MICHIGAN STATE UNIVERSITY

Introduction

Several works develop numerical methods to solve space fractional PDEs on finite domain **(FPDE**) including variable coefficients. However, even in the constant coefficients case, only a few authors address the issue of well-posedness of FPDE, see Defterli et al¹. Ervin and Roop² showed well-posedness of FPDE with Dirichlet boundary conditions in the L_2 -setting. Du et al³ extended the theory to very general boundary conditions.

In this work⁴ we formulate FPDE with physically meaningful boundary conditions, show well-posedness in L_1 and C_0 settings and compute numerical solutions in L_1 setting. We only consider the following initial value problem for FPDE on the interval [0,1],

$$\frac{\partial}{\partial t}u(x,t) = Au(x,t); u(x,0) = u_0(x),$$

where the fractional derivative $A \in \{D_c^{\alpha}, D^{\alpha}\}$ is defined below.

Fractional derivatives

For convenience set $p_{\beta}(x) = \frac{x^{\beta}}{\Gamma(\beta+1)}$ for $0 \le x \le 1$ and $\beta > -1$, with the understanding that $x \neq 0$ if $-1 < \beta < 0$.

For $x \in [0,1]$ define:

Fractional integral of order v > 0,

 $I^{v}f(x) = \int_{0}^{x} f(s)p_{v-1}(x-s)ds$

Riemann-Liouville fractional derivative of order $1 < \alpha < 2$,

$$D^{\alpha}f(x) = \frac{d^2}{dx^2} \int_0^x f(s)p_{1-\alpha}(x-s)ds \coloneqq D^2 I^{2-\alpha}f(x)$$

First degree Caputo fractional derivative of order $1 < \alpha < 2$, $D_c^{\alpha} f(x) = \frac{d}{dx} \int_{-\infty}^{x} \frac{d}{ds} f(s) p_{1-\alpha}(x-s) ds \coloneqq DI^{2-\alpha} Df(x)$

Function spaces

- $C_0 \coloneqq C_0[0,1]$ denotes the closure in the sup norm of the space of continuous functions with compact support in [(0,1)], with end point(s) excluded for Dirichlet boundary condition.
- $L_1 \coloneqq L_1\{0,1\}$ is identified with the closed subspace of Borel measures which consist of measures that possess a density.

Cauchy problem

We study FPDE on [0,1] as a Cauchy problem,

$$= Af; f(0) = f_0,$$

where A is a fractional derivative operator on C_0 or L_1 and its domain $\mathcal{D}(A)$ encode boundary conditions.

