-uniform meshes and $\ell_{h}=|\ln h|, t>0$

$$
\left\|u_{h}(t)-u(t)\right\|_{L^{2}(\Omega)}+h\left\|\nabla\left(u_{h}(t)-u(t)\right)\right\|_{L^{2}(\Omega)} \leq C h^{2} \ell_{h} t^{-\alpha}\|v\|_{L^{2}(\Omega)} .
$$

Error estimates for semidiscrete schemes

These estimates follows from a novel argument which utilizes

- Duhamel's principle of the model.
- solution regularity pickup from $\dot{H}^{s}(\Omega)$ to $\dot{H}^{s+2}(\Omega)$.
- properties L^{2}-projection, inverse inequality...

The argument is powerful and can be extended to

- lumped mass FEM. However, the optimal estimate in case of $v \in L^{2}(\Omega)$ requires some restrictions on meshes
- weaker data $v \in \dot{H}^{q}(\Omega)$ with $q \in(-1,0)$
- inhomogeneous source data $f \in L^{\infty}\left(0, T ; \dot{H}^{q}(\Omega)\right), q \in(-1,0]$
- multi-term model, distributed-order model, diffusion-wave...

Error estimates for semidiscrete schemes

As an example, we consider the multi-term fractional diffusion model:

$$
\partial_{t}^{\alpha}+\sum_{i=1}^{m} b_{i} \partial_{t}^{\alpha_{i}} u-\Delta u=f, \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \quad u(x, 0)=v(x) \text { in } \Omega . \text { (7) }
$$

where $0<\alpha_{m} \leq \ldots \leq \alpha_{1}<\alpha<1$ and $b_{i}>0, i=1,2, \ldots, m$.
The solution operator involves multinomial Mittag-Leffler function.
$v \in L^{2}(\Omega), f \equiv 0$: for quasi-uniform meshes and $\ell_{h}=|\ln h|, t>0$

$$
\left\|u_{h}(t)-u(t)\right\|_{L^{2}(\Omega)}+h\left\|\nabla\left(u_{h}(t)-u(t)\right)\right\|_{L^{2}(\Omega)} \leq C h^{2} \ell_{h} t^{-\alpha}\|v\|_{L^{2}(\Omega)} .
$$

Numerical experiments

(a) Smooth initial data: $v(x)=x(1-x) \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$
(b) Nonsmooth initial data: $v(x)=\chi_{\left[0, \frac{1}{2}\right]}$.

Table: Standard Galerkin FEM for nonsmooth initial data, example (b) with $\alpha=0.5$.

t	h	$1 / 16$	$1 / 32$	$1 / 64$	$1 / 128$	rate
0.005	L^{2}	$2.13 \mathrm{e}-3$	$5.33 \mathrm{e}-4$	$1.33 \mathrm{e}-4$	$3.33 \mathrm{e}-5$	$\approx 2.01(2.00)$
	H^{1}	$1.24 \mathrm{e}-2$	$6.18 \mathrm{e}-2$	$3.09 \mathrm{e}-2$	$1.54 \mathrm{e}-2$	$\approx 1.01(1.00)$
0.01	L^{2}	$1.63 \mathrm{e}-3$	$4.06 \mathrm{e}-4$	$1.02 \mathrm{e}-4$	$2.54 \mathrm{e}-5$	$\approx 2.00(2.00)$
	H^{1}	$9.20 \mathrm{e}-2$	$4.60 \mathrm{e}-2$	$2.30 \mathrm{e}-2$	$1.15 \mathrm{e}-2$	$\approx 1.00(1.00)$
1	L^{2}	$2.00 \mathrm{e}-4$	$5.00 \mathrm{e}-5$	$1.25 \mathrm{e}-5$	$3.13 \mathrm{e}-6$	$\approx 2.00(2.00)$
	H^{1}	$1.03 \mathrm{e}-2$	$5.13 \mathrm{e}-3$	$2.56 \mathrm{e}-3$	$1.28 \mathrm{e}-3$	$\approx 1.00(1.00)$

The scheme is robust for small t and nonsmooth data.

