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SUMMARY. The identification of imprinted genes is becoming a standard procedure in 
searching for quantitative trait loci (QTL) underlying complex traits. When a developmental 
characteristic such as growth or drug response is observed at multiple time points, 
understanding the dynamics of gene function governing the underlying feature should 
provide more biological information regarding the genetic control of an organism. 
Recognizing that differential imprinting can be development-specific, mapping imprinted 
genes considering the dynamic imprinting effect can provide additional biological insights 
into the epigenetic control of complex traits. In this study, we propose a Bayesian iQTL 
mapping framework considering the dynamics of imprinting effects and model multiple 
iQTLs with an efficient Bayesian model selection procedure. The method overcomes the 
limitation of the likelihood-based mapping procedure, and can simultaneously identify 
multiple iQTLs with different gene action modes across the whole genome with high 
computational efficiency. An inference procedure using Bayes factor to distinguish different 
imprinting patterns of the detected iQTL is proposed. The utility of the approach is illustrated 
through an analysis of a body weight growth dataset in an F2 family derived from LG/J and 
SM/J mouse stains. The proposed Bayesian mapping method provides an efficient and 
computationally feasible framework for genome-wide multiple iQTL inference. 
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1. Introduction 

Genomic imprinting is a genetic phenomenon in which the same genes are expressed 

differently, depending on their parental origin (Reik and Walter, 2001). On the molecular 

level, genomic imprinting may result from DNA methylation, histone modification, 

noncoding RNAs (ncRNA), and even long distance interchromosomal interactions (Wood 

and Oakey, 2006). Genomic imprinting has been broadly identified in plants (e.g., Alleman 

and Doctor, 2000), animals (e.g., Nezer et al., 1999; Van Laere et al., 2003) and humans (e.g., 

Fall et al., 1999; McInnis et al., 2003).  

The role of genomic imprinting in shaping an organism’s development has been 

unanimously recognized (Isles and Holland, 2005; Tycko and Morison, 2002; Constancia et 

al., 2004). The imprinting effect on traits of interest can be characterized as different types. 

When the paternal allele at a gene is expressed and the maternal allele is inactivated, this 

feature of imprinting is referred to as paternal imprinting. Similarly, maternal imprinting can 

be defined. Genomic imprinting has been traditionally viewed as a mono-allelic expression 

with complete maternal or paternal silence. The definition has been revised by the inclusion 

of partial imprinting which signifies the different levels of expression for alleles inherited 

from different parents (see Naumova and Croteau 2004; Sandovici et al. 2005). Noted that 

these classifications are all based on the additive effect of an imprinting locus, often 

imprinting can cause the change of interactions between alleles. Cheverud et al. (2008) 

recently illustrated a scheme for characterizing the potential diversity of imprinting patterns, 

in which, imprinting patterns are classified as either parental expression (paternal or maternal) 

or dominance (bipolar and polar). This is so far the most complete classification list for 

genomic imprinting. 

Recent studies have shown the powerfulness of genetic mapping in the identification of 

epigenetic modification of imprinted genes or imprinted quantitative trait loci (iQTLs) on 
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complex traits. Methods are developed based on different mapping populations for the 

purpose to identify iQTLs with different genetic designs, for example, the variance 

components methods for family-based pedigree data in human linkage analysis (e.g., Hanson 

et al., 2001; Haghighi and Hodge, 2002; Shete and Amos, 2002); the variance components 

methods for experimental crosses (Li and Cui, 2009, 2010); the regression-based approaches 

for controlled crosses between outbred parents (e.g., Knott et al. 1998; de Koning et al. 2002) 

and between inbreed lines (e.g., Cui et al. 2006; Cui 2007). In practice, when two reciprocal 

heterozygotes along with two homozygotes at each marker loci are fully informative or 

distinguishable in a mapping population, the imprinting effect of an iQTL can be uniquely 

determined by means of conditional probabilities of QTL genotypes on flanking markers. 

However, if two reciprocal heterozygotes are not fully informative or distinguishable, then 

the information about sex-specific differences in recombination fraction can be used to infer 

the imprinting effect of an iQTL (Cui et al. 2006). This allows us to infer in which fashion an 

iQTL is inherited in a segregation population without knowing specific allelic parental origin, 

such as in an F2 population (Cui et al. 2006). 

