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We establish characterization results for the ergodicity of sym-
metric α–stable (SαS) and α–Fréchet max–stable stationary random
fields. We first show that the result of Samorodnitsky [35] remains
valid in the multiparameter setting, i.e., a stationary SαS (0 < α < 2)
random field is ergodic (or equivalently, weakly mixing) if and only if
it is generated by a null group action. The similarity of the spectral
representations for sum– and max–stable random fields yields paral-
lel characterization results in the max–stable setting. By establishing
multiparameter versions of Stochastic and Birkhoff Ergodic Theo-
rems, we give a criterion for ergodicity of these random fields which
is valid for all dimensions and new even in the one–dimensional case.
We also prove the equivalence of ergodicity and weak mixing for the
general class of positively dependent random fields.

1. Introduction. A process is called sum–stable (max–stable, respec-
tively) if so are its finite dimensional distributions and it arises as a limit, un-
der suitable affine transformations, of sums (maxima, respectively) of inde-
pendent processes. Convenient stochastic integral representations have been
developed and actively used to study the structure and properties of sum–
stable processes and fields (see, e.g., [36], [22], [24], [23], [19], [33], [34], [35],
[31]), [29] and [30]. On the other hand, the seminal works of de Haan [7] and
de Haan and Pickands [8] as well as the recent developments in [38], [43],
and [10] have developed similar tools to represent and handle general classes
of max–stable processes.

The ergodic properties of stationary stochastic processes and fields are of
fundamental importance and hence well-studied. See, e.g., Maruyama [16],
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Rosiński and Żak [25, 26], Roy [27, 28] for results on infinite divisible pro-
cesses and Cambanis et al. [2], Podgórski [20], Gross and Robertson [6],
Gross [5] for results on stable processes. These culminated in the characteri-
zation of Samorodnitsky [35], which shows that the ergodicity of a stationary
symmetric stable process is equivalent to the null–recurrence of the underly-
ing nonsingular flow. On the other hand, necessary and sufficient conditions
for the ergodicity of max–stable processes have only recently been obtained
in [37]. Kabluchko [10] has shown that as in the sum–stable case, one can
associate a nonsingular flow to the process and that the characterization of
Samorodnitsky [35] remains valid in the max–stable setting, as well. The
question whether this is the case for sum–stable and max–stable random
fields remained open.

We resolve the above open question by characterizing the ergodicity for
both classes of sum– and max–stable stationary random fields. For simplicity
of exposition as well as mathematical tractability, we work with symmetric
α–stable (SαS), (0 < α < 2) sum–stable fields and α–Fréchet max–stable
fields (α > 0). As in the case of processes, we use minimal representations to
relate the random fields to the underlying nonsingular actions following [23]
and then show, by establishing multiparameter versions of the Stochastic and
Birkhoff Ergodic Theorems for actions (of both Zd and Rd), that the sum–
or max–stable random fields are ergodic if and only if they are generated by
null group actions. These ergodic theorems can be of independent interest
in both probability and ergodic theory.

The main obstacle to this work is unavailability of higher–dimensional
analogue of the work of Krengel [13], which helps to characterize station-
ary SαS processes generated by positive and null flows; see [35] for details.
In contrast to the case of processes, we use the work of Takahashi [40],
to develop tractable and dimension–free criterion for verifying whether a
given spectral representation corresponds to a random field generated by a
null (or positive) action. These results offer alternative characterizations of
ergodicity even in the one–dimensional case.

In this work, we also establish random fields analogues of some of the
classical results on stable and max–stable processes. In particular, we show,
following closely the work of Podgórski [20], that ergodicity and weak mixing
are equivalent for stationary SαS random fields. We also extend a well–
known result of Gross [5] and give necessary and sufficient condition for a
stationary SαS random field to be weakly mixing and in the process fill in
a gap in [5] (see Remark A.3 below). Similarly, in the α–Fréchet case, we
obtain a multiparameter version of a characterization of ergodicity given by
Stoev [37].
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Rosińsky and Żak [26] have shown that weak mixing and ergodicity are
equivalent for (sum–)infinitely divisible processes. Recently, Kabluchko and
Schlather [11] established the equivalence of weak mixing (of all orders) and
ergodicity for max–infinitely divisible processes. In Section 5, we obtain a
result showing the equivalence of weak mixing and ergodicity for the general
class of positively dependent stationary random fields, which includes as
particular cases max–infinitely divisible and max–stable random fields.

The paper is organized as follows. In Section 2, we start with some auxil-
iary results from ergodic theory. In particular, we establish multiparameter
versions of the Stochastic and Birkhoff Ergodic Theorems. In Section 3,
we establish the positive–null decomposition for measurable stationary SαS
random fields. Section 4 contains the main results on the ergodicity of SαS
random fields as well as the extensions of some other classical results on sta-
ble processes. The max–stable setting is discussed in Section 5. We conclude
with a couple of examples in Section 6. Some technical proofs and auxiliary
results are given in the Appendix.

