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Abstract

We consider a system of linear differential equations whose first entry
is perturbed by an anisotropic non degenerate (eventually tempered)
Stable noise. Assuming some continuity on the noise coefficient, and
a Hörmander like condition that allows the propagation of the noise
through the system, we prove the uniqueness to the martingale prob-
lem for the associated generator, under technical restrictions on the
number of oscillators and the dimension. Also, we establish density
bounds reflecting the multi-scale behavior of the process

The equation

We study degenerate stochastic differential equations driven by a
finite range stable process, that is:
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where σ : R+×Rnd→ Rd⊗Rd, ai,j : R+→ Rd⊗Rd, i ∈ [[1, n]], j ∈
[[(i−1)∨1, n]]. Also, Z is an Rd valued symmetric α stable (possibly
tempered) process (α ∈ (0, 2)), that is a stable process whose Lévy
measure is truncated:

ν(dz) = Cd,αq(|z|)
d|z|
|z|1+αµ(dz̄), z = |z|z̄,∈ R+ × Sd−1.

Assumptions

We will make the following assumptions:
[H-1]: (Hölder regularity) ∃H > 0, η ∈ (0, 1], ∀x, y ∈ Rnd and

∀t ≥ 0,
||σ(t, x)− σ(t, y)|| ≤ H|x− y|η.

[H-2]: (Non degeneracy of the spectral measure) ∃Λ1,Λ2 ∈ R∗+,
∀u ∈ Rd,

Λ1|u|α ≤
∫
Sd−1 |〈u, ς〉|

αµ(dς) ≤ Λ2|u|α. (2)
[H-3]: (Ellipticity) ∃ c, c > 0, ∀ξ ∈ Rd, ∀z ∈ Rnd and ∀t ≥ 0,

c|ξ|2 ≤ 〈ξ, σσ∗(t, z)ξ〉 ≤ c|ξ|2. (3)
[H-4]: (Hörmander-like condition for (At)t≥0) ∃α, α ∈ R∗+,

∀ξ ∈ Rnd and ∀t ≥ 0,
α|ξ|2 ≤ 〈ai,i−1

t ξ, ξ〉 ≤ α|ξ|2, ∀i ∈ [[2, n− 1]]. Also, for all
(i, j) ∈ [[1, n]]2, ‖ai,jt ‖ ≤ α.

Links with degenerate FPDE

The function u(t, x) = E
[
f (XT )

∣∣∣f (Xt) = x
]
solves the fractional

PDE: 
∂tu(t, x) = −Ltu(t, x)
u(T, x) = f (x)

where Lt is the generator of X . For n = 2, d = 1 and σ = 1, the
fractional PDE satisfied can be written:

∂tu(t, x) = x2 · ∇x1u(t, x) + ∆
α
2
x1
u(t, x),

where the fractional Laplacian ∆
α
2
x1 only acts on the first variable of

x = (x1, x2).
In general, the generator Lt writes for ϕ : Rnd→ R:
Ltϕ(x) = 〈At,∇xϕ〉 +
+
∫
Rd
ϕ(x + Bσ(t, x)z)− ϕ(x) + 〈∇xϕ(x), Bσ(t, x)z〉1{|z|≤1}ν(dz),

where B is the injection matrix of Rd into Rnd.

The Parametrix Series

We approximate the solution of (1) by the solution of the Frozen
equation:

dX̃T,y
s = AsX̃

T,y
s ds + Bσ(s, Rs,T (y))dZs. (4)

Denoting p̃α the density of (4), and Ps,t the transition of (1) ,we have
for all 0 ≤ t < T, (x, y) ∈ (Rnd)2 and any bounded measurable
f : Rnd→ R:

Pt,Tf (x) = E[f (XT )|Xt = x] =
∫
Rnd

+∞∑
r=0

(p̃α ⊗H (r))(t, T, x, y)
 f (y),

where H is the parametrix kernel:
∀0 ≤ t < T, (x, y) ∈ (Rnd)2, H(t, T, x, y) := (Lt−L̃T,yt )p̃T,yα (t, T, x, y).
The notation ⊗ stands for the time space convolution:

f ⊗ g(t, T, x, y) =
∫ T
t
du

∫
Rnd
dzf (t, u, x, z)g(u, T, z, y).

Main Result

Assume [H] holds. When d(1− n) + α + 1 > 0, for every x ∈ Rnd, there is a unique solution to the martingale problem associated with
the generator of (1). When n = 2, d = 1, the unique weak solution of (1) has a density with:
∀m ≥ 1, ∃C := C([H], T,K,m, α) ≥ 1, s.t. ∀0 ≤ t < s ≤ T, ∀(x, y) ∈ (R2)2,

p(t, s, x, y) ≤ Cp̄(t, s, x, y) log(K ∨ |(Tαs−t)−1(y −Rs,t(x))|),
where

p̄(t, s, x, y) = C
det(Tαs−t)−1

{K ∨ |(Tαs−t)−1(y −Rs,t(x))|}2+αΘ
(
C(s− t)1/α|(Tαs−t)−1(y −Rs,t(x))|

)
.

Eventually for 0 < T ≤ T0 := T0([H], K) small enough, the following diagonal lower bound holds:
∀0 ≤ t < s ≤ T, ∀(x, y) ∈ (R2)2 s.t. |(Tαs−t)−1(y −Rs,t(x))| ≤ K, p(t, s, x, y) ≥ C−1det(Tαs−t)−1.

Transport of the initial condition and
multi-scale property

Consider the simple case: dXt =
0 0
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 . This writes:
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 , whereRs(x) denotes the transport
of the initial condition by the Resolvent of the deterministic ODE
associated with (1).
We can put all the component at the same scale by normalizing by
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Typical Sets

In the degenerate framework, the typical behavior is given by∣∣∣(Tαs )−1(y −Rsx
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Multi-scale Stable Process

From [Watanabe (TAMS) 2007], we know that if the spectral measure
is such that µ

(
B(x, r)

)
≤ Crγ−1, then:

pZ(t, x) ≤ Ct−d/α
1 + |x|

t/α

−γ−α .
And X̃T,y,t,x

s
(d)= Rs,tx+ (s− t)−1/αTs−tSs−t, where (Su)u≥0 ∈ Rnd, is

a stable process with degenerate spectral measure, with support of
dimension d + α + 1 in Rnd.