Most imprinted genes play important roles in controlling embryonic and postnatal growth 

and development in mammal (Isles and Holland 2005; Tycko and Morison 2002; Constancia 

et al. 2004). As a highly complex process, genomic imprinting is involved in a number of 

growth axes operating coordinately at different development stages (Bartolomei and 

Tilghman 1997), and shows time-dependent effect during development (Villar et al. 1995). 

The unbalanced expression of an imprinted gene that occurs during a development stage 

challenges the traditional paradigm of inheritance and mapping methods. We argue that 

traditional methods, by treating a trait measured at a certain developmental stage as mapping 

subject, without considering the correlation information at different developmental stages, are 

less powerful in dissecting the dynamic iQTL effects. Cui et al. (2008a) recently proposed a 
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functional iQTL mapping framework underlying developmental characteristics, which 

incorporates a mathematical function that best describes a developmental feature into an 

iQTL mapping framework. Such an approach can estimate and test time-specific imprinting 

effect at specific developmental stages, and displays several merits over traditional iQTL 

mapping methods.  

However, the current mapping procedures for iQTL inference are all single iQTL models, 

estimating and testing one locus at a time without considering the effects of other iQTLs. 

When multiple iQTLs are presented in the genome, such approaches are less efficient under 

the likelihood-based framework (Kao et al. 1999). For a dynamic trait, the number of 

parameters being estimated is several folds larger than those for a univariate trait. In our 

previous QTL mapping model, we demonstrated that a Bayesian mapping method can handle 

this issue well with high computational efficiency (Yang et al. 2006). In this study, we 

unified the two endeavors, Bayesian mapping of developmental traits and iQTL inference, 

into a unified framework called Bayesian functional multiple iQTL mapping (Bafmim). We 

proposed an efficient Bayesian model selection strategy for multiple iQTL inference for a 

developmental trait. The inference for the number, position and effect of multiple iQTLs as 

well as for different imprinting patterns were provided. The behavior of the proposed method 

was illustrated by a simulation study. A real data set was re-analyzed with the new method. 

We identified several new imprinted genes which otherwise can not be detected by current 

methods. The proposed method has great implications in understanding the function of 

imprinted genes governing developmental characteristics.  

2. Statistical Method 

2.1 The imprinting model  

In a mapping population, assume that there are four distinguishable genotypes, denoted by 
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QMQP, QMqP, qMQP and qMqP , at each locus where the subscript letter M and P refers to an 

allele inherited from the maternal and paternal parents, respectively. A set of codominant 

molecular markers can be genotyped and phenotypes for a developmental trait which is 

measured at m time points on n individuals. In general, the additive effect a, is defined as half 

of the phenotypic difference between two homozygotes; the dominance effect d, is defined as 

the difference between the joint mean of both heterozygotes and the mean of both 

homozygotes; and the imprinting effect i, is defined as the difference between both 

heterozygotes (Falconer and Mackay 1996; Knott et al. 1998). Following the definitions 

about the genetic parameters, an imprinting model for a phenotype measured for individual k 

at time t, denoted as yk(t), can be formulated as 

1
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and  is a random environmental error assumed to be normally distributed with mean 

zero and variance . Note that and are genotype-specific indicator variables 

related to genetic effects and , which are defined by Mantey et al. (2005) as  

))(,0( 2 tN ξσ

)(tek

2σ kjkj wz , kjs

jj da , ji

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−
+

=

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
+

=

⎪
⎪
⎩

⎪⎪
⎨

⎧

−

+

=

PM

PM

PM

PM

kjkjkj

qq
Qq
qQ
QQ

swz

 for       
 for    
 for    
 for       

      

0
1
1

0

,

0
1
1

0

,

1
0
0

1

 

  We use Legendre polynomial of order r to fit changing trajectories of the population mean 

and the effects of each iQTL (Yang and Xu 2007; Cui et al. 2008b). Let ( )tψ be the basis of 
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the Legendre polynomial and have that ( ) ( )t tµ ψ µ= , ( ) ( )j ja t t aψ= , ( ) ( )j jd t t dψ= , 

( ) ( )j ji t t iψ= and ( ) ( )k t t kξ ψ ξ= , where each one of µ , , ,   and ja jd ji kξ  is a vector of 