2. Preliminaries on Ergodic Theory. In this section, we start with
some preliminaries on ergodic theory used in the rest of the paper. We
then establish multiparameter ergodic theorems that can be of independent
interest. Throughout this paper, we let (S,B, µ) denote a standard Lebesgue
space (see Appendix A in [19]). Let φ denote a bi–measurable and invertible
transformation on S. We say that φ is non–singular, if µ ◦ φ−1 ∼ µ. In this
case, one can define the dual operator φ̂, as a mapping from L1(S, µ) to
L1(S, µ) such that:

(2.1) φ̂f(s) ≡
[
φ̂f
]

(s) :=

(
d(µ ◦ φ−1)

dµ

)
(s) f ◦ φ−1(s) .

Note that φ̂ is a positive linear isometry (hence a contraction) on L1(S, µ).
Dual operators facilitate the study of the corresponding point mappings.

In particular, the existence of a finite φ–invariant positive measure ν �
µ, ν ◦ φ−1 = ν is equivalent to φ̂(dν/dµ) = dν/dµ, i.e. the existence of a
fixed point of the dual operator φ̂ (see, e.g.,Proposition 1.4.1 in [1]). The
characterization results in the next section are in terms of dual operators.

2.1. Group Actions. Let now G ≡ (G,+) be a locally compact, topologi-
cal abelian group with identity element 0. Equip G with the Borel σ–algebra
A.

Definition 2.1. A collection of measurable transformations φt : S →
S, t ∈ G is called a group action of G on S (or a G–action), if
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(i) φ0(s) = s for all s ∈ S ,
(ii) φv+u(s) = φu ◦ φv(s) for all s ∈ S, u, v ∈ G,
(iii) (s, u) 7→ φu(s) is measurable w.r.t. the product σ–algebra A⊗ B.

A G–action G = {φt}t∈G on (S, µ) is called non–singular, if φt is non–singular
for all t ∈ G.

In the sequel, let G = {φu}u∈G denote a non–singular G–action on (S, µ).
The existence of a G-invariant finite measure ν, equivalent to µ, is an impor-
tant problem in ergodic theory. The investigation of this problem was initi-
ated by Neveu [17] and further explored by Krengel [13] and Takahashi [40]
among others. In the rest of this section, we present results due essentially
to Takahashi [40]. We will see that the invariant finite measures induce a
modulo µ unique decomposition of S. This decomposition will play an im-
portant role in the characterization of ergodicity for sum and max–stable
random fields. The proofs of the results mentioned in this section are given
in the Appendix.

Consider the class of finite (positive) G-invariant measures on S, abso-
lutely continuous with respect to µ:

Λ(G) := {ν � µ : ν finite measure on S, ν ◦ φ−1 = ν for all φ ∈ G} .

For all ν ∈ Λ(G), let Sν ≡ supp(ν) := {dν/dµ > 0} denote the support of ν
(mod µ) and set I(G) := {Sν : ν ∈ Λ(G)}.

Lemma 2.2. I(G) has a modulo µ unique maximal element PG. That is,

(i) For all Sν ∈ I(G), µ(Sν \ PG) = 0.
(ii) If there exists another QG such that (i) holds, then PG = QG mod µ.

This result suggests the decomposition:

(2.2) S = PG ∪NG ,

where NG := S \ PG . The set PG ≡ Sν0 , ν0 ∈ Λ(G) is the largest (mod µ)
set, where one can have a finite G-invariant measure ν0, equivalent to µ|PG .
Consequently, there are no finite measures supported on NG , invariant w.r.t.
G and absolutely continuous w.r.t. µ.

The next theorem provides a convenient characterization of the decom-
position (2.2).

Theorem 2.3. Consider any f ∈ L1(S, µ), f > 0. Let PG denote the
unique maximal element of I(G) and set NG := S \ PG. We have:
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(i) The sets PG and NG are invariant w.r.t. G, i.e., for all φ ∈ G, we have

µ(φ−1(PG)4PG) = 0 and µ(φ−1(NG)4NG) = 0 .

(ii) Restricted to PG,

(2.3)
∞∑
n=1

φ̂unf(s) =∞ , µ-a.e. for all {φun}n∈N ⊂ G .

(iii) Restricted to NG,

(2.4)
∞∑
n=1

φ̂unf(s) <∞ , µ-a.e. for some {φun}n∈N ⊂ G .

The decomposition in (2.2) is unique (mod µ). It is referred to as the
positive–null decomposition w.r.t. G. The sets PG and NG are referred to
as the positive and null parts of S w.r.t. G, respectively. If µ(NG) = 0
(µ(PG) = 0, resp.), then G is said to be positive (null, resp.) G–action.

