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Abstract

Tail estimates are developed for power law probability distributions with exponential

tempering using a conditional maximum likelihood approach based on the upper order

statistics. The method is demonstrated on simulated data from a tempered stable

distribution, and for several data sets from geophysics and finance that show a power

law probability tail with some tempering.

1 Introduction

Probability distributions with heavy, power law tails are important in many areas of

application, including physics [14, 15, 25], finance [5, 8, 16, 20, 19], and hydrology

[3, 4, 21, 22]. Stable Lévy motion with power law tails is useful to model anomalous

diffusion, where long particle jumps lead to anomalous superdiffusion [11, 12]. Often

the power law behavior does not extend indefinitely, due to some truncation or taper-

ing effects. Truncated Lévy flights were proposed by Mantegna and Stanley [9, 10]
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as a modification of the α-stable Lévy motion, to avoid infinite moments. In that

model, the largest jumps are simply discarded. Tempered stable Lévy motion takes a

different approach, exponentially tapering the probability of large jumps, so that all

moments exist [18]. Tempered stable laws were recently applied in geophysics [13].

The problem of parameter estimation for tempered stable laws remains open.

This paper treats exponentially tempered Pareto distributions P (X > x) =

γx−αe−βx where γ is a scale parameter, α controls the power law tail, and β gov-

erns the exponential truncation. In practical applications, the truncation parameter

is relatively small, so that the data seems to follow the power law distribution until

the largest values are exponentially cooled. A log-log plot of the data versus rank is

linear until the tempering causes the plot to curve downward. Such plots are often

observed in real data applications. It is also common that the power law behavior

emerges only for large data values, so that the tail of the data is fit to this model.

Hence we will consider parameter estimates based on the largest order statistics. The

mathematical details are similar to Hill’s estimator [6, 7] for the traditional Pareto

distribution. We use formula (2.5) in [7] as our main tool for calculations in Section

2. This formula was derived by Hill using the Rényi representation for order statistics

[17]. A related paper [1] considered parameter estimation for the truncated Pareto

distribution, relevant to the original model of Mantegna and Stanley.

2 Estimation

Suppose X1, X2, . . . , Xn is a random sample from the tempered Pareto distribution

with the survival function

F̄X(x; θ) = P{X1 > x} = γx−αe−βx, x ≥ x0, (2.1)

where θ := {α, β, γ} are unknown parameters and x0 > 0 satisfies γ = xα
0 eβx0 . Clearly

the corresponding density function is given by

fX(x; θ) = γx−α−1e−βx(α + xβ), x ≥ x0. (2.2)

The tempered Pareto distribution defined as above is tail-equivalent to the exponen-

tially tempered stable distribution in [18], so the methods of this paper can also be

useful to estimate the tail parameters of that distribution.

Let X(1) < X(2) < · · · < X(n) be the order statistics of the sample, z := 1/x,

z0 := 1/x0 and Zi := 1/Xi for i = 1, 2, . . . , n. Then Z(k) := 1/X(k) > Z(k+1) for all
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k = 1, . . . , n− 1 and we have

P{Z1 ≤ z} = FZ(z; θ) = γzαe−β/z, z ≤ z0,

which implies that for z ≤ z0,

dFZ(z; θ)

dz
= γzαe−β/z

(
α

z
+

β

z2

)
.

By the formula (2.5) in [7], it follows that that the conditional log-likelihood of

{Z(n−k+1), . . . , Z(n)} given Z(n−k+1) < dz ≤ Z(n−k) is proportional to the following

log[1− FZ(dz,θ)]n−k +
k∑

i=1

log
dFZ(z(n−i+1))

dz(n−i+1)

∝ (n− k) log
[
1− γdα

z e−β/dz
]
+ k log γ + α

k∑
i=1

log z(n−i+1) − β

k∑
i=1

z−1
(n−i+1)

+
k∑

i=1

log

(
α

z(n−i+1)

+
β

z2
(n−i+1)

)
.