1+r  dimensions. Model (1) cab be then rewritten as 

1

( ) ( ) ( ) ( ) ( ) ( ) ( )
q

k kj j kj j kj j
j

y t t z t a w t d s t i t e tψ µ ψ ψ ψ ψ ξ
=
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where kξ is a vector of random effects, which is assumed to be multivariate normal with mean 

zero and a  positive definite covariance matrix . )1)(1( ++ rr Σ

For simplicity, we assume that each individual is measured at m time points and the time 

points are common for all individuals. Let  be a ( 1T
mkkkk tytytyy )](),...,(),([ 10= )m 1+ ×  

column vector for the repeated measurements of a developmental trait, and define 
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 matrix. In matrix notation, Model 

(2) becomes  
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where is an T
mkkk tetee )](),...,([ 1= ( 1)m+ ×  vector for the environmental errors, 

distributed as  with ),0(~ 2σINek I  being an ( 1) ( 1m m )+ × +  identity matrix.  

2.2 Bayesian model selection for genetic parameters 

Model (3) is a mixed-effect model where population mean and genetic effects are fixed and 

the time-dependent environmental effect is random. Also noted that Model (3) is not a regular 

linear mixed-effect model, since the number of independent variables for the fixed effects and 

the associated indicator variables are unknown due to unknown number of iQTLs. In 

principle, iQTLs can be distributed anywhere in the genome, and hence any genomic 

positions can be potential iQTL locations. Thus, we approximate positions for all possible 

iQTLs by partitioning the entire genome into evenly spaced loci, covering all observed 
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markers and additional loci between flanking markers. The expected values for elements in a 

relative design matrix to each locus based on the conditional probabilities of the locus 

genotypes on two flanking markers can be calculated (Cui et al. 2006). For a supersaturated 

model where each genomic location could reside a potential iQTL, a huge number of genetic 

effects is almost impossible to be estimated. So we preset an upper bound on the number of 

iQTLs in the model (see Yi et al. 2005). The upper bound should be larger than the potential 

number of detectable iQTLs in a given data set.  

 Given an upper bound on the number of iQTLs, these iQTLs can be drawn from densely 

spaced loci over the genome. Even with a moderate number of upper bound, there are many 

genetic effects being estimated in Model (3). For inferring the existence of these effects, we 

introduce a random binary variable γ to indicate which genetic effects should be included in 

or excluded from the model, corresponding to γ=1 or γ=0 (George and McCulloch 1997; Kuo 

and Mallick 1998; Chipman et al. 2001). Model (3) then becomes 

T T T T T

1
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where γlj (l=a, d, or i) is the indicator variable for genetic effects a, d, or i. Within the 

framework of Bayesian model selection, Bayesian sampling for unknown parameters in 

Model (4), includingµ ,γ , a, d, i, and , is implemented with the MCMC algorithm. 

Considering the same forms of posterior distributions for each γ as well as a, d and i, we 

simplify  item in Model (4) as 

Σ
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xγ ψβ
=
∑ . Also noted that the released sampling 

value for binary variable γ at a previous round determines which genetic effects and position 

of an iQTL should be drawn or estimated at the next round. We leave the details on 

specification of prior distributions for each parameter (see Yang et al. 2006; Yi et al. 2005, 

2007), and focus our presentation on detailed steps in the proposed Bayesian model selection:  
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(1)  Calculate the expected values for the associated design matrix with all loci in the 

genome: 

( ) , ( ) ,and ( )QQ qq Qq qQ Qq qQE z E w E sπ π π π π= − = + = −π  

with , ,  and QQ Qq qQ qqπ π π π being the conditional probabilities of the tested iQTL 

genotype , ,  and M P M P M P M PQ Q Q q q Q q q on two flanking markers. 

(2)  Set an upper bound on the number of imprinting loci, estimated by 

0 03L l l= +  

with  being prior expected number of imprinted loci that is determined according to 

initial investigations with traditional methods (e.g., Cui et al. 2008a). Thus, the prior 

inclusion probability for an iQTL effect is 

0l

1
3

01 1 l
L

⎡ ⎤− −⎢ ⎥⎣ ⎦
. 