Numerical experiments

$$
\text { interpolation } \Rightarrow\left\|\left(u-u_{h}\right)(t)\right\|_{L^{2}(\Omega)} \leq c h^{2} t^{-\alpha\left(1-\frac{q}{2}\right)}\|v\|_{H^{q}(\Omega)} .
$$

Table: L^{2}-error with $\alpha=0.5$ and $h=2^{-7}$ for $t \rightarrow 0$ for (a) and (b), initial data.

t	$1 \mathrm{e}-3$	$1 \mathrm{e}-4$	$1 \mathrm{e}-5$	$1 \mathrm{e}-6$	$1 \mathrm{e}-7$	order
(a)	$3.07 \mathrm{e}-5$	$4.53 \mathrm{e}-5$	$5.28 \mathrm{e}-5$	$5.65 \mathrm{e}-5$	$5.85 \mathrm{e}-5$	≈-0.02
(b)	$6.00 \mathrm{e}-5$	$1.32 \mathrm{e}-4$	$3.13 \mathrm{e}-4$	$7.39 \mathrm{e}-4$	$1.74 \mathrm{e}-3$	≈-0.37

Outline

Introduction and Preliminaries

- Problem formulation
- Motivation
(2) Spatial Semidiscrete Schemes
(3) Fully Discrete Schemes
- L1 scheme
- Convolution Quadrature
(4) Extensions and Future Works

L1 scheme: derivation of the scheme

The L1 scheme was first mentioned by Oldham and Spanier [14].
Consider uniform grid on $[0, T]: 0=t_{0}<t_{1}<\ldots<t_{N}=T$ and $t_{n}=n \tau$,

$$
\begin{aligned}
\partial_{t}^{\alpha} u\left(x, t_{n}\right) & =\frac{1}{\Gamma(1-\alpha)} \sum_{j=0}^{n-1} \int_{t_{j}}^{t_{j+1}} \frac{\partial u(x, s)}{\partial s}\left(t_{n}-s\right)^{-\alpha} d s \\
& \approx \frac{1}{\Gamma(1-\alpha)} \sum_{j=0}^{n-1} \frac{u\left(x, t_{j+1}\right)-u\left(x, t_{j}\right)}{\tau} \int_{t_{j}}^{t_{j+1}}\left(t_{n}-s\right)^{-\alpha} d s \\
& =\tau^{-\alpha}\left[b_{0} u\left(x, t_{n}\right)-b_{n} u\left(x, t_{0}\right)+\sum_{j=1}^{n}\left(b_{j}-b_{j-1}\right) u\left(x, t_{n-j}\right)\right]=: L_{1}^{n}(u) .
\end{aligned}
$$

where the weights b_{j} are given by

$$
b_{j}=\left((j+1)^{1-\alpha}-j^{1-\alpha}\right) / \Gamma(2-\alpha), j=0,1, \ldots, n-1 .
$$

L1 scheme

local truncation error: $O\left(\tau^{2-\alpha}\right)$, provided that $u \in C^{2}\left([0, T], \dot{H}^{2}(\Omega)\right)$.
However, it fails to achieve this desired uniform convergence rate.
$\partial_{t}^{\alpha} u(t)+u(t)=0, \alpha \in(0,1)$, and $u(0)=1 . u(t)=E_{\alpha, 1}\left(-t^{\alpha}\right)$
The L1 scheme:

$$
L_{1}^{n}(U)+U^{n}=0, \quad \text { with } U^{0}=0
$$

at the first step:

$$
U^{1}=\left(1+\Gamma(2-\alpha) \tau^{\alpha}\right)^{-1}=1+\sum_{n=1}^{\infty}(-1)^{n}\left(\Gamma(2-\alpha) \tau^{\alpha}\right)^{n}
$$

The difference between U^{1} and $u(\tau)$:

$$
u(\tau)-U^{1}=\left(\Gamma(2-\alpha)-\Gamma(\alpha+1)^{-1}\right) \tau^{\alpha}+c_{\tau} \tau^{2 \alpha}
$$

with $c_{\tau}=\sum_{n=2}^{\infty}(-1)^{n}\left(\Gamma(n \alpha+1)^{-1}-\Gamma(2-\alpha)^{n}\right) \tau^{(n-2) \alpha}$.

L1 scheme

The initial singularity even pollutes the approximation error for large t.
Numerical experiment: $\partial_{t}^{\alpha} u+u=0, u(0)=1$.

Table: $\left|e^{N}=U^{N}-u\left(t_{N}\right)\right|$, pointwise error at $T=t_{N}=1$

$\alpha \backslash N$	10	20	40	80	160	order
0.25	$3.41 \mathrm{e}-3$	$1.65 \mathrm{e}-3$	$8.09 \mathrm{e}-4$	$3.97 \mathrm{e}-4$	$1.94 \mathrm{e}-4$	≈ 1.04
0.5	$7.87 \mathrm{e}-3$	$3.75 \mathrm{e}-3$	$1.81 \mathrm{e}-3$	$8.81 \mathrm{e}-4$	$4.27 \mathrm{e}-4$	≈ 1.05
0.75	$1.43 \mathrm{e}-2$	$6.92 \mathrm{e}-3$	$3.36 \mathrm{e}-3$	$1.63 \mathrm{e}-3$	$7.85 \mathrm{e}-4$	≈ 1.05

Pointwise error is of order $O(\tau)$.