Let xk = {x(n−k+1) . . . , x(n)} :=
{

z−1
(n−k+1), . . . , z

−1
(n)

}
and dx = 1/dz. Using the change

of variable formula, the conditional log-likelihood of Xk = {X(n−k+1), . . . , X(n)} given

X(n−k+1) > dx ≥ X(n−k) is of the form

log Lc(θ; xk) ∝ (n− k) log
[
1− γd−α

x e−βdx
]
+ k log γ − (α + 2)

k∑
i=1

log x(n−i+1)

−β

k∑
i=1

x(n−i+1) +
k∑

i=1

log
(
αx(n−i+1) + βx2

(n−i+1)

)
. (2.3)

The following result gives the normal equations of the conditional likelihood prob-

lem with the notation introduced above.

Proposition 2.1. (a) The conditional MLE θ̂ = {α̂, β̂, γ̂} of θ = {α, β, γ} given

X(n−k+1) > dx ≥ X(n−k) satisfies the normal equations

k∑
i=1

(log dx − log X(n−i+1)) +
k∑

i=1

1

α̂ + β̂X(n−i+1)

= 0, (2.4)

k∑
i=1

(dx −X(n−i+1)) +
k∑

i=1

X(n−i+1)

α̂ + β̂X(n−i+1)

= 0, (2.5)

γ̂ =
k

n
dα̂

xeβ̂dx . (2.6)
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(b) If the above system of normal equations has a solution θ̂ with α̂ > 0 and β̂ > 0,

then it is the unique conditional MLE.

Proof. (a) Defining λ = γd−α
x e−βdx , the conditional log-likelihood in (2.3) is simplified

to

log Lc(θ; xk) ∝ (n− k) log(1− λ) + k log γ − (α + 2)
k∑

i=1

log x(n−i+1)

−β
k∑

i=1

x(n−i+1) +
k∑

i=1

log
(
αx(n−i+1) + βx2

(n−i+1)

)
. (2.7)

The estimates θ̂ satisfies the following normal equations obtained by
∂ log Lc(θ; xk)

∂θ

(n− k)λ log dx

1− λ
−

k∑
i=1

log x(n−i+1) +
k∑

i=1

1

α + βx(n−i+1)

= 0, (2.8)

(n− k)λdx

1− λ
−

k∑
i=1

x(n−i+1) +
k∑

i=1

x(n−i+1)

α + βx(n−i+1)

= 0, (2.9)

k − nλ

γ(1− λ)
= 0. (2.10)

From (2.10), we have λ = k/n from which (2.6) follows. Thus (2.8) and (2.9) are

simplified to (2.4) and (2.5), respectively. This proves (a).

(b) We plug λ = k/n in (2.7) and obtain

log L∗c(α, β; xk) ∝ (n− k) log

(
1− k

n

)
− (α + 2)

k∑
i=1

log x(n−i+1) − β

k∑
i=1

x(n−i+1)

+
k∑

i=1

log
(
αx(n−i+1) + βx2

(n−i+1)

)
+ k log

k

n
+ kα log dx + kβdx.

Taking the second partial derivatives of L∗c(α, β; xk) yields:

∂2 log L∗c(α, β; xk)

∂α2
∝ −

k∑
i=1

1

(α + βx(n−i+1))2
,

∂2 log L∗c(α, β; xk)

∂β2
∝ −

k∑
i=1

x2
(n−i+1)

(α + βx(n−i+1))2
,

∂2 log L∗c(α, β; xk)

∂α∂β
∝ −

k∑
i=1

x(n−i+1)

(α + βx(n−i+1))2
.
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Observe that
∂2 log L∗c(α, β; xk)

∂α2
< 0 and by Cauchy-Schwarz inequality,

(
∂2 log L∗c(α, β; xk)

∂α∂β

)2

<

(
∂2 log L∗c(α, β; xk)

∂α2

)(
∂2 log L∗c(α, β; xk)

∂β2

)
,

for all α, β and xk. Hence, it follows that Lc(θ; xk) has at most one local maximum,

which, if exists, has to be the unique global maximum. This completes the proof of

(b).