The next result provides an equivalent characterization of (2.2), based
on the notion of weakly wandering set. Recall that a measurable set W ⊂
S is weakly wandering, w.r.t. G, if there exists {φtn}n∈N ⊂ G such that
µ(φ−1

tn (W ) ∩ φ−1
tm (W )) = 0 for all n 6= m.

Theorem 2.4. Under the assumptions of Theorem 2.3, we have:

(i) The positive part PG has no weakly wandering set of positive measure.
(ii) The null part NG is a union of weakly wandering sets w.r.t. G.

We conclude this section with some remarks as follows.

Remark 2.5. Theorems 2.3 and 2.4 follow from Theorems 1 and 2
in [40], which are valid for the general case when G is an amenable semi-
group. See e.g. [32] for more on amenable groups.

Remark 2.6. In the case when G = Z, one can further express NG
via an exhaustively weakly wandering set W . Namely, NG =

⋃∞
n=1 φ

−1
tn (W ),

where µ
(
φ−1
tn (W ) ∩ φ−1

tm (W )
)

= 0, ∀n 6= m (see, e.g., [9]). We don’t know
whether this is the case for general G.

Remark 2.7. In the one–dimensional case, Krengel [13] (for G = Z) and
Samorodnitsky [35] (for G = R) establish alternative characterizations of the
decomposition (2.2). These results involve certain integral tests, which we
were unable to extend to multiple dimensions. Takahashi’s characterizations,
employed in Theorem 2.3, are valid for all dimensions.
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2.2. Multiparameter Ergodic Theorems. In the rest of the paper, we focus
on Td–actions, where T stands for either the integers Z or the reals R. We
equip Td with the measure λ ≡ λTd , which is either the counting (if T = Z)
or the Lebesgue (if T = R) measure.

In this section, we establish multiparameter versions of the stochastic
ergodic theorem and Birkhoff theorem for the case of Td–actions. These two
results provide important tools for studying the ergodicity of sum– and
max–stable random fields.

Introduce the average functional AT , defined for all locally integrable
h : Td → R:

ATh ≡ ATd,Th :=
1

C(T )

∫
B(T )

h(t)λ(dt) ,

with B(T ) ≡ BTd(T ) := (−T, T ]d ∩ Td and C(T ) ≡ CTd(T ) := (2T )d.
Consider now a collection of functions {ft}t∈Td ⊂ L1(S, µ) such that

(t, s) 7→ f(t, s) ≡ ft(s) is jointly measurable when T ≡ R. Then, one can
define the average operator:

(2.5) (AT f)(s) :=
1

C(T )

∫
B(T )

ft(s)λ(dt) .

Let ‖·‖ denote the L1 norm. If t 7→ ‖ft‖ is locally integrable (i.e. integrable
on finite intervals) then Fubini’s theorem implies that AT f ∈ L1(S, µ), for
all T > 0. Recall also that a sequence of measurable functions {fn}n∈N ⊂
Lα(S, µ) converges stochastically (or locally in measure) to g ∈ Lα(S, µ), in
short fn

µ→ g, as n→∞, if
(2.6)
lim
n→∞

µ
(
{s : |fn(s)−g(s)

∣∣ > ε} ∩B
)

= 0 for all ε > 0, B ∈ B with µ(B) <∞ .

Remark 2.8. By Theorem A.1 in [12], there exists a strictly positive
measurable function (t, s) 7→ w(t, s), such that for all t ∈ Td,

w(t, s) =
dµ ◦ φt
dµ

(s)

for µ–almost all s, and for all t, h ∈ Td and for all s ∈ S

(2.7) w(t+ h, s) = w(h, s)w(t, φh(s)).

From now on, we shall use w(t, s) as the version of the Radon-Nikodym
derivative dµ◦φt

dµ (s).
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Theorem 2.9 (Multiparameter Stochastic Ergodic Theorem for Non-
singular Actions). Let {φt}t∈Td be a nonsingular Td–action on the mea-
sure space (S, µ). Let f0 ∈ L1(S, µ) and define f(t, s) ≡ (φ̂−tf0)(s) :=
w(t, s)f0 ◦ φt(s). Then, there exists f̃ ∈ L1(S, µ), such that

(2.8) AT f ≡
1

C(T )

∫
B(T )

f(t, ·)λ(dt)
µ→ f̃ as T →∞ .

Moreover, f̃ is invariant w.r.t. Ĝ, i.e., φ̂tf̃ = f̃ for all t ∈ Td.