(3)  Initialize all variables with some initial values or values sampled from their prior 

distributions (see Yang et al. 2006; Yi et al. 2005, 2007).  

(4)  Update population mean µ  by sampling from a normal distribution with mean 
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corresponding jβ is taken as a zero vector.  

(6)  Update the binary indicators γl by adopting an efficient Metropolis–Hastings algorithm 

(Kohn et al. 2001; Yi et al. 2007) with the probability of acceptance as min (1, ρ), where 

1 2

1
wR

w

γ

ρ
•−

⎛ ⎞= ⎜ ⎟−⎝ ⎠
with  11 ˆ ˆˆexp

1 2
T
j j j

cR
c

β β−⎛= − Σ⎜+ ⎝ ⎠
⎞
⎟ . Note that γl represents any one of 

the binary variables defined in Model (4). 

(7)  Update individual-specific time-dependent random environmental effect kξ by sampling 

from normal distribution with mean and covariance matrix 

. 
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(8)  Update covariance matrix  of Σ kξ  by drawing from an inverse Wishart distribution 

with the form , where),(
1∑ =
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(10) Update the iQTL position by drawing from all spaced loci over the genome. Herein, the 

imprinting locus is sampled as long as the binary variable equals 1 for at least one of the 

genetic effects a, d and i at that locus. Each locus is drawn from a variable interval 

whose boundaries are the positions of adjoining QTLs. Metropolis–Hastings algorithm 

is used to decide whether each proposed (new) position should be accepted or not (see 

Wang et al. 2005; Zhang & Xu 2005). 

(11) Repeat steps (4) – (10) until the Markov chain reaches a desirable length. 

Post MCMC analysis includes the monitor of the mixing behavior and convergence rates 

of the MCMC algorithm, and the assessment of characteristics of the imprinting genetic 
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architecture. The former can be checked by visually inspecting trace plots of the sample 

values of scalar quantities of interest or formal diagnostic methods provided in the package 

R/coda (Plummer et al. 2004). The latter can use model averaging which accounts for model 

uncertainty and average over possible models weighted by their posterior probabilities (see 

Raftery et al. 1997; Ball 2001; Sillanpää and Corander 2002). The posterior inclusion 

probability for each locus is estimated as its frequency in the posterior samples. Bayes factor 

(BF) is used as a measurement for inclusion against exclusion at each iQTL locus (Kass and 

Raftery 1995). Generally, a threshold of BF is empirically determined as 3, or 2 ln 2.1BF = , 

for declaring statistical significance for each iQTL Locus. 

2.3 Bayesian inference for imprinting mode of action 

Generally speaking, an iQTL detected with the above Bayesian algorithm can not be 

declared as an imprinted QTL, until we do further imprinting inference. After an iQTL is 

detected, we can adopt the idea of Bayes factor to infer statistical significance for its 

imprinting effect with the form 

1
1

p pBF
p p

−
=

−
i

i

i   

where p is a prior probability and p. is a posterior probability for a certain genetic effect, 

which is calculated as the proportion of samples in which γl=1 in MCMC sampling rounds. If 

the BF is greater than 3 (or 2 l ) for the imprinting effect i, then the detected iQTL 

can be claimed as a true iQTL, otherwise as a Mendelian QTL. 

n 2.1BF >

   According to the relative estimated effects for a, d and i, Cheverud et al (2008) classified 

imprinting patterns as parental imprinting, i.e., ia ±=  and 0d = , including paternal ( a i= ) 

and maternal ( ) imprinting subtypes; and dominance imprinting with  but a = −i 0a = 0i ≠ , 

which can be further distinguished as bipolar imprinting in which 0d =  and  and polar 

imprinting in which d . This classification provides a comprehensive dissection of 

0i ≠

i= ±
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imprinting pattern an iQTL may possess. 

With the above defined imprinting pattern, we substitute the related hypotheses into the 

genomic imprinting model (1) to differentiate imprinting patterns and obtain different 

reduced models. Table 1 shows all possible imprinting patterns. The corresponding 

hypotheses as well as the reduced models are also listed. Based on the reduced models, we 

also adopted Bayesian model selection to estimate genetic effects of each locus. In order to 

infer imprinting patterns of the detected iQTL, that is, to statistically assess the hypotheses 

that , a new Bayes factor is formulated by comparing posterior probability for 

detected locus between the full and the reduced model, denoted by 

ora d = ±i

full

reduced

p
BF

p
=  

where the prior probabilities for the full and reduced models at the detected iQTL are the 

same and therefore are integrated out. 