Next we consider the important question of whether the system of normal equa-

tions (2.4) and (2.5) has a positive solution. In order to answer this question, we

introduce some notation so that we can eliminate the secondary parameter β and

focus on the tail parameter α, which is the main parameter of interest. We start by

defining

T1 : =
k∑

i=1

(log X(n−i+1) − log dx) =
k∑

i=1

log (X(n−i+1)/dx)

and

T2 : =
k∑

i=1

(X(n−i+1) − dx).

Observe that both T1 and T2 are positive. Also, for n ≥ 1 and 1 ≤ k ≤ n, define

Gn,k(u; xk) :=
k∑

i=1

x(n−i+1)

kx(n−i+1) + u(T2 − T1x(n−i+1))
− 1, u ∈ [0, k/T1] (2.11)

and note that Gn,k(0; xk) = 0. With these notation we have the following result

which gives the normal equation for α̂.

Proposition 2.2. (a) For any order statistics xk of a given sample with size n ≥ 1,

Gn,k(u; xk) is a well-defined continuous function of u at every point of the closed

interval [0, k/T1].

(b) (α̂, β̂) ∈ (0,∞)× (0,∞) satisfies the normal equations (2.4) and (2.5) if and only

if α̂ ∈ (0, k/T1) satisfies

Gn,k(α̂; Xk) = 0 (2.12)

and β̂ = (k − α̂T1)/T2.

(c) There is at most one α̂ ∈ (0, k/T1) satisfying (2.12).
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Proof. (a) We just need to verify that Gn,k has no pole in [0, k/T1]. This is obvious

because for each i = 1, 2, . . . , k, and u ∈ [0, k/T1],

kx(n−i+1) + u(T2 − T1x(n−i+1)) > (k − uT1) x(n−i+1) > 0.

(b) If (α̂, β̂) ∈ (0,∞) × (0,∞) satisfies (2.4) and (2.5), then multiplying (2.4) by α̂

and (2.5) by β̂ and adding we have α̂T1 + β̂T2 = k which gives β̂ = (k − α̂T1)/T2.

Using this we can eliminate β̂ from (2.5) to get (2.12). The positiveness of β̂ implies

α̂ ∈ (0, k/T1).

To prove the converse observe that (2.12) and β̂ = (k− α̂T1)/T2 yields β̂ > 0 and

(2.5). Multiplying both sides of (2.5) by β̂, we have

k∑
i=1

β̂X(n−i+1)

α̂ + β̂X(n−i+1)

= β̂T2 = k − α̂T1,

which yields
k∑

i=1

α̂

α̂ + β̂X(n−i+1)

= α̂T1

from which (2.4) follows since α̂ > 0.

(c) This part follows from part (b) of Proposition 2.1.

The above result is important for two reasons - firstly it gives normal equations

for the tail parameter (as well as for the parameter β) and secondly it enables us to

establish the existence (with high probability for a large sample), consistency, and

asymptotic normality of the unconditional MLE, the parameter estimates based on

the entire data set.

Remark 2.3. Putting k = n and dx = x̂0 := X(1) in (2.4) - (2.6) we obtain the

normal equations for the unconditional MLE of θ as follows:

n∑
i=1

1

α̂ + β̂Xi

=
n∑

i=1

log
Xi

x̂0

, (2.13)

n∑
i=1

Xi

α̂ + β̂Xi

=
n∑

i=1

(Xi − x̂0) , (2.14)

γ̂ = x̂α̂
0 eβ̂x̂0 . (2.15)

Theorem 2.4. (a) The probability that the normal equations (2.13)-(2.15) of the

unconditional MLE for θ has a unique solution θ̂n := {α̂n, β̂n, γ̂n} converges to 1 as

n →∞ and the unconditional MLE θ̂n is consistent for θ.
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(b) α̂n and β̂n are asymptotically jointly normal with asymptotic means α and β

respectively and asymptotic variance-covariance matrix 1
n
W−1, where

W :=

(
E ((α + βX1)

−2) E (X1(α + βX1)
−2)

E (X1(α + βX1)
−2) E (X2

1 (α + βX1)
−2)

)
, (2.16)

which is invertible by Cauchy-Schwarz inequality.