L1 scheme

Mathematical Understanding: consider $w:=u-u(0)=u-1$

$$
\partial_{t}^{\alpha} w+w=-1, \quad w(0)=0
$$

Applying Laplace transform:

$$
z^{\alpha} \widehat{w}(z)+\widehat{w}(z)=-z^{-1} \rightarrow \widehat{w}(z)=-z^{-1}\left(z^{\alpha}+1\right)^{-1} .
$$

Then the inverse Laplace transform gives

$$
w(t)=-\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma_{\theta, \delta}} e^{z t} z^{-1}\left(z^{\alpha}+1\right)^{-1} d z
$$

Here the contour $\Gamma_{\theta, \delta}$ is given by

$$
\Gamma_{\theta, \delta}=\{z \in \mathbb{C}:|z|=\delta,|\arg z| \leq \theta\} \cup\left\{z \in \mathbb{C}: z=\rho e^{ \pm i \theta}, \rho \geq \delta\right\} .
$$

L1 scheme

Representation for $W^{n}=U^{n}-U^{0}$:

$$
L_{1}^{n}(W)+W^{n}=-1, \quad W^{0}=0 .
$$

Next multiplying both sides of the equation by ξ^{n}

$$
L_{1}^{n}(W) \xi^{n}+W^{n} \xi^{n}=-\xi^{n} .
$$

summing from 1 to ∞

$$
\sum_{n=1}^{\infty} L_{1}^{n}(W) \xi^{n}+\widetilde{W}(\xi)=-\frac{\xi}{1-\xi} .
$$

where

$$
\widetilde{W}(\xi)=\sum_{j=0}^{\infty} W^{n} \xi^{n}
$$

is called the generating function of W^{n}.

L1 scheme

Moreover, we have

$$
\sum_{n=1}^{\infty} L_{1}^{n}(W) \xi^{n}=\frac{(1-\xi)^{2} \operatorname{Li}_{\alpha-1}(\xi)}{\xi \Gamma(2-\alpha) \tau^{\alpha}} \widetilde{W}(\xi) .
$$

with the polylogarithm function: $\operatorname{Li}_{p}(z)=\sum_{j=1}^{\infty} z^{j} / j^{p} .(z=1 \Rightarrow$ Riemann zeta $)$

$$
\widetilde{W}(\xi)=-\frac{\xi}{1-\xi}\left(\frac{(1-\xi)^{2}}{\xi \tau^{\alpha} \Gamma(2-\alpha)} \mathrm{Li}_{\alpha-1}(\xi)+1\right)^{-1} .
$$

Cauchy theorem implies that for ϱ small enough, there holds

$$
W^{n}=-\frac{1}{2 \pi \mathrm{i}} \int_{|\xi|=\varrho} \frac{1}{(1-\xi) \xi^{n}}\left(\frac{(1-\xi)^{2}}{\xi \tau^{\alpha} \Gamma(2-\alpha)} \mathrm{Li}_{\alpha-1}(\xi)+1\right)^{-1} d \xi
$$

L1 scheme

Upon changing variable $\xi=e^{-z \tau}$

$$
W^{n}=-\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma 0} e^{z t_{n}} \frac{\tau e^{-z \tau}}{1-e^{-z \tau}}\left(\frac{\left(1-e^{-z \tau}\right)^{2}}{e^{-z \tau} \tau^{\alpha} \Gamma(2-\alpha)} \mathrm{Li}_{\alpha-1}\left(e^{-z \tau}\right)+1\right)^{-1} d z,
$$

with $\Gamma^{0}:=\{z=-\ln (\varrho) / \tau+\mathrm{i} y:|y| \leq \pi / \tau\}$.
By deforming the contour Γ^{0} to $\Gamma_{\tau}:=\left\{z \in \Gamma_{\theta, \delta}:|\Im(z)| \leq \pi / \tau\right\}$ and using the periodicity of the exponential function

$$
W^{n}=-\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma_{\tau}} e^{z t_{n}} \frac{\tau e^{-z \tau}}{1-e^{-z \tau}}\left(\frac{\left(1-e^{-z \tau}\right)^{2}}{e^{-z \tau} \tau^{\alpha} \Gamma(2-\alpha)} \mathrm{Li}_{\alpha-1}\left(e^{-z \tau}\right)+1\right)^{-1} d z
$$