In fact, the Gibbs sampling for associated genetic effects with different imprinting 

patterns can be carried out together with Bayesian sampling of the full model, or can be done 

separately after the sampling of the full model. Apparently, the later one is more efficient and 

is computationally faster.  

3. Simulation Studies 

We conducted simulation studies to evaluate the performance of the proposed Bayesian 

functional multiple iQTL mapping approach. A genome consisting of a single large 

chromosome of 600cM was simulated covering 61 evenly spaced markers. The growth 

pattern of a dynamic trait was assumed to be controlled by one QTL inherited in a Mendelian 

fashion and 4 iQTLs with their imprinting patterns, positions and effects listed in Table 2. 

The order of the Legendre polynomial that generates the growth trajectory was assumed to be 

r=3. We simulated a dynamic trait measured at eight time points assuming different sample 
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sizes (n=250, 500) with inbreed F2 individuals. The marker and QTL genotypes in the F2 

family were generated by mimicking sex-specific recombination fractions (see Cui et al. 2006 

for more details). The population mean and the individual-specific environmental error 

covariance matrix were set the same as described in Yang and Xu (2006), and the residual 

variance was set as 4. 

In all analyses for simulated data, we set the prior number of main-effect iQTLs as 4. The 

upper bound of the number of iQTLs was then equal to 10434 =+=L . The actual values 

for the hyperparameters used here mimic the results obtained in real data analyses (see the 

real data analysis section). The initial values of all variables were sampled from their prior 

distributions. The MCMC is run for 10000 cycles as a burn-in period (deleted) and then for 

an additional 150,000 cycles after the burn-in. The chain is then thinned to reduce serial 

correlation by saving one observation in every 50 cycles. The posterior sample contained 

3000 observations for the post-MCMC analysis. Note that the length of the burn-in is judged 

by visually inspecting the plots of some posterior samples across rounds and is set to enough 

cycles for ensuring the MCMC convergence. The simulation experiment is replicated 100 

times for evaluating the statistical power of our method. 

Table 3 shows the mean estimates as well as their standard deviation (in parenthesis) for 

the parameters given in Table 2. The relative statistical power to detect each QTL is also 

listed. Overall, the Bayesian mapping approach is able to estimate the regression effects of 

the iQTLs with reasonable precision. All the four QTL positions can be accurately estimated 

with high precision. As we expected, increasing sample size always leads to small bias, 

increased parameter estimation precision, and high mapping power. For example, the 

mapping power for iQTL 1 increases from 70% to 85% when sample size is increased from 

250 to 500. Even with small sample size (n=250), the iQTL position can also be estimated 

with high precision. This indicates the power of Bayesian mapping for multiple iQTL 
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inference. It is also worthy to emphasize that we can accurately infer the imprinting pattern of 

the detected locus using Bayes factor (data not shown). The simulation indicates the 

robustness of the proposed method in multiple iQTL detection for dynamic traits with 

moderate sample size. 

4. Real Data Analysis 

We illustrate the application of our proposed approach by reanalyzing a mouse body weight 

growth dataset with an F2 mating population derived from two inbreed strains, the Large 

(LG/J) and the Small (SM/J). Total 502 F2 mice were genotyped for 96 microsatellite markers 

located on 19 autosomal chromosomes. A linkage map of a total length of 1780cM has been 

constructed (for details, see Vaughn et al. 1999). The body mass is measured on each mouse 

at 10 weekly intervals starting at day 7. The raw weights were adjusted for the effects of each 

covariate due to dam, litter size at birth and parity, and sex (Vaughn et al. 1999). The dataset 

has been analyzed by Cui et al. (2008a) with likelihood-based functional mapping. 