In order to prove this theorem, we will need the following lemmas.

Lemma 2.5. (a) E

(
X1

α + βX1

)
= E(X1 − x0).

(b) E

(
1

α + βX1

)
= E

(
log

X1

x0

)
.

Proof. (a) Using the forms of the density and the survival functions of X1, we have

E

(
X1

α + βX1

)
=

∫ ∞

x0

x

α + βx
γx−α−1e−βx(α + βx)dx

=

∫ ∞

x0

γx−αe−βxdx

=

∫ ∞

0

P (X1 > x)dx− x0 = E(X1 − x0) .

(b) To prove this observe that

E

(
log

X1

x0

)
=

∫ ∞

0

P

(
log

X1

x0

> t

)
dt

=

∫ ∞

0

P
(
X1 > x0e

t
)
dt

=

∫ ∞

0

γ(x0e
t)−α exp

(−βx0e
t
)
dt,

which by a change of variable x = x0e
t becomes

=

∫ ∞

x0

γx−α−1e−βxdx

=

∫ ∞

x0

1

α + βx
γx−α−1e−βx(α + βx)dx

= E

(
1

α + βX1

)

and this completes the proof.
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Lemma 2.6. For x̂0 = X(1) the following hold.

(a)
√

n(x̂0 − x0)
p−→ 0.

(b)
√

n (log x̂0 − log x0)
p−→ 0.

Proof. (a) By the Markov inequality, it is enough to show that E (
√

n(x̂0 − x0)) → 0

as n →∞. Observe that

0 ≤ E
(√

n(x̂0 − x0)
)

=

∫ ∞

0

P
(√

n(x̂0 − x0) > t
)
dt

=

∫ ∞

0

(
P

(
X1 > x0 +

t√
n

))n

dt

=

∫ ∞

0

(
1 +

t

x0

√
n

)−αn

e−βt
√

ndt

≤
∫ ∞

0

e−βt
√

ndt =
1

β
√

n
→ 0

as n →∞ and this finishes the proof of part (a).

(b) Part (b) follows from part (a) using the inequality | log y− log x0| ≤ C|y− x0| for

all y in a neighborhood of x0 and for some C > 0.

Proof of Theorem 2.4. (a) In this case k = n (see Remark 2.3). For simplicity of

notation we use Gn to denote Gn,n, i.e.,

Gn(u; Xn) =
1

n

n∑
i=1

Xi

Xi + u
(

T2

n
− T1

n
Xi

) − 1, u ∈ [0, n/T1].

We will eventually show that for all ε > 0,

lim
n→∞

P
[
Gn(u; Xn) = 0 has a solution in (α− ε, α + ε)

]
= 1. (2.17)

To prove (2.17), we start by introducing some notation. Define

G̃n(u; Xn) :=
1

n

n∑
i=1

Xi

Xi + u (B − AXi)
− 1,

where, in view of Lemma 2.5,

A := E

(
1

α + βX1

)
= E

(
log

X1

x0

)
> 0, and

B := E

(
X1

α + βX1

)
= E(X1 − x0) > 0. (2.18)
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Define

G(u) := E

(
X1

X1 + u(B − AX1)

)
− 1. (2.19)

Since

αA + βB = 1, (2.20)

it follows that 1−uA > 0 for all u in a small enough neighborhood N(α) of α, which

yields that G̃n(u; Xn) has no pole and hence is well-defined on N(α). Similarly G(u)

is also well-defined on N(α) because for all u ∈ N(α), −1 < G(u) < E (X1/uB)−1 <

∞.

