Statistics Prelim. August 2002

(1) Let N = 1, 2, ... and $\Theta = \{(a, b) : a \le b, a, b \in N\}$ For each $(a, b) \in \Theta$, Let P(a) = P(b) = .5Let X_1, X_2, X_3 be i.i.d $P_{a,b}$.

$$T(X_1, X_2, X_3) = (X_1, X_2, X_3)/3$$

$$S(X_1, X_2, X_3) = [Max(X_1, X_2, X_3) + Min(X_1, X_2, X_3)]/2$$

Is either of the above a MVUE of g(a,b)=(a+b)/2. If not find the MVUE.

Clearly state the results you use and give the details of your argument clearly. [15]

- (2) Suppose that $\{f_{\theta}: \theta \in \theta\}$ is a family of densities such that for all n there exists a MVUE estimate based for θ based on i.i.d observations X_1, X_2, \ldots, X_n . If $V_{n,\theta}$ is finite for some n, show that $V_{n,\theta}$ goes to 0 as $n \to \infty$ [8]
- (3) Let ϕ be a MP size α test function for testing $H_0: P$ against $H_1: Q$. Prove or give a counter example to the following statement: " $\phi \equiv \alpha$ a.e. (P+Q) iff P=Q".[10]
- (4) Consider the testing problem $H_0: \theta \in \{-1,1\}$ against the alternative $H_1: \theta = 0$ where θ is the mean of a normal population with variance 1.
 - (a) show that there does not exist a UMP test for the above problem based on one observation. [Begin by showing that such a test has to be symmetric][10]
 - (b) Does there exist a UMP test based on n observations for some n? Justify your answer.[7]
- (5) Let X have the distribution function

$$F_{\alpha}(x) = 1 - x^{-\alpha}, \quad \alpha > 0$$

(a) Show that for $\alpha > 2$,

$$E(X) = \frac{\alpha}{(\alpha - 1)}$$
 and $V(X) = \frac{\alpha}{((\alpha - 2)(\alpha - 1)^2)}$

[5]

- (b) Let $Y=(\alpha-1)X-\alpha$. Show that as $\alpha\to\infty$, Y converges in distribution and identify the limit. [15]
- (6) Suppose X_1, X_2, \ldots, X_n is a sample from $U(0, \theta)$. The MLE of θ is M_n —the maximum of X_1, X_2, \ldots, X_n .
 - (a) Show that $n(\theta M_n)$ converges in distribution to an exponential distribution [10]
 - (b) In view of the above, as an estimate of θ , M_n might not be so good since $M_n < \theta$ with probability 1. Consider the modified estimate $T_n = \frac{(n+c)}{n} M_n$.
 - (i) what is the asymptotic distribution of T_n [10]
 - (ii) What value of c should be used if we measure accuracy by squared error loss? absolute error loss? [10]

2

(7) Let X_1, X_2, \ldots , be i.i.d random variables with mean μ and variance σ^2 . Find the asymptotic distribution of

$$R_n = \frac{\sum_{i=1}^n X_{2i-1}}{\sum_{i=1}^n X_{2i}}$$

[Deal with the case $\mu=0$ and $\mu\neq 0$ separately][15]

(8) For $i = 1, 2, \dots$, let

$$Y_i = \theta x_i + \epsilon_i$$

where ϵ_i , i = 1, 2, ..., are i.i.d symmetric variables and $x_1, x_2, ...$ are non random design values.

Give some sufficient conditions on the model which will ensure the consistency of the least square estimates of θ as n goes to ∞ .[15]

- (9) Let X_1, X_2, \dots, X_n be i.i.d observations from $U(0, \theta)$ where $\theta \in \Theta = \{1, 2, 3, \dots\}$.
 - (a) find the MLE of θ [10]
 - (b) Investigate the admissibility of the MLE for 0-1 loss [10]
 - (c) what can you say about $\sup_{\theta} R(\theta, T)$ where T is the MLE. [5]