By fitting the mean change of weight growth over age, we choose the Legendre 

polynomial of order 4 as the base model to describe the changing trajectory for each 

component except for residuals, described in Model (1). The female-to-male recombination 

rate of 1.25:1 is used to estimate conditional probabilities for the four iQTL genotypes (Cui et 

al. 2006). The expected number of main-effect iQTLs was set as 0 4l =  according to the 

results by Cui et al. (2008a) and the upper bounds of the number of iQTLs are then calculated 

as 4 3 4 10L = + = . Thus, the prior inclusion probability for iQTL effects is calculated as 

1
341 1 0.156

10
⎡ ⎤− − =⎢ ⎥⎣ ⎦

. The actual values for the hyperparameters are set as , 

 and . The initial values of all variables were sampled from their prior 

distributions. The MCMC is run 200,000 cycles after the burn-in period of 10,000 cycles. 
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Figure 1 plots the profiles of 2logBF obtained with the Bayesian model selection. The top 

figure shows that there are eight peaks for 2logBFs exceeding the horizontal reference line 

with an empirical critical value 2.1, indicating that eight QTLs are detected on chromosomes 

2, 4, 6, 7, 9, 10, 11 and 15. Among these QTLs detected, six (on chromosomes 2, 4, 6, 7, 10 

and 15) shows significant imprinting effect, as their relative 2logBFs are greater than 2.1 for 

imprinting effects (the bottom figure in Figure 1). The ones on chromosomes 9 and 11 show 

Mendelian inheritance. Table 4 tabulates the position on each chromosome and the estimated 

effects (additive, dominance and imprinting) for the 6 detected iQTLs. The estimated 

regression coefficients for each iQTL have no biological meaning, but they can be used to 

predict the effects of an iQTL at any time points by substituting a time point into the 

Legendre polynomial with the regression coefficients.  

We further evaluated the imprinting pattern of the 6 detected iQTLs. Two of them (on 

chromosomes 4 and 10) show polar imprinting, two (on chromosomes 2 and 6) show 

maternal imprinting and two (on chromosomes 7 and 15) show paternal imprinting, based on 

the results obtained from the significance analysis given in Table 5. Compared to the 

likelihood-based method (Cui et al. 2008a), the Bayesian method identified four more QTLs 

(on chromosomes 2, 4, 9 and 11).  

5. Discussion  

The epigenetic phenomenon in genomic imprinting has been constantly challenging and 

revising the traditional paradigm of inheritance. The inheritable property of imprinting 

provides clues for complicated genetic disorders (Falls et al. 1999). In the meantime, it also 

brings challenges for statistical modeling and mapping. We developed a Bayesian model 

selection method to identifying multiple iQTLs for developmental traits illustrated in an F2 

mating population. It can also be extended to mating designs such as a reciprocal backcross 

design (Cui et al. 2007). The Bayesian method has shown relative merits in multiple QTL 
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mapping partly due to its flexibility to handle a large parameter space (Yang et al. 2006; Yang 

and Xu 2007; Yi et al. 2005, 2007). Both simulation and real data analysis indicate the 

relative power of the proposed Bayesian multiple iQTL mapping for functional traits.  

The current method is developed specifically for longitudinal or functional traits. Recently, 

Hayashi and Awata (2008) proposed a Bayesian mapping approach which can simultaneously 

map multiple QTLs, and further discriminating Mendelian and imprinting expressions of a 

QTL. Although the approach shows improvement in iQTL detection, it is limited by a number 

of facts. For example, drawing number of QTLs with a reversible-jump MCMC procedure 

may have low convergence efficiency. Moreover, the method is developed for univariate 

traits and ignores the dynamics of gene effects. In an earlier paper, Yang et al. (2010) 

developed a Bayesian multiple iQTL mapping method for univariate traits. The current work 

is an extension of our previous work, but taking the challenges of modeling the dynamics of 

genetic effects. 

Our method assumes a maximum number of detectable iQTLs and introduces latent 

binary variables to indicate which main effects for a putative iQTL should be included or 

excluded from the model. Compared to the likelihood-based method (e.g., Cui et al., 2008a), 

it allows MCMC sampling for iQTL parameters to carry out in the reduced model space, thus 

enhancing the computational efficiency of Bayesian multiple iQTL mapping with many 

parameters. In addition, it facilitates statistical inference for imprinting patterns of the 

detected iQTLs with appropriately defined Bayes factors. We took the dynamic course of a 

developmental trait as the mapping subject, and therefore identified more iQTLs altering the 

developmental trajectory than separately performing iQTL mapping at each time point (Cui et 

al. 2006). In terms of computational speeds, the likelihood-based method is slower than the 

Bayesian method due to the slow convergence rate of parameter estimation.  