Proof. Suppose first that T = Z. The existence of f̃ follows from Kren-
gel’s stochastic ergodic theorem (Theorem 6.3.10 in [14]). To see that f̃ is
L1–integrable, pick a subsequence Tn such that ATnf → f̃ , µ-a.e., as n→∞.
By Fatou’s Lemma,

‖f̃‖ = ‖ lim
n→∞

ATnf‖ ≤ lim inf
n→∞

‖ATnf‖ ≤ ‖f0‖ <∞ ,

which implies f̃ ∈ L1(S, µ). Here we used the fact that∫
S
|AT f |dµ ≤ AT

∫
S
|φ̂−tf0|dµ = AT ‖f0‖ = ‖f0‖.

We now prove that f̃ is invariant w.r.t. Ĝ. Fix τ ∈ Td and let Tn → ∞ be
such that gn := ATnf → f̃ , µ-a.e., as n→∞. Then, since φτ is non–singular,

(2.9) (φ̂−τgn)(s) ≡ d(µ ◦ φτ )
dµ

(s)gn ◦ φτ (s)

−→ d(µ ◦ φτ )
dµ

(s)f̃ ◦ φτ (s) ≡ (φ̂−τ f̃)(s), µ-a.e.,

as n → ∞. On the other hand, since f(t, φτ (s)) = w(t, φτ (s))f0 ◦ φt+τ (s),
we obtain by (2.7) and Fubini’s Theorem that

(φ̂−τgn)(s) =
1

C(Tn)

∫
B(Tn)

w(τ + t, s)f0(φτ+t(s))λ(dt)

=
1

C(Tn)

∫
B(Tn)+τ

f(t, s)λ(dt), µ-a.e.

Therefore, by performing cancelations and applying Fubini’s theorem, we
get:

‖φ̂−τgn − gn‖ ≤
λ((B(Tn) + τ)∆B(Tn))

C(Tn)
‖f0‖,
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where D∆E = (D \ E) ∪ (E \ D) is the symmetric difference of sets. The
last term vanishes, as n → ∞, since τ ∈ Zd is fixed. This implies that
φ̂−τgn

µ→ f̃ , as n→∞, which in view of (2.9), yields φ̂−τ f̃ = f̃ , µ-a.e. This,
since τ ∈ Zd was arbitrary, establishes the desired invariance of the limit f̃ .

Suppose now that T = R. Since we will use the result proved for T = Z,
we explicitly write AZd,T and ARd,T to distinguish between the discrete and
integral average operators, respectively. In view of part (i), for all δ > 0, we
have

(2.10) ARd,nδf0 ≡
1

(2nδ)d

∫
(−nδ,nδ]d

φ̂−τfdτ

=
1

(2n)d
∑

t∈(−n,n]d∩Zd
φ̂−δtg

(δ) ≡ AZd,ng
(δ),

where
g(δ)(s) :=

1
δd

∫
(−δ,0]d

(φ̂−τf0)(s)dτ ∈ L1(S, µ) .

As already shown for the case T = Z, the right–hand side of (2.10) converges
stochastically, as n → ∞, to g̃(δ) ∈ L1(S, µ), where g̃(δ) is φ̂−δt–invariant,
for all t ∈ Zd.

On the other hand, for all δ > 0, one can show ‖ARd,T f−ARd,bTδ cδf‖ → 0
as T →∞. Therefore, we have that

ARd,T f
µ→ g̃(δ) as T →∞ ,

which shows in particular that g̃(δ) = g̃ ∈ L1(S, µ) must be independent of
δ > 0. Since g̃ is invariant w.r.t. φ̂δt for all δ > 0 and t ∈ Zd, it follows that
g̃ is Ĝ–invariant.

Theorem 2.10 (Multiparameter Birkhoff Theorem). Assume the con-
ditions of Theorem 2.9 hold. Suppose, moreover, that the action {φt}t∈Td is
measure preserving on (S, µ), and that µ is a probability measure. Then,

AT f → f̃ := Eµ(f |I) almost surely and in L1 ,

where I is the σ–algebra of all G–invariant measurable sets.

Proof. Suppose first that T = Z. The almost sure convergence and the
structure of the limit f̃ follow from Tempel’man’s Theorem (Theorem 6.2.8
in [14] p.205). The L1–convergence is clear when f0 is bounded. Suppose
now that f0 ∈ L1(S, µ). Consider the sequence AT f, T ∈ N. For all ε > 0
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there exists a bounded f
(ε)
0 ∈ L∞(S, µ) such that ‖f0 − f (ε)

0 ‖ < ε/3. Then,
by the triangle inequality and the fact that AT is a linear contraction, we
get

‖AT1f −AT2f‖ ≤ ‖AT1f
(ε) −AT2f

(ε)‖+ 2‖f0 − f (ε)
0 ‖

≤ ‖AT1f
(ε) −AT2f

(ε)‖+ 2ε/3 < ε,

for all sufficiently large T1 and T2. This is because AT f (ε) converges in L1.
We have thus shown that AT f, T ∈ N is a Cauchy sequence in the Banach
space L1(S, µ), and hence it has a limit, which is necessarily f̃ .