L1 scheme

$$
\begin{gathered}
w\left(t_{n}\right)=-\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma_{\theta, \delta}} e^{z t_{n}} z^{-1}\left(z^{\alpha}+1\right)^{-1} d z \\
W^{n}=-\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma_{\tau}} e^{z t_{n}} \frac{\tau e^{-z \tau}}{1-e^{-z \tau}}\left(\frac{\left(1-e^{-z \tau}\right)^{2}}{e^{-z \tau} \tau^{\alpha} \Gamma(2-\alpha)} \operatorname{Li}_{\alpha-1}\left(e^{-z \tau}\right)+1\right)^{-1} d z
\end{gathered}
$$

L1 scheme

- on $\Gamma_{\theta, \delta} \backslash \Gamma_{\tau},\left|e^{z t} K(z)\right| \leq c|z|^{-1} e^{-c|z| t}$, it decays very fast as $|z| \rightarrow \infty$;
- let $\chi(z)=\tau^{-1}\left(e^{z \tau}-1\right)$ and $\psi(z)=\frac{e^{2}-1}{\Gamma(2-\alpha)} \operatorname{Li}_{\alpha-1}\left(e^{-z}\right)$. Then on Γ_{τ},

$$
\left|z^{-1}-\chi(z)^{-1}\right| \sim c \tau \quad \text { and } \quad\left|z^{\alpha}-\frac{1-e^{-z \tau}}{\tau^{\alpha}} \psi(z \tau)\right| \leq c \tau^{2-\alpha}|z|^{2} .
$$

As a result, the best result we can get is $\left|U^{N}-u\left(t_{N}\right)\right| \leq c \tau t_{N}^{\alpha-1}$.
This argument can be exploited directly to the FPDE with $v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.

$$
\left\|U^{N}-u\left(t_{N}\right)\right\|_{L^{2}(\Omega)} \leq c \tau t_{N}^{\alpha-1}\|\Delta v\|_{L^{2}} .
$$

Moreover, for $N=1$, we have

$$
\left\|U^{1}-u(\tau)\right\|_{L^{2}(\Omega)} \leq c \tau^{\alpha}\|\Delta v\|_{L^{2}} .
$$

Convolution Quadrature

The convolution quadrature is developed first by C. Lubich [13, 12].
The idea is to approximate the Riemann-Liouville derivative ${ }^{R} \partial_{t}^{\alpha}$

$$
{ }^{R} \partial_{t}^{\alpha} \varphi(t)=\frac{d}{d t} \int_{0}^{t} \frac{s^{-\alpha}}{\Gamma(1-\alpha)} \varphi(t-s) d s
$$

using

$$
\begin{equation*}
{ }^{R} \partial_{t}^{\alpha} \varphi\left(t_{n}\right) \approx \sum_{j=0}^{n} \omega_{j} \varphi\left(t_{n}-j \tau\right):=\bar{\partial}_{\tau}^{\alpha} \varphi\left(t_{n}\right), \quad n \geq 0 \tag{8}
\end{equation*}
$$

where $\left\{\omega_{j}\right\}_{j=0}^{\infty}$ are determined by $\sum_{j=0}^{\infty} \omega_{j} \xi^{j}=(\delta(\xi) / \tau)^{\alpha}$.

- $k=1, \delta(\xi)=1-\xi$
- $k=2, \delta(\xi)=3 / 2-2 \xi+\xi^{2} / 2$
- $k=3, \delta(\xi)=11 / 6-3 \xi+3 / 2 \xi^{2}-1 / 3 \xi^{3}$
- $k=4, \delta(\xi)=25 / 12-4 \xi+3 \xi^{2}-4 / 3 \xi^{3}+1 / 4 \xi^{4}$
- $k=5, \delta(\xi)=137 / 60-5 \xi+5 \xi^{2}-10 / 3 \xi^{3}+5 / 4 \xi^{4}-1 / 5 \xi^{5}$
- $k=6, \delta(\xi)=49 / 20-6 \xi+15 / 2 \xi^{2}-20 / 3 \xi^{3}+15 / 4 \xi^{4}-6 / 5 \xi^{5}+1 / 6 \xi^{6}$

Convolution Quadrature

Go back to the FPDE.
By the relation between the Caputo and R-L fractional derivatives

$$
\partial_{t}^{\alpha} \varphi(t):={ }^{R} \partial_{t}^{\alpha}\left[\varphi(t)-\sum_{k=0}^{n-1} \frac{\varphi^{(k)}(0)}{k!} t^{k}\right] \text { for } n-1<\alpha<n .
$$