The key issue for iQTL mapping of developmental traits is to choose appropriate 
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submodels for imprinting inference. In the likelihood-based mapping framework, Cui at al. 

(2008b) proposed to describe the changes of iQTL genotypic effects by a logistic growth 

curve. This parametric assumption is, however, difficult to implement in a multiple iQTL 

model for Bayesian mapping due to the nonlinearity of different submodels. We relaxed the 

parametric assumption, and adopted an orthogonal polynomial mapping approach for 

dynamic iQTL inference. Appropriately selecting optimal polynomial order is essential in 

determining the shape of phenotypic trajectories of a dynamic trait. Cui et al. (2008b) 

proposed two methods to choose an optimal order: (1) assuming the same order for different 

phenotypic trajectories which can be chosen under the null hypothesis; or (2) assuming 

different orders for different phenotypic trajectories. The second method, however, incurs 

huge computational burden. Thus, we adopted the first method and assume the same order to 

fit changes in QTL genetic effects and time-dependent environmental effects. The polynomial 

regression coefficients determine the shape of the population mean and each genetic effect. 

Certainly, an optimal mapping strategy is to choose the polynomial of different orders to best 

model each components in the imprinting model, which we leave it for future investigation. 

In a functional mapping, how to model the correlation structure for repeated 

measurements is also a challenging problem. In most functional mapping studies, a 

parametric residual covariance structure such as the autoregressive model with order 1 

[AR(1)] is often assumed (Ma et al. 2002). However, it is very difficult to impellent a 

Bayesian method for this structure because of the complicated structure for the marginal 

posterior distribution. In contrast, the covariance structure described by 2σψψ IT +∑  is 

more flexible than the parametric structure because we can actually choose different degrees 

of polynomial order to fit a covariance structure with a large degree of complexity (Yang and 

Xu 2007). Moreover, we can easily sample the covariance matrix ∑  from a closed form of 

marginal posterior distribution. Yap et al. (2009) recently proposed a nonparametric method 
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for covariance structure modeling in functional mapping. More work is needed to integrate 

these techniques into a Bayesian mapping framework to improve mapping power. 

The multiple iQTL model for developmental traits proposed herein could be treated as a 

general form of the model for analyzing genomic imprinting of a quantitative trait. For 

instance, let 1=ψ  and 0=iξ in scale, that is, only one fixed time point is measured on 

each individual, leading to a multiple interacting iQTL model for a univariate quantitative 

trait; take ψ  to be an identity matrix of order m, and iξ  to be a zero vector, resulting in a 

multiple interacting iQTL model for a multiple quantitative trait. If iξ  is assigned to be 

non-zero in above two cases, then a multiple iQTL model for a univariate and a multivariate 

quantitative trait can also be able to make use of repeated records on the phenotype. 

Corresponding Bayesian model selection approaches can be likewise obtained by taking 

different values for ψ  and iξ . 
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Figure 1— The profiles of 2logBF for genome-wide iQTL scan (top) and for various genetic effects inference of iQTLs (bottom) obtained with 
the Bafmim in mouse weight growth. In both figures, linkage groups are separated by the vertical dotted lines and marker positions are indicated 
by the ticks on the horizontal axis. The horizontal reference line is the empirical critical value 2.1 for 2logBF. In the bottom figure, the thick 
solid, thin solid and dashed lines represent additive, dominance and imprinting effects, respectively. 

0

2

4

6

8

Chromosome

2l
og

B
F

                 1                2              3          4              5           6         7        8        9      10          11      12        13        14     15 16 17  18   X

 

22 



Imprinting 
Pattern 

Imprinting 
direction Hypothesis Reduced model 

Paternal 
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Table 1: Imprinting patterns, hypothesis and corresponding reduced models 
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Table 2: The imprinting type and parameters (Regression effects) of iQTLs used in simulation 

 
QTL 
No. 