From (2.20) and (2.18) we obtain

G(α) = 0. (2.21)

By a dominated convergence argument, we differentiate under the integral sign in

(2.19) and obtain

G′(α) = E

[
(AX1 −B)X1

(X1 + α(B − AX1))
2

]
= E(Y Z)

where

Y =
AX1 −B

X1 + α(B − AX1)
and Z =

X1

X1 + α(B − AX1)
.

Since Z = 1+αY , we have Cov(Y, Z) = αVar(Y) > 0 and E(Y ) = α−1 (E(Z)− 1) =

0 by (2.21). This shows

G′(α) = E(Y Z) > E(Y )E(Z) = 0. (2.22)

By (2.20), we can find a small enough neighborhood N∗(α) ⊆ N(α) of α and

δ > 0 such that 1 − ux > 0 whenever u ∈ N∗(α) and |x − A| < δ. We will show

that Gn(u; Xn)
p−→ G(u) as n →∞ for all u ∈ N∗(α) in the following. Since, by the

weak law of large numbers, G̃n(u; Xn)
p−→ G(u) as n → ∞ for all u ∈ N(α), it is

enough to show that

Gn(u; Xn)− G̃n(u; Xn) = op(1) (2.23)

for all u ∈ N∗(α) ⊆ N(α). Since T1/n
p−→ A and T2/n

p−→ B as n →∞, we obtain

using bivariate mean value theorem that

Gn(u; Xn)− G̃n(u; Xn) =

(
T1

n
− A

)
Rn +

(
B − T2

n

)
Sn ,
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where

Rn =
1

n

n∑
i=1

uX2
i

(Xi + u(ξn − ηnXi))
2

and

Sn =
1

n

n∑
i=1

uXi

(Xi + u(ξn − ηnXi))
2

with ηn
p−→ A and ξn

p−→ B as n → ∞. Then in order to show (2.23), it is

enough to establish that both Rn and Sn are tight for all u ∈ N∗(α). Let Ωn :=

{|ηn − A| < δ, ξn > B/2}, where δ is as above. Then on the event Ωn, we have for all

u ∈ N∗(α),

Rn ≤ 4

uB2

1

n

n∑
i=1

X2
i ,

which is tight because n−1
∑n

i=1 X2
i

p−→ E(X2
1 ) < ∞. Similarly on Ωn, for all u ∈

N∗(α),

|Sn| ≤ 4

uB2

1

n

n∑
i=1

|Xi|,

which is also tight. Since P (Ωn) → 1 as n → ∞, the required tightnesses follow

establishing (2.23) and hence Gn(u; Xn)
p−→ G(u) as n →∞ for all u ∈ N∗(α).

We are now all set to complete the proof. By (2.21) and (2.22), we can find ε0 > 0

small enough such that (α − ε0, α + ε0) ⊆ N∗(α), G(u) > 0 for all u ∈ (α, α + ε0)

and G(u) < 0 for all u ∈ (α − ε0, α). Since Gn(u; Xn)
p−→ G(u) as n → ∞ for all

u ∈ (α − ε0, α + ε0), (2.17) follows for all ε ∈ (0, ε0) and hence for all ε > 0. The

existence of θ̂n (with probability tending to 1 as n → ∞) follows from (2.17) by

continuity of u 7→ Gn(u; Xn), part (b) of Proposition 2.2 and the observation that

nT−1
1

p−→ A−1 > α + ε for small enough ε > 0. The uniqueness is obvious from

part (c) of Proposition 2.2. The consistency of α̂n follows by choosing ε > 0 arbi-

trarily small in (2.17). The consistency of β̂n is straightforward from the equations

β̂n = (n− α̂nT1)/T2 and (2.20) and finally (2.15) yields the consistency of γ̂n.