In particular, for subdiffusion $(0<\alpha<1)$ we have

$$
\partial_{t}^{\alpha} \varphi=\partial_{t}^{\alpha}(\varphi(t)-\varphi(0))={ }^{R} \partial_{t}^{\alpha}(\varphi(t)-\varphi(0)) .
$$

The spatial semidiscrete scheme (3) can be rewritten as

$$
{ }^{R} \partial_{t}^{\alpha}\left(u_{h}-v_{h}\right)(t)-\Delta_{n} u_{h}=f_{h} .
$$

Then the fully discrete scheme reads: to find U_{h}^{n} such that

$$
\begin{equation*}
\bar{\partial}_{\tau}^{\alpha}\left(U_{h}^{n}-v_{h}\right)-\Delta_{h} U_{h}^{n}=f_{h}^{n}, \quad \text { with } U_{h}^{0}=v_{h} . \tag{9}
\end{equation*}
$$

Convolution Quadrature

Let's start with the second order BDF, i.e., $\delta(\xi)=3 / 2-2 \xi+\xi^{2} / 2$.
Let $W_{h}^{n}:=U_{h}^{n}-U_{h}^{0}=U_{h}^{n}-v_{h}$.
discrete Laplace transform + Cauchy's integral formula:

$$
W_{h}^{n}=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma_{\tau}} e^{z t_{n}} \frac{3 e^{-z \tau}-e^{-2 z \tau}}{2}\left(\delta\left(e^{-z \tau}\right) / \tau\right)^{-1}\left(\delta\left(e^{-z \tau}\right)^{\alpha} / \tau^{\alpha}-\Delta_{h}\right)^{-1} \Delta_{h} v_{h} d z
$$

Recall that:

$$
w_{h}\left(t_{n}\right)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma_{\theta, \delta}} e^{2 t_{n}} z^{-1}\left(z^{\alpha}-\Delta_{h}\right)^{-1} \Delta_{h} v_{h} d z
$$

Observation: $\delta\left(e^{-z \tau}\right) / \tau$ is a good approximation to z.
Trouble maker: the leading term:

$$
\mu(\xi)=\frac{3 \xi-\xi^{2}}{2} . \quad\left|\mu\left(e^{-z \tau}\right)-1\right| \leq c \tau|z| .
$$

Convolution Quadrature

As a result, the error at t_{N} satisfies:

$$
\left\|U_{h}^{N}-u_{h}\left(t_{N}\right)\right\|_{L^{2}(\Omega)} \leq c \tau t_{N}^{\alpha-1}\|\Delta v\|_{L^{2}(\Omega)}
$$

only first order!!!!
Question: Shall we restore the optimal order by a simple correction?
My answer: Yes. Just by changing the leading polynomial $\mu(\xi)$.
Criterion 1: choose $\mu(\xi)$ such that

$$
\left|\mu\left(e^{-z \tau}\right)-1\right| \leq c \tau^{2}|z|^{2} .
$$

However, an arbitary choice may break the structure of the scheme...

Convolution Quadrature

Criterion 2: choose the polynomial with the form

$$
\mu(\xi)=p(\xi)\left[\frac{\xi}{1-\xi} \delta(\xi)\right]
$$

Now the simplest choice is

$$
p(\xi)=3 / 2-\xi / 2
$$

Then the resulting modified time stepping scheme reads ($f \equiv 0$):

$$
\begin{aligned}
\bar{\partial}_{\tau}^{\alpha}\left(U_{h}\right)^{1}-\Delta_{h} U_{h}^{1}-\frac{1}{2} \Delta_{h} v_{h} & =\bar{\partial}_{\tau}^{\alpha}\left(v_{h}\right)^{1}, \\
\bar{\partial}_{\tau}^{\alpha}\left(U_{h}\right)^{n}-\Delta_{h} U_{h}^{n} & =\bar{\partial}_{\tau}^{\alpha}\left(v_{h}\right)^{n}, \quad n \geq 2 .
\end{aligned}
$$

Hence we restore the second order convergence: [8]

$$
\begin{aligned}
\left\|U_{h}^{n}-u_{h}\left(t_{n}\right)\right\| \leq c \tau^{2} t_{n}^{\alpha-2}\|\Delta v\|_{L^{2}(\Omega)}, & v \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega) \\
\left\|U_{h}^{n}-u_{h}\left(t_{n}\right)\right\| \leq c \tau^{2} t_{n}^{-2}\|v\|_{L^{2}(\Omega)}, & v \in L^{2}(\Omega)
\end{aligned}
$$