Imprinting 
type Position 0a  1a  2a  3a  0d  1d  2d  3d  0i  1i  2i  3i  

1              Mendelian 23 1.82 -0.80 -1.20 -0.80 

2               

             

            

               

Paternal 148 0.00 1.65 2.52 1.20 0.00 1.65 2.52 1.20

3 Maternal 256 2.55 1.36 -2.02 -1.27 -2.55 -1.36 2.02 1.27

4 Bipolar 332 2.55 1.36 -2.02 -1.27

5 Polar 522 2.00 -1.25 0.00 -1.28 2.00 -1.25 0.00 -1.28
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Sample 
size 

QTL 
No. 0a  1a  2a  3a  0d  1d  2d  3d  0i  1i  2i  3i  

250            1 1.77(0.23) -0.95(0.35) -1.17(0.40) -0.92(0.33)

          

           

             

             

           

25

Table 3: Mean estimates and standard deviations (in parentheses) of iQTL regression effects 

2 -0.07(0.24) 1.68(0.36) 2.47(0.45) 1.16(0.39) -0.03(0.31) 1.63(0.28) 2.42(0.49) 1.17(0.33)

3 2.58(0.43) 1.42(0.30) -1.97(0.41) -1.30(0.43) 2.53(0.44) 1.39(0.35) -1.99(0.48) -1.32(0.51)

4 3.01(0.49) 0.04(0.18) -0.98(0.33) 1.79(0.31)

5 1.96(0.32) -1.31(0.31) 0.05(0.25) -1.19(0.40) 1.91(0.31) -1.36(0.40) 0.02(0.21) -1.15(0.47)

500 1 1.86(0.21) -0.85(0.33) -1.18(0.34) -0.84(0.25)

            

         

             

              

2 0.02(0.19) 1.67(0.22) 2.49(0.38) 1.18(0.30) 0.01(0.22) 1.64(0.23) 2.45(0.34) 1.15(0.28)

3 2.56(0.25) 1.40(0.24) -2.04(0.32) -1.30(0.29) 2.50(0.23) 1.44(0.28) -2.00(0.35) -1.34(0.26)

4 2.96(0.28) 0.01(0.11) -1.07(0.24) 1.74(0.25)

5 2.03(0.19) -1.27(0.24) 0.03(0.18) -1.25(0.24) 1.97(0.21) -1.16(0.20) 0.01(0.15) -1.30(0.20)
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Table 4: Mean estimates and standard deviations (in parentheses) of iQTL positions and 
statistical power of iQTL detection 

QTL No. Sample 
Size  

1 2 3 4 5 

Position 21.3(3.6) 147.3(4.2) 258.7(5.4) 334.1(5.8) 524.7(6.1) 
250 

Power (%) 84 72 80 90 84 

Position 22.9(3.3) 148.5(3.7) 257.9(4.1) 333.7(4.6) 520.5(5.0) 
500 

Power (%) 100 96 100 100 98 

 



QTL Position 
(Chr.-cM) 0a  1a  2a  3a  0d  1d  2d  3d  0i  1i  2i  3i  

1          2-104.3 0.254 0.633 0.166 0.033 0.074 0.180 0.061 0.013

2              

          

          

              

          

4-38.1 -0.070 -0.360 -0.132 0.036 -0.050 -0.118 -0.028 0.028

3 6-73.2 0.425 0.525 0.075 0.055 0.162 0.210 0.060 0.032

4 7-63.1 0.787 0.851 -0.044 0.103 0.185 0.210 0.016 0.141

5 10-72.7 0.027 -0.165 0.018 -0.018 0.023 -0.061 0.004 -0.006

6 15-12.7 0.896 0.311 -0.314 0.062 0.117 0.071 -0.035 0.034

27

 
Table 5: Estimates for positions and regression coefficients of iQTLs for body weight growth in mice 

 
 

 
 

 

 



Table 6: 2logBFs for iQTL effects and imprinting types for detected iQTLs for body weight 
growth in mice 

QTL a d i Imprinting Type 

1 3.29 0.64 2.20  Additive-Paternal 

2 1.01 3.34 4.47  Dominance-Over 

3 4.72 1.83 3.24  Additive-Paternal 

4 2.95 0.54 2.97  Additive-Paternal 

5 0.87 4.32 3.68  Dominance-Over 

6 4.46 1.70 4.23  Additive-Paternal 
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