Let now T = R. First, by a discretization argument as in the proof of
Theorem 2.9, we can show AT f → f̃ almost surely, for all f0 ∈ L1(S, µ). The
L1–convergence can be established as in the proof in the discrete case.

3. Stationary Sum–Stable Random Fields. Here, we investigate
the structure of stationary sum–stable random fields X = {Xt}t∈Td , indexed
by Td. We focus on the general class of measurable symmetric α–stable
(SαS) random fields with 0 < α < 2. These fields have convenient stochastic
integral representations:

(3.1) {Xt}t∈Td
d=
{∫

S
ft(s)Mα(ds)

}
t∈Td

,

where {ft}t∈Td ⊂ Lα(S, µ), and the integral is with respect to an indepen-
dently scattered SαS random measure Mα on S with control measure µ (see
Chapters 3 and 13 in [36], for more details). Without loss of generality, we
shall also assume that {ft}t∈Td has full support in Lα(S, µ). Namely, there
is no B ∈ B with µ(B) > 0, such that

∫
B |ft(s)|αµ(ds) = 0, for all t ∈ Td.

The measurability of X allows us to choose (S, µ) in (3.1) to be a standard
Lebesgue space and the functions (t, s) 7→ ft(s) to be jointly measurable (see,
e.g., Proposition 11.1.1 and Theorem 13.2.1 in [36]). Relation (3.1) will be
also referred to as a spectral representation of the random field X.

It is known from Rosiński [22] and [23] that when X is stationary, there
exists a minimal spectral representation (3.1) with

(3.2) ft(s) = ct(s)
(d(µ ◦ φt)

dµ
(s)
)1/α

f0 ◦ φt(s) , t ∈ Td ,

where f0 ∈ Lα(S, µ), {φt}t∈Td is a non–singular Td–action on (S,B, µ), and
{ct}t∈Td is a cocycle for {φt}t∈Td taking values in {−1, 1}. Namely, (t, s) 7→
ct(s) ∈ {−1, 1} is a measurable map, such that for all u, v ∈ Td,

cu+v(s) = cv(s)cu (φv(s)) , µ-a.e. s ∈ S .
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The representation (3.1) is minimal, if the ratio σ–algebra σ(ft/fτ : t, τ ∈
Td) is equivalent to B (see Definition 2.1 in [22]). We say that a random
field {Xt}t∈Td with the minimal representation (3.1) and (3.2) is generated
by the Td–action {φt}t∈Td and the cocycle {ct}t∈Td . In this case, we also say
{Xt}t∈Td has an action representation (f0,G ≡ {φt}t∈Td , {ct}t∈Td).

It turns out, moreover, the action {φt}t∈Td is determined by the distri-
bution of {Xt}t∈Td , up to the equivalence relationship of Td–actions (see
Theorem 3.6 in [22]). Thus, structural results for the Td–actions imply im-
portant structural results for the corresponding SαS fields. In particular, by
using Theorem 2.3, we obtain the following result:

Theorem 3.1. Let {Xt}t∈Td be a measurable stationary SαS random
field with spectral representation (3.1). We suppose that (S,B, µ) is a stan-
dard Lebesgue space and the spectral representation {ft(s)}t∈Td is measur-
able. Assume, in addition that

(3.3) g(s) :=
∫
T0

aτ |fτ (s)|αλ(dτ) is L1–integrable and supp(g) = S ,

for some T0 ∈ BTd and aτ > 0, ∀τ ∈ T0. Then,

(i) {Xt}t∈Td is generated by a positive Td–action if and only if

(3.4)
∞∑
n=1

∫
T0

aτ |fτ+tn(s)|αλ(dτ) =∞ , µ-a.e. , for all {tn}n∈N ⊂ Td .

(ii) {Xt}t∈Zd is generated by a null Td–action if and only if
(3.5)
∞∑
n=1

∫
T0

aτ |fτ+tn(s)|αλ(dτ) <∞ , µ-a.e. , for some {tn}n∈N ⊂ Td .

In particular, the classes of stationary SαS random fields generated by pos-
itive and null Td–actions are disjoint.

Remark 3.2. One can always choose {aτ}τ∈T0 such that (3.3) holds, if
the spectral functions {ft}t∈Td have full support in Lα(S, µ).