Convolution Quadrature

Argument for the nonhomogeneous source problem is quite similar.
Observation: the second order scheme works well for smooth f with $f(0)=0$.
Hence we consider the splitting:

$$
f=f(0)+(f-f(0))=f(0)+\left(t f^{\prime}(0)+\left(t * f^{\prime \prime}\right)(t)\right) .
$$

Repeating the similar argument, we obtain the modified scheme:

$$
\begin{aligned}
\bar{\partial}_{\tau}^{\alpha}\left(U_{h}\right)^{1}-\Delta_{h} U_{h}^{1}-\frac{1}{2} \Delta_{h} V_{h} & =\bar{\partial}_{\tau}^{\alpha}\left(V_{h}\right)^{1}+\frac{1}{2} F_{h}^{0}+F_{h}^{n}, \\
\bar{\partial}_{\tau}^{\alpha}\left(U_{h}\right)^{n}-\Delta_{h} U_{h}^{n} & =\bar{\partial}_{\tau}^{\alpha}\left(V_{h}\right)^{n}+F_{h}^{n}, \quad n \geq 2 .
\end{aligned}
$$

Suppose $v \equiv 0$, then we have the error estimate

$$
\begin{aligned}
&\left\|U_{h}^{n}-u_{h}\left(t_{n}\right)\right\| \leq c \tau^{2} t_{n}^{\alpha-2}\|f(0)\|_{L^{2}(\Omega)}+c \tau^{2} t_{n}^{\alpha-1}\left\|f^{\prime}(0)\right\|_{L^{2}(\Omega)} \\
&+c \tau^{2} \int_{0}^{t}\left(t_{n}-s\right)^{\alpha-1}\left\|f^{\prime \prime}(t)\right\|_{L^{2}(\Omega)} d t .
\end{aligned}
$$

Convolution Quadrature

This argument may help to reinstate other high order schemes. e.g., we can extend the above argument to CQ with $k=3, \ldots, 6$. Advantage:

- keep the structure of the original schemes, only change the starting $k-1$ steps for a k-th order scheme;
- restore k-th order, robust w.r.t. the nonsmooth data.

Numerical experiments

Consider the problem with $f \equiv 0$ and the nonsmooth initial data:

- $\Omega=(0,1)$, and $v=x^{-1 / 4} \in H^{1 / 4-\epsilon}(\Omega)$, with $\epsilon \in(0,1 / 4)$.

Table: The L^{2}-norm of the error $\left\|U^{N}-u\left(t_{N}\right)\right\|_{L^{2}(\Omega)}$ at $t_{N}=1$, computed the fully discrete scheme without initial correction, $h=1 / 100$.

α	N	50	100	200	400	rate
	BDF2	$5.01 \mathrm{e}-3$	$2.50 \mathrm{e}-3$	$1.26 \mathrm{e}-3$	$6.20 \mathrm{e}-4$	≈ 1.00
	BDF3	$4.98 \mathrm{e}-3$	$2.48 \mathrm{e}-3$	$1.24 \mathrm{e}-3$	$6.19 \mathrm{e}-4$	≈ 1.00
	BDF4	$4.97 \mathrm{e}-3$	$2.48 \mathrm{e}-3$	$1.24 \mathrm{e}-3$	$6.19 \mathrm{e}-4$	≈ 1.00
0.5	BDF5	$4.97 \mathrm{e}-3$	$2.48 \mathrm{e}-3$	$1.24 \mathrm{e}-3$	$6.19 \mathrm{e}-4$	≈ 1.00
	BDF6	$4.94 \mathrm{e}-3$	$2.48 \mathrm{e}-3$	$1.24 \mathrm{e}-3$	$6.19 \mathrm{e}-4$	≈ 1.00
	L1	$5.10 \mathrm{e}-3$	$2.52 \mathrm{e}-3$	$1.25 \mathrm{e}-3$	$6.24 \mathrm{e}-4$	≈ 1.04

Numerical experiments

Table: The L^{2}-norm of the error $\left\|U^{N}-u\left(t_{N}\right)\right\|_{L^{2}(\Omega)}$ at $t_{N}=1$, computed the fully discrete scheme with initial correction, $h=1 / 100$.