(b) In order to establish the asymptotic normality of α̂n and β̂n, we start with the
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following notation. Define, for s, t, x > 0,

Hn(s, t, x) :=
1

n

n∑
i=1

1

s + tXi

− 1

n

n∑
i=1

log
Xi

x
,

Kn(s, t, x) :=
1

n

n∑
i=1

Xi

s + tXi

− 1

n

n∑
i=1

(Xi − x).

By Remark 2.3, α̂n and β̂n satisfies Hn(α̂n, β̂n, x̂0) = Kn(α̂n, β̂n, x̂0) = 0. Let α̃n and

β̃n be the unconditional MLE of α and β respectively when x0 is known. Then α̃n

and β̃n satisfies Hn(α̃n, β̃n, x0) = Kn(α̃n, β̃n, x0) = 0. When x0 is known, the support

of the density (2.2) does not depend on the parameter values and the corresponding

information matrix is given by W as in (2.16). Hence using the asymptotic properties

of the MLE (see, for example, [24, p. 564]), it can easily be deduced that
√

n
(
α̃n −

α, β̃n − β
)

converges in distribution to a bivariate normal distribution with mean

vector 0 and variance-covariance matrix W . To complete the proof it is enough to

show that
√

n(α̃n − α̂n)
p−→ 0 and

√
n(β̃n − β̂n)

p−→ 0.

To this end, define

H̃n(s, t) :=
1

n

n∑
i=1

1

s + tXi

− E

(
log

X1

x0

)
,

K̃n(s, t) :=
1

n

n∑
i=1

Xi

s + tXi

− E (X1 − x0)

for s, t > 0. Then we have

Un :=
√

n
(
H̃n(α̂n, β̂n)− H̃n(α̃n, β̃n)

)

=
√

n
(
H̃n(α̂n, β̂n)−Hn(α̂n, β̂n, x̂0)

)
+
√

n
(
Hn(α̃n, β̃n, x0)− H̃n(α̃n, β̃n)

)

=
√

n

(
1

n

n∑
i=1

log
Xi

x̂0

− E

(
log

X1

x0

))
+
√

n

(
E

(
log

X1

x0

)
− 1

n

n∑
i=1

log
Xi

x0

)

=
√

n (log x0 − log x̂0)
p−→ 0 (2.24)

by Lemma 2.6. Similarly we can show

Vn :=
√

n
(
K̃n(α̂n, β̂n)− K̃n(α̃n, β̃n)

)
p−→ 0. (2.25)

Using bivariate mean value theorem we have

Un =
√

n(α̃n − α̂n)
∂H̃n

∂s
(ρn, ζn) +

√
n(β̃n − β̂n)

∂H̃n

∂t
(ρn, ζn),

=:
√

n(α̃n − α̂n)W
(n)
11 +

√
n(β̃n − β̂n)W

(n)
12 , (2.26)

11



where ρn
p−→ α and ζn

p−→ β as n →∞, and

Vn =
√

n(α̃n − α̂n)
∂K̃n

∂s
(ρ̃n, ζ̃n) +

√
n(β̃n − β̂n)

∂K̃n

∂t
(ρ̃n, ζ̃n)

=:
√

n(α̃n − α̂n)W
(n)
21 +

√
n(β̃n − β̂n)W

(n)
22 , (2.27)

where ρ̃n
p−→ α and ζ̃n

p−→ β as n → ∞. Defining W (n) := (W
(n)
ij )1≤i,j≤2 we get

from the equations (2.26) and (2.27) that

√
n(α̃n − α̂n) =

W
(n)
22 Un −W

(n)
12 Vn

det W (n)
(2.28)

and using an argument similar to the proof of (2.23), we get that W (n) p−→ −W ,

where W is as in (2.16). This, in particular, implies det W (n) p−→ det W > 0 by

Cauchy-Schwarz inequality. Hence using (2.24), (2.25) and (2.28), it follows that√
n(α̃n− α̂n)

p−→ 0. By a similar argument we can also show that
√

n(β̃n− β̂n)
p−→ 0

and this completes the proof of Theorem 2.4.