Proof of Theorem 3.1. Suppose that the spectral functions {ft}t∈Td
are minimal and have the form (3.2). Observe that, for all t, τ ∈ Td, we have

|fτ+t(s)|α =
d(µ ◦ φt)

dµ
(s)

d(µ ◦ φτ )
dµ

◦ φt(s)|f0 ◦ φτ ◦ φt(s)|α, µ-a.e.
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Since both the l.h.s. and the r.h.s. are measurable in (τ, s), by Fubini’s
theorem,∫

T0

aτ |fτ+t(s)|αλ(dτ)

=
d(µ ◦ φt)

dµ
(s)
∫
T0

aτ |fτ ◦ φt(s)|αλ(dτ) = (φ̂−tg)(s), µ-a.e.,

where the last relation follows from (2.1). Therefore,

∞∑
n=1

∫
T0

aτ |fτ+tn(s)|αλ(dτ) =
∞∑
n=1

φ̂−tng, µ-a.e., ∀{tn}n∈N ⊂ Td.

Hence Theorem 2.3 (ii) and (iii), applied to the strictly positive function
g ∈ L1(S, µ), implies the statements of parts (i) and (ii), respectively.

Using Remark 2.5 in [22] and a standard Fubini argument, it can be
shown that a test function (3.3) in the general case corresponds to one in
the situation when the integral representation {ft}t∈Td of the field is of the
form (3.2). Therefore, an argument parallel to the proof of Corollary 4.2 in
[22] shows that the tests described in this theorem can be applied to any
full support integral representation, not necessarily of the form (3.2). This
completes the proof.

Remark 3.3. Theorem 3.1 provides dimension–free characterizations of
the fields generated by positive or null Td–actions. The seminal work of
Samorodnitsky [35] gives alternative characterizations in the case d = 1 (see
also Remark 2.7).

The above characterization motivates the following decomposition of an
arbitrary measurable stationary SαS random field X = {Xt}t∈Td . Without
loss of generality, let X have a representation (f0,G ≡ {φt}t∈Td , {ct}t∈Td) as
in (3.1) and (3.2). Then, by Lemma 2.2 S = PG ∪NG and one can write:

(3.6) {Xt}t∈Td
d=
{
XP
t +XN

t

}
t∈Td

with

XP
t =

∫
PG
ft(s)Mα(ds) and XN

t =
∫
NG

ft(s)Mα(ds) for all t ∈ Td .
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Corollary 3.4. (i) The decomposition (3.6) is unique in law. That is,
if there is another representation (f (2)

0 ,G(2) ≡ {φ(2)
t }t∈Td , {c

(2)
t }t∈Td) satisfy-

ing (3.1) and (3.2), then

{XP
t }

d=

{∫
PG(2)

f
(2)
t dMα

}
and {XN

t }
d=

{∫
NG(2)

f
(2)
t dMα

}
.

(ii) The components XP = {XP
t }t∈Td and XN = {XN

t }t∈Td are independent,
XP is generated by a positive Td–action and XN is generated by a null Td–
action.

Proof. Proof of (ii) is trivial. To prove (i), observe that by Remark 2.5
in [22], there exist measurable functions Φ : S2 → S and h : S2 → R \ {0}
such that for all t ∈ Td,

(3.7) f
(2)
t (s) = h(s)ft ◦ Φ(s) µ2–almost all s ∈ S2 ,

and dµ = (|h|αdµ2)◦Φ−1. Using (3.7) and an argument parallel to the proof
of (2.18) in [35], it can be shown that PG(2) = Φ−1 (PG) andNG(2) = Φ−1 (NG)
modulo µ2, from which the distributional equalities in (i) follows as in the
proof of Theorem 4.3 in [22].

4. Ergodic Properties of Stationary SαS Fields. Let (Ω,F , P)
be a probability space, and {θt}t∈Td a measure–preserving Td–action on
(Ω,F , P). Consider the random field Xt(ω) = X0◦θt(ω), t ∈ Td. The random
field {Xt}t∈Td defined in this way is stationary and conversely, any stationary
measurable random field can be expressed in this form.

We start by introducing some notation. For all t = (t1, · · · , td) ∈ Td, let
‖t‖ denote max1≤i≤d |ti|. We consider the class T of all subsequences that
converge to infinity in the following sense:

T :=
{
{tn}n∈N ⊂ Td : lim

n→∞
‖tn‖ =∞

}
.

Recall that a set E ⊂ Td is said to have density zero in Td, if

(4.1) lim
T→∞

1
C(T )

∫
B(T )

1E(t)λ(dt) = 0 .

A set D ⊂ Td is said to have density one in Td if Td \D has density zero in
Td. The class of all sequences on D that converge to infinity will be denoted
by

TD :=
{
{tn}n∈N : tn ∈ Td ∩D, lim

n→∞
‖tn‖ =∞

}
.
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Now we recall some basic definitions. Write σX := σ({Xt : t ∈ Td}) for
the σ–algebra generated by the field {Xt}t∈Td . We say {Xt}t∈Td is

(i) ergodic, if
(4.2)

lim
T→∞

1
C(T )

∫
B(T )

P(A ∩ θt(B))λ(dt) = P(A) P(B) for all A,B ∈ σX.