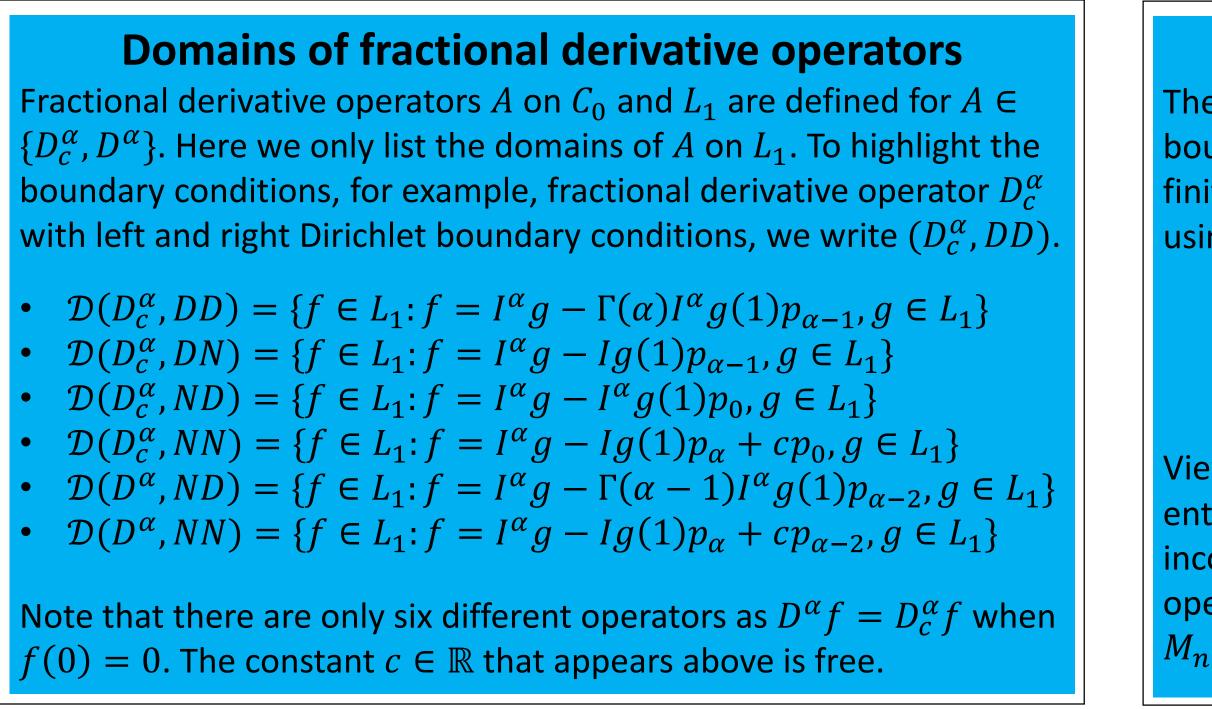
Boundary conditions

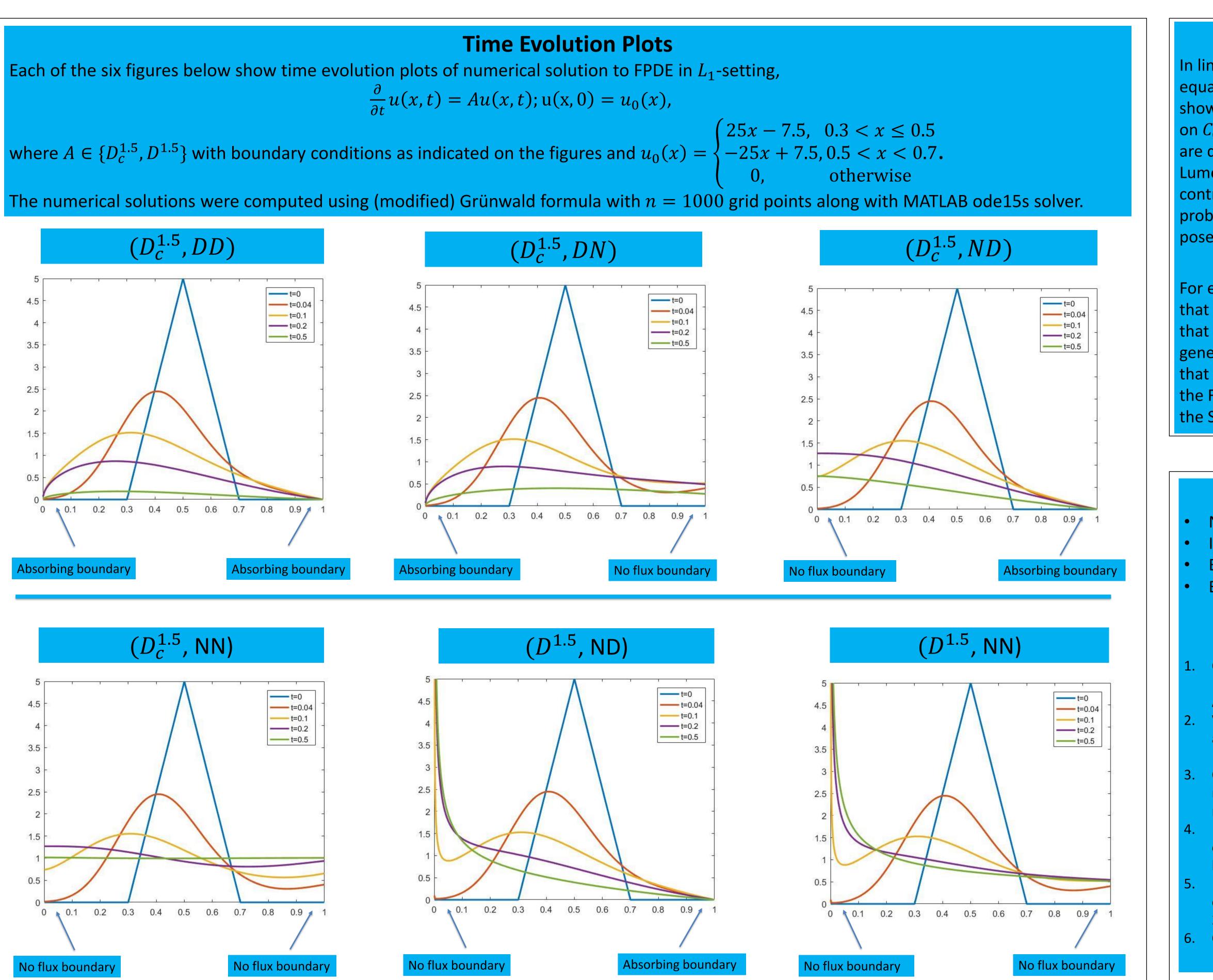
The boundary conditions we consider are *zero* boundary conditions and $f \in \mathcal{D}(A)$ satisfies:

- Dirichlet (absorbing) boundary condition on the left if $\lim_{x \to 0} f(x) = 0 \text{ and on the right if } \lim_{x \to 1} f(x) = 0$
- Neumann (no flux) boundary condition on the left if $\lim_{x \downarrow 0} Ff(x) = 0$ and on the right if $\lim_{x \uparrow 1} Ff(x)$ where the fractional flux $F \in \{D_c^{\alpha-1}, D^{\alpha-1}\}$ and Af = DFf