3 Applications

Extensive simulation trials were conducted to validate the estimator developed in

the previous section. For simulated data from the exponentially tempered Pareto

distribution (2.1) the parameter estimates were generally close to the assumed values,

so long as the data range was sufficient to capture both the power law behavior and

the subsequent tempering at the highest values. If the tempering parameter β is very

large, so that the term x−α in (2.1) hardly varies over the data range, then estimates

of α are unreliable. If β is so small that the term e−βx in (2.1) hardly varies over the

data range, then estimates of β are widely variable. In either case, a simpler model

(exponential or power law) is indicated. Naturally the tempered Pareto model (2.1)

is only appropriate when both terms are significant. This can be seen in a log-log plot

of data versus ranks, where a straight line eventually falls away due to tempering. If

the data follows a straight line over the entire tail, then a simpler Pareto model is

indicated. If the data follows a straight line on a semi-log plot, then an exponential

model is appropriate. Several illustrative examples follow.

Figure 1 illustrates the behavior of the tail estimate α̂ from Proposition 2.2 as a

function of the number k of upper order statistics used. The simulated data comes

from the tempered Pareto distribution (2.1) with lower limit x0 = 1, tail parameter

12
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Figure 1: Behavior of α estimate as a function of the number k of upper order statistics

used.

α = 4, and tempering parameter β = 0.5. Simulation was performed using a standard

rejection method. It is apparent that, once the number k of upper order statistics

used reaches a few percent of the total sample size of n = 10, 000, the α estimate

settles down to a reasonable value. In practice, any sufficiently large value of k will

give a reasonable fit.

Figure 2 shows a histogram and normal quantile-quantile plot for α estimates

obtained from 500 replications of the same tempered Pareto simulation. In this

case we set α = 2, β = 0.5 and x0 = 1. The sample size is n = 1, 000 and we

use the k = 500 largest observations to estimate the distribution parameters. The

corresponding plots are similar for various values of the parameters. We conclude

that the sampling distribution of the parameters is reasonably well approximated by

a normal distribution. Note that the asymptotic normality of the parameter estimates

based on the entire data set was established in Theorem 2.4. The asymptotic theory

for the general case k < n is much more difficult.

Exponentially tempered stable laws [18] have power law tails modified by exponen-

tial tempering. Because of the tail-equivalence mentioned in Section 2, the tempered

Pareto model (2.1) gives a simple way to approximate the tail behavior, and estimate

the parameters, which is an open problem for tempered stable laws. The simple and

efficient exponential rejection method of [2] was used to simulate tempered stable ran-
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Figure 2: Evidence of normal sampling distribution for α estimates.

dom variates. Figure 3 shows the upper tail of simulated data following a tempered

stable distribution. The largest k = 100 of the n = 1000 order statistics are plotted.

The underlying stable distribution has tail parameter α = 1.5, skewness 1, mean 0,

and scale σ = 4 in the usual parameterization [23], and the truncation parameter is

β = 0.01. Figure 3 is a log-log plot of the sorted data X(i) versus rank (n − i)/n

exhibiting the power-law tail as a straight line that eventually falls off due to temper-

ing. It is apparent that the tempered Pareto model gives a reasonable fit to the more

complicated tempered stable distribution, which has no closed form. Similar results

were obtained for other values of the parameters. For smaller values of β the data

plot more closely resembles a straight line (power law tail).