α	$k \backslash N$	100	200	400	800	rate
	2	$1.40 \mathrm{e}-5$	$3.47 \mathrm{e}-6$	$8.64 \mathrm{e}-7$	$2.16 \mathrm{e}-7$	$\approx 2.00(2.00)$
	3	$2.76 \mathrm{e}-7$	$3.39 \mathrm{e}-8$	$4.20 \mathrm{e}-9$	$5.23 \mathrm{e}-10$	$\approx 3.01(3.00)$
0.25	4	$8.34 \mathrm{e}-9$	$5.04 \mathrm{e}-10$	$3.10 \mathrm{e}-11$	$1.92 \mathrm{e}-12$	$\approx 4.02(4.00)$
	5	$3.41 \mathrm{e}-10$	$1.01 \mathrm{e}-11$	$3.07 \mathrm{e}-13$	$9.46 \mathrm{e}-15$	$\approx 5.03(5.00)$
	6	$1.60 \mathrm{e}-9$	$2.55 \mathrm{e}-13$	$3.82 \mathrm{e}-15$	$5.83 \mathrm{e}-17$	$\approx 6.04(6.00)$
	2	$1.18 \mathrm{e}-4$	$2.93 \mathrm{e}-5$	$7.30 \mathrm{e}-6$	$1.82 \mathrm{e}-6$	$\approx 2.00(2.00)$
	3	$3.04 \mathrm{e}-6$	$3.72 \mathrm{e}-7$	$4.59 \mathrm{e}-8$	$5.71 \mathrm{e}-9$	$\approx 3.01(3.00)$
0.75	4	$1.11 \mathrm{e}-7$	$6.68 \mathrm{e}-9$	$4.09 \mathrm{e}-10$	$2.53 \mathrm{e}-11$	$\approx 4.02(4.00)$
	5	$5.29 \mathrm{e}-9$	$1.55 \mathrm{e}-10$	$4.70 \mathrm{e}-12$	$1.45 \mathrm{e}-13$	$\approx 5.03(5.00)$
	6	$3.01 \mathrm{e}-7$	$4.53 \mathrm{e}-12$	$6.60 \mathrm{e}-14$	$1.00 \mathrm{e}-15$	$\approx 6.07(6.00)$

Numerical experiments

Consider the problem with $v \equiv 0$ and the nonhomogeneous source term:

- $\Omega=(0,1)$, and $f(x, t)=\cos (t)\left(1+\chi_{(0,1 / 2)}(x)\right)$.

Table: The L^{2}-norm of the error $\left\|U^{N}-u\left(t_{N}\right)\right\|_{L^{2}(\Omega)} /\left\|u\left(t_{N}\right)\right\|_{L^{2}(\Omega)}$ at $t_{N}=1$, computed the fully discrete scheme without initial correction, $h=1 / 100$.

α	N	100	200	400	800	rate
0.5	BDF2	$2.57 \mathrm{e}-4$	$1.29 \mathrm{e}-4$	$6.45 \mathrm{e}-5$	$3.22 \mathrm{e}-5$	≈ 1.00
	BDF3	$2.59 \mathrm{e}-4$	$1.29 \mathrm{e}-4$	$6.45 \mathrm{e}-5$	$3.23 \mathrm{e}-5$	≈ 1.00
	BDF4	$2.59 \mathrm{e}-4$	$1.29 \mathrm{e}-4$	$6.45 \mathrm{e}-5$	$3.23 \mathrm{e}-5$	≈ 1.00
	BDF5	$2.59 \mathrm{e}-4$	$1.29 \mathrm{e}-4$	$6.45 \mathrm{e}-5$	$3.23 \mathrm{e}-5$	≈ 1.00
	BDF6	$2.59 \mathrm{e}-4$	$1.29 \mathrm{e}-4$	$6.45 \mathrm{e}-5$	$3.23 \mathrm{e}-5$	≈ 1.00
	L1	$2.86 \mathrm{e}-4$	$1.39 \mathrm{e}-4$	$6.80 \mathrm{e}-5$	$3.35 \mathrm{e}-5$	≈ 1.02
	L1-2	$1.80 \mathrm{e}-4$	$8.76 \mathrm{e}-4$	$4.25 \mathrm{e}-5$	$2.07 \mathrm{e}-5$	≈ 1.04

Numerical experiments

Table: The L^{2}-norm of the error $\left\|U^{N}-u\left(t_{N}\right)\right\|_{L^{2}(\Omega)}$ at $t_{N}=1$, computed the fully discrete scheme with initial correction, $h=1 / 100$.