(ii) weakly mixing, if there exists a density one set D such that
(4.3)

lim
n→∞

P(A ∩ θtn(B)) = P(A) P(B) for all A,B ∈ σX , {tn}n∈N ∈ TD .

(iii) mixing, if
(4.4)

lim
n→∞

P(A ∩ θtn(B)) = P(A) P(B) for all A,B ∈ σX , {tn}n∈N ∈ T .

Ergodicity can be equivalently characterized as follows.

Lemma 4.1. The Td–action {θt}t∈Td on (Ω,F , P) is ergodic if and only
if A ∈ σX and θ−1

t (A) = A for all t ∈ Td implies P(A) = 0 or P(Ac) = 0.

The proof is given in the Appendix.

Remark 4.2. Another equivalent definition of weak mixing is the fol-
lowing: {Xt}t∈Td is weakly mixing if,
(4.5)

lim
T→∞

1
C(T )

∫
B(T )
|P(A ∩ θt(B))− P(A) P(B)|λ(dt) = 0 for all A,B ∈ σX .

The equivalence of (4.3) and (4.5) follows from the following straightforward
multivariate extension of Lemma 6.2 in [18] p. 65.

Lemma 4.3 (Koopman–von Neumann). Let f be a nonnegative function
on Td, which is bounded: supt∈Td f(t) ≤M <∞. Then,

(4.6) lim
T→∞

1
C(T )

∫
B(T )

f(t)λ(dt) = 0 ,

if and only if, there exists a subset D ⊂ Rd of density one, such that

(4.7) lim
n→∞

f(tn) = 0 , for all {tn}n∈N ∈ TD .
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In general, we always have that

mixing ⇒ weakly mixing ⇒ ergodicity.

For stationary SαS random fields, however, we have the following result.

Theorem 4.4. A real stationary SαS random field is ergodic if and only
if it is weakly mixing.

Proof. Using Theorem 2.10, proceed as in Theorem 2 and Theorem 3
in [20].

The main result of this section is the following theorem.

Theorem 4.5. A stationary SαS random field is weakly mixing (and
equivalently ergodic) if and only if the component XP in (3.6) corresponding
to a positive Td–action vanishes.

Remark 4.6. Theorems 2.4 and 4.5 yield that a stationary SαS random
field is weakly mixing if and only if S can be expressed as a union of weakly
wandering sets w.r.t. the underlying action. Heuristically, weakly wandering
sets are those which do not come back to itself too often and so the same
values of the random measure M do not contribute to observations Xt far
separated in t. Thus the field ends up having a shorter memory which is
manifested in its weakly mixing behavior.

To prove Theorem 4.5, we need the following result, which is an extension
of Theorem 2.7 in [5]. The proof is given in the Appendix.

Theorem 4.7. Assume α ∈ (0, 2) and {Xt}t∈Td is a stationary SαS
random field with spectral representation {ft}t∈Td ⊂ Lα(S,B, µ). Then, the
process {Xt}t∈Td is

(i) weakly mixing if and only if there exists a density one set D ⊂ Td,
such that

(4.8) lim
n→∞

µ
{
s : |f0(s)|α ∈ K , |ft∗n(s)|α > ε

}
= 0

for all compact K ⊂ R \ {0}, ε > 0 and {t∗n}n∈N ∈ TD .

(ii) mixing, if and only if (4.8) holds with TD replaced by T .
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Proof of Theorem 4.5. For this proof, we follow very closely the proof
of Theorem 3.1 in [35] with the proof of ‘only if’ part being exactly the
same. For the ‘if part’, however, we treat the discrete and the continuous
parameter scenarios together by virtue of Theorem 2.9, which unifies the
two cases. More specifically, in view of (4.8) and Lemma 4.3, it is enough to
show that for all ε > 0 and compact sets K ⊂ R \ {0},

(4.9) lim
T→∞

ATµ
{
s : |f0(s)|α ∈ K , |f(·)(s)|α > ε

}
= 0 ,

where AT is the average operator defined by (2.5). Following verbatim the
argument in the proof of (3.1) in [35], we obtain (4.9) for both discrete and
continuous parameter cases with the help of Theorem 2.9.

Remark 4.8. From the structure results in [31] and [30], and Theo-
rem 4.5 above, we obtain a unique in law decomposition of X into three
independent stable processes in parallel to the one-dimensional case [35],
i.e.,

X = X(1) + X(2) + X(3),

where X(1) is a mixed moving average in the sense of [39], X(2) is weakly
mixing with no mixed moving average component and X(3) has no weakly
mixing component.