Next we apply the conditional MLE developed in this paper to several real data

sets. First we consider a data set from hydrology. Hydraulic conductivity K measures

the ability of water to pass through a porous medium. This is a function of porosity

(percent of the material consisting of pore space) as well as connectivity. K data

was collected in boreholes at the MAcroDispersion Experiment (MADE) site on a Air

Force base near Columbus MS. The data set has been analyzed by several researchers,

see for example [4]. Figure 4 shows a log-log plot of the largest 10% of the data, with

the best-fitting tempered Pareto model (2.1), where the parameters were fit using

Proposition 2.2. Absolute values of K were modeled in order to combine the heavy

tails at both extremes. The largest k = 262 (approximately 10%) values of the data

14
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Figure 3: Tempered Pareto fit to the upper tail of simulated tempered stable data.

were used. It is apparent that the tempered Pareto model gives a good fit to the

data. Since the data deviates from a straight line on this log-log plot, a simple Pareto

model would be inadequate.

Figure 5 shows the constraint function Gn,k(u; xk) from Proposition 2.2 for the

same data set, as a function of u. The vertical line on the graph is the upper bound

of u = k/T1. The constraint function has roots at u = 0 (by definition) and at

u = α̂ = 0.6171 which is the estimate of the tail parameter. In view of Proposition

2.2 this is the unique solution to the normal equations. The remaining parameter

estimates are β̂ = 5.2397 and γ̂ = 0.0187. This is a relatively heavy tail with a strong

truncation.

Figure 6 fits a tempered Pareto model to absolute log returns in the daily price

of stock for Amazon, Inc. The ticker symbol is AMZN. The data ranges from 1

January 1998 to 30 June 2003 (n = 1378). Based on the upper 10% of the data

k = 138, the best fitting parameter values (conditional MLE from Proposition 2.2)

are α̂ = 0.578, β̂ = 0.281, and γ̂ = 0.567. The data shows a classic power law shape,

linear on this log-log plot, but eventually falls off at the largest values. This indicates

an opportunity to improve prediction using a tempered model.

Figure 7 shows the tempered Pareto fit to daily precipitation data at Tombstone

AZ between 1 July 1893 and 31 December 2001. The fit is based on the largest

k = 2, 608 observations, which constitutes the upper half of the nonzero data. The
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Figure 4: Tempered Pareto model for hydraulic conductivity data.
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Figure 5: Constraint function Gn,k(u; xk) for the hydraulic conductivity data, showing

unique positive root.
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Figure 6: Tempered Pareto model for AMZN stock daily price returns.

fitted parameters were α̂ = 0.212, β̂ = 0.00964, and γ̂ = 1.56. The data tail is clearly

lighter than a pure power law model (straight line) but is fit well by the tempered

model. A semi-log plot (not shown) was examined to rule out a simpler exponential

fit.

4 Conclusions

Tempered Pareto distributions are useful to model heavy tailed data, in cases where a

pure power law places too much probability mass on the extreme tail. The simple form

of this probability law facilitates the development of a maximum likelihood estimator

(MLE) for the distribution parameters, accomplished in this paper. Those estimates

are proven to be consistent and asymptotically normal. In some practical applications,

including the tempered stable model, it is only the upper tail of the data that follows

a tempered power law. For that reason, we also develop a conditional MLE in this

paper, based on the upper tail of the data. The conditional MLE is easily computable.

A detailed simulation study was performed to validate the performance of the MLE. In

cases where the tempered Pareto model would be appropriate, the conditional MLE is

reasonably accurate, and its sampling distribution appears to be well approximated by

a normal law. Tempered stable laws are useful models in geophysics, but parameter

estimation for this model is an open problem. Simulation demonstrates that the

17



4.0 4.5 5.0 5.5 6.0 6.5

−8
−6

−4
−2

ln(x)

ln
(P

(X
>x

))

Figure 7: Tempered Pareto model for daily precipitation data.

tempered Pareto model is a reasonable approximation, for which efficient parameter

estimation can be accomplished, via the methods of this paper. Finally, data sets

from hydrology, finance, and atmospheric science are examined. In each case, the

methods of this paper are used to fit a reasonable and predictive tempered Pareto

model.
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