α	$k \backslash N$	100	200	400	800	rate
	2	$1.65 \mathrm{e}-6$	$4.10 \mathrm{e}-7$	$1.02 \mathrm{e}-7$	$2.55 \mathrm{e}-8$	$\approx 2.00(2.00)$
	3	$3.20 \mathrm{e}-8$	$3.91 \mathrm{e}-9$	$4.83 \mathrm{e}-10$	$6.00 \mathrm{e}-11$	$\approx 3.01(3.00)$
0.25	4	$1.25 \mathrm{e}-9$	$7.57 \mathrm{e}-11$	$4.65 \mathrm{e}-12$	$2.88 \mathrm{e}-13$	$\approx 4.02(4.00)$
	5	$5.11 \mathrm{e}-11$	$1.51 \mathrm{e}-12$	$4.61 \mathrm{e}-14$	$1.42 \mathrm{e}-15$	$\approx 5.03(5.00)$
	6	$2.40 \mathrm{e}-10$	$3.79 \mathrm{e}-14$	$5.68 \mathrm{e}-16$	$8.67 \mathrm{e}-18$	$\approx 6.05(6.00)$
	2	$7.47 \mathrm{e}-6$	$1.86 \mathrm{e}-6$	$4.63 \mathrm{e}-7$	$1.16 \mathrm{e}-7$	$\approx 2.00(2.00)$
	3	$1.31 \mathrm{e}-7$	$1.59 \mathrm{e}-8$	$1.96 \mathrm{e}-9$	$2.43 \mathrm{e}-10$	$\approx 3.01(3.00)$
0.75	4	$5.72 \mathrm{e}-9$	$3.43 \mathrm{e}-10$	$2.10 \mathrm{e}-11$	$1.30 \mathrm{e}-12$	$\approx 4.02(4.00)$
	5	$2.81 \mathrm{e}-10$	$8.24 \mathrm{e}-12$	$2.50 \mathrm{e}-13$	$7.68 \mathrm{e}-15$	$\approx 5.03(5.00)$
	6	$1.61 \mathrm{e}-8$	$2.40 \mathrm{e}-13$	$3.50 \mathrm{e}-15$	$5.33 \mathrm{e}-17$	$\approx 6.07(6.00)$

Outline

Introduction and Preliminaries

- Problem formulation
- MotivationSpatial Semidiscrete SchemesFully Discrete Schemes
- L1 scheme
- Convolution Quadrature
(4) Extensions and Future Works

Extensions and Future works

Some extensions:

(1) modify other schemes, e.g. L1 scheme or Crank-Nicolson;
(2) diffusion-wave: $\alpha \in(1,2)$;
(3) multi-term: $\partial_{t}^{\alpha} u+\sum_{k=1}^{m} b_{m} \partial_{t}^{\beta_{k}} u-\Delta u=f$;
(4) distributed order: $\partial_{t}^{[\mu]} u-\Delta u=f$ with $\partial_{t}^{[\mu]} u=\int_{0}^{1}\left(\partial_{t}^{\alpha} u\right) \mu(\alpha) d \alpha$;

Future works:

(1) fast algorithm to solve fractional model;
(2) fully discrete schemes with variable time step;
(3) nonlinear problem.

Thank you for your attention !!!

*This work is supported by the AFOSR MURI center for Material Failure Prediction through peridynamics and the ARO MURI Grant W911NF-15-1-0562.
[1] S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng, and H. E. Stanley. Fractals in science, 1994.
[2] J. Cheng, J. Nakagawa, M. Yamamoto, and T. Yamazaki. Inverse Problems, 2009.
[3] E. Cuesta, C. Lubich, and C. Palencia. Math. Comp., 2006.
[4] H. Fujita and T. Suzuki. Handb. Numer. Anal., II, pages 789-928. North-Holland, Amsterdam, 1991.
[5] B. Jin, R. Lazarov, J. Pasciak, and Z. Zhou. Lecture Notes in Comput. Sci., 2013.
[6] B. Jin, R. Lazarov, J. Pasciak, and Z. Zhou. IMA Numer. Anal., 2015.
[7] B. Jin, R. Lazarov, and Z. Zhou. SIAM J. Numer. Anal., 2013.
[8] B. Jin, R. Lazarov, and Z. Zhou. SIAM J. Sci. Comp., 2016.
[9] B. Jin, R. Lazarov, and Z. Zhou. IMA J. Numer. Anal., 2015.
[10] B. Jin, B. Li, and Z. Zhou. submitted, 2016.
[11] T. Langlands and B. Henry. J. Comput. Phys., 2005.
[12] C. Lubich. Numer. Math., 1988.
[13] C. Lubich. SIAM Math. Anal., 1986.
[14] K. B. Oldham and J. Spanier. Academic Press, 1974.
[15] B. Regner, et al. Biophysical Journal, 2013.
[16] Y. Sagi, M. Brook, I. Almog, and N. Davidson. Phys. Rev. Lett., 2012.
[17] K. Sakamoto and M. Yamamoto. J. Math. Anal. Appl., 2011.
[18] V. Thomée. Springer-Verlag, Berlin, 2006.
[19] L. Von Wolfersdorf Math. Method Appl. Sci., 1994.

