

FMATH Group

Ehsan Kharazmi and Mohsen Zayernouri Department of Computational Mathematics, Science, and Engineering & Department of Mechanical Engineering

Problem Definition

Fractional **Helmholtz** equation, subjected to **Dirichlet** boundary conditions:

$$\begin{aligned} {}^{RL}_{0}\mathcal{D}^{\alpha}_{x}u(x) - \lambda u(x) &= f(x), \quad \forall x \in \Omega \\ u(0) &= u(L) = 0, \quad \forall x \in \partial \Omega \end{aligned} \qquad \begin{aligned} \alpha &= 1 + \mu \\ \mu &\in (0, 1] \end{aligned}$$

Weak Formulation: multiplying by proper test function and integrating by parts

$$a(u,v) = l(v) \qquad \begin{cases} a(u,v) = \left(\frac{du}{dx}, {}^{RL}_{x} \mathcal{D}^{u}_{L} v\right)_{\Omega} - \lambda \left(u,v\right)_{\Omega} \\ l(v) = \left(f,v\right)_{\Omega}, \end{cases}$$

Basis/Test Functions

Domain Partitioning:

Standard local basis functions [1]: in standard domain $\xi \in [-1,1]$

Local v.s. Global Test Functions [2]

Jacobi poly-fractonomials of second kind [3]:

References

[1] G. E. Karniadakis, S. J. Sherwin, Spectral/hp Element Methods for CFD, Oxford University Press (2nd edition), 2005

[2] E. Kharazmi, M. Zayernouri, G. E. Karniadakis, A Petrov-Galerkin Spectral Element Method for Fractional Elliptic Problems, ArXiv preprint, 2016

[3] M. Zayernouri, G. E. Karniadakis, *Fractional Sturm-Liouville Eigen-Problem:* Theory and Numerical Approximations, J. Comp. Physics, 2013

A Petrov-Galerkin Spectral Element Method for Fractional Elliptic Problems

Global linear system (local test functions)

Global linear system (global test functions)

Non-Uniform Grids

Kernel-Based:

Non-Uniform Grid

	$N_{el} = 1000$		$N_{el} = 1000$		$N_{el} = 500$		$N_{el} = 500$		$N_{el} = 10 \qquad \qquad N_{el} = 100$		$N_{el} = 10$		
	On-line computation	Off-line retrieval	Р										
	790.3478	370.6895	429.3147	141.3525	83.5229	24.7105	7.2540	2.6520	2				
	4423.7671	746.4959	1308.8327	266.0441	161.8042	46.0826	18.9073	4.7580	3				
	14709.4902	1392.8705	5599.4062	485.7715	499.9988	84.8645	32.2922	8.8140	4				

Memory Fading Analysis:

 3.37716×10^{-3}

 3.8092×10^{-10}

 1.47228×10^{-1}

 1.15821×10^{-8}

 5.06103×10^{-1}

14

17

 6.6476×10^{-1}

 1.99961×10^{-3}

 2.2715×10^{-10}

 1.64103×10^{-6}

 7.87929×10^{-6}

 4.44832×10^{-9}

 1.36941×10^{-8}

 1.47786×10^{-7}

 1.47098×10^{-6}

 1.85274×10^{-3}

 1.18462×10^{-1}

 1.60656×10^{-10}

 1.32413×10^{-9}

14

17

BB-BI

^{-2}L	
- 6	
Error	Right BE Error
5×10^{-5}	$3.51075 imes 10^{-6}$
5×10^{-7}	2.2902×10^{-9}
3×10^{-9}	$2.69541 imes 10^{-10}$
10	
Error	Right BE Error
5×10^{-5}	3.51075×10^{-6}
5×10^{-7}	$2.29003 imes 10^{-9}$
1×10^{-9}	2.69506×10^{-10}

s case 1	
$\mu = 1/2$	$\mu = 9/10$
$2.31391 imes 10^{-11}$	$4.24903 imes 10^{-9}$
$1.26365 imes 10^{-10}$	4.25456×10^{-9}
$6.39474 imes 10^{-8}$	$1.95976 imes 10^{-8}$
$2.47423 imes 10^{-6}$	$8.45001 imes 10^{-7}$
$3.19995 imes 10^{-5}$	$1.37959 imes 10^{-5}$
$2.44911 imes 10^{-4}$	$1.40684 imes 10^{-4}$
$1.39043 imes 10^{-3}$	1.6001×10^{-3}
case III	
$\mu = 1/2$	$\mu = 9/10$
$2.31391 imes 10^{-11}$	$4.24903 imes 10^{-9}$
$2.3113 imes 10^{-11}$	$4.24903 imes 10^{-9}$
$7.7854 imes 10^{-11}$	4.23683×10^{-9}
$3.38055 imes 10^{-9}$	3.65689×10^{-9}
4.35421×10^{-8}	8.84638×10^{-9}
3.87096×10^{-7}	1.7226×10^{-7}
3.71057×10^{-6}	5.12104×10^{-6}