BOUNDARY CONDITIONS FOR FPDE ON A FINITE INTERVAL

Harish Sankaranarayanan, Michigan State University Boris Baeumer, University of Otago and Mihály Kovács, University of Gothenburg





Grünwald Approximations

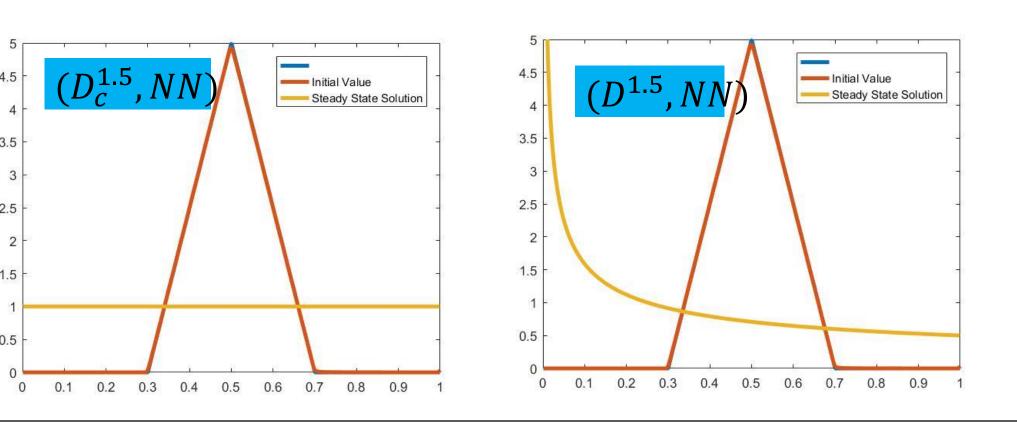
The well known Grünwald formula is modified to incorporate boundary conditions. As numerical solutions are computed on a finite number of grid points, the Grünwald formula can be written using the $n \times n$ matrix,

$$M_{n} = n^{\alpha} \begin{pmatrix} b_{1}^{l} & 1 & 0 & \dots & 0 & 0 \\ b_{2}^{l} & -\alpha & 1 & & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ b_{n-1}^{l} & g_{n-1}^{\alpha} & g_{n-2}^{\alpha} & \dots & -\alpha & 1 \\ b_{n} & b_{n-1}^{r} & b_{n-2}^{r} & \dots & b_{2}^{r} & b_{1}^{r} \end{pmatrix}.$$

Viewing M_n as a transition rate matrix of a (sub-)Markov process, the entries in first column and last row $(b_{\cdot}^{l}, b_{\cdot}^{r}, b_{n})$ are used to incorporate the boundary conditions. Grünwald approximation operators G^n on C_0 and L_1 are also constructed using the matrices M_n by way of continuous embedding.

Steady State Solutions

Note that $D_c^{\alpha} p_0 = \mathbf{0} = D^{\alpha} p_{\alpha-2}$ and the steady state solutions for (D_c^{α}, NN) and (D^{α}, NN) given below correspond to the functions, p_0 and $p_{\alpha-2}$, that appear with the free constant c in the respective domains given on the left.



Well-posedness

In line with classical theory, we study the backward and forward equations on C_0 and L_1 , respectively. Grünwald approximations are shown to generate positive, strongly continuous, contraction semigroups on C_0 and L_1 . Further, we show that the fractional derivative operators are dissipative, densely defined and closed with dense range(I - A). Lumer-Phillips theorem⁵ implies that A generate strongly continuous, contraction semigroups on C_0 and L_1 . This implies that the Cauchy problems associated with operators A and initial value f_0 are wellposed⁵, that is, the respective FPDE are well-posed.

Process convergence

For each $f \in Core(A)$ we show that there exists $f_n \in C_0$ (and L_1) such that $G^n f_n \to Af$ in the respective norms. Trotter-Kato theorem⁵ implies that the semigroups generated by G^n converge to the semigroups generated by A. Convergence of Feller semigroups (on C_0) further implies that the processes associated with Grünwald approximations converge to the Feller processes governed by the fractional derivative operators in the Skorokhod topology⁶.

Future Research

- Non-zero boundary conditions
- Identify the limiting processes explicitly
- Boundary conditions for FPDE with two-sided fractional derivatives Boundary conditions for FPDE on finite domains in \mathbb{R}^d

References

O. Defterli, M. D'Elia, Q. Du, M. Gunzburger, R. B. Lehoucq and M. M. Meerschaert, Fractional diffusion on bounded domains, Fractional Calculus and Applied Analysis, **18** (2015), no. 2, 342-360

V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numerical Methods for Partial Differential Equations, **22** (2006), no. 3, 558-576

Q. Du, M. Gunzburger, R. B. Lehoucq and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Review 54 (2012), no. 4, 667-696

H. Sankaranarayanan, Thesis: Grünwald-type approximations and boundary conditions for one-sided fractional derivative operators, 2014, http://ourarchive.otago.ac.nz

K.J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000

O. Kallenberg, Foundations of modern probability, Springer, 1997