5. Max–Stable Stationary Random Fields. In this section, we in-
vestigate the structure and ergodic properties of stationary max–stable ran-
dom fields, indexed by Td. It turns out that the results are similar to the
ones in the sum–stable case in Sections 3 and 4.

For simplicity and without loss of generality, we will focus on α–Fréchet
random fields. The random field X = {Xt}t∈Td is said to be α–Fréchet, if
for all aj > 0, τj ∈ Td, 1 ≤ j ≤ n, the max–linear combinations ξ :=
max1≤j≤n ajXτj ≡

∨
1≤j≤n ajXτj , have α–Fréchet distributions. Namely,

P(ξ ≤ x) = exp{−σαx−α} for all x ∈ (0,∞),

where σ > 0 referred to as the scale coefficient and α > 0 is the tail index
of ξ. The α–Fréchet fields are max–stable. Conversely, all max–stable fields
with α–Fréchet marginals are α–Fréchet fields.

De Haan [7] has developed convenient spectral representations for these
processes (fields). An intimate connection between the α–Fréchet and SαS
processes (0 < α < 2) has long been suspected due to their similar ex-
tremal properties and analogous Poisson point process representations. Re-
cently, this connection was formally defined through the notion of association
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(see [10] and [42]). Wang and Stoev [43], moreover, have developed a theory
for the spectral representation of max–stable processes, which parallels the
existing representation theory for infinite variance SαS processes.

More precisely, any measurable α–Fréchet field Y = {Yt}t∈Td (α > 0) can
be represented as

(5.1) Yt :=
∫e
S
ft(s)Mα,∨(ds), (t ∈ Td),

where {ft}t∈Td ⊂ Lα+(S, µ) := {f ∈ Lα(S, µ) : f ≥ 0}, ‘
∫e ’ stands for the

extremal integral, Mα,∨ is an independently scattered α–Fréchet random sup–
measure with control measure µ and (S, µ) can be chosen to be a standard
Lebesgue space (see [38, 43]). The functions {ft}t∈Td in (5.1) are called
spectral functions of the α–Fréchet random field. By using Theorems 4.1
and 4.2 in [43], if the representation in (5.1) is minimal, as in the sum–
stable case, one obtains

(5.2) ft(s) =
(d(µ ◦ φt)

dµ

)1/α
f0 ◦ φt(s) for all t ∈ Td ,

where φ = {φt}t∈Td is a nonsingular group action and f0 ∈ Lα+(S, µ).
Thus, the α–Fréchet random field Y is said to be generated by the group

action φ if (5.1) is a minimal representation such that (5.2) holds. This
allows us to extend the available classification results in the sum–stable case
to the max–stable setting. Indeed, by following the proof of Theorem 3.1,
we obtain:

Theorem 5.1. Suppose {Yt}t∈Td is a measurable stationary α–Fréchet
random field with spectral representation {ft}t∈Td as in (5.1). Let T0 ∈ BTd
and {aτ}τ∈T0, aτ > 0, be such that (3.3) holds. Then,

(i) {Yt}t∈Td is generated by a positive Td–action, if and only if (3.4) holds.
(ii) {Yt}t∈Td is generated by a null Td–action, if and only if (3.5) holds.

In particular, the classes of stationary α–Fréchet random fields generated by
positive and null Td–actions are disjoint.

This yields the following decomposition result.

Corollary 5.2. Let {Yt}t∈Td be a measurable stationary α–Fréchet
random field with representation in form of (5.1) and (5.2). We have the
unique–in–law decomposition

{Yt}t∈Td
d=
{
Y P
t ∨ Y N

t

}
t∈Td
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with

Y P
t =

∫e
PG
ft(s)Mα,∨(ds) and Y N

t =
∫e
NG

ft(s)Mα,∨(ds) for all t ∈ Td ,

where G ≡ {φt}t∈Td. The component {Y P
t }t∈Td is generated by positive Td–

action and {Y N
t }t∈Td is generated by null Td–action.

The proof is analogous to that of Corollary 3.4.

Remark 5.3. In contrast to the sum–stable case, one does not encounter
a co–cycle in (5.2) because the spectral functions in (5.1) are non–negative.
One could also arrive at (5.2) by using association as in [10] and [42]. Namely,
for any α−Fréchet field as in (5.1), the 1−Fréchet field Yα = {Y α

t }t∈Td is
associated with an S1S random field with spectral functions {fαt }t∈Td ⊂
L1(S, µ). One can thus relate the spectral functions to a group action as in
(5.2) by using the available theory in the sum–stable case.

In the rest of this section, let Y = {Yt}t∈Td denote a measurable α–
Fréchet random field with spectral representation (5.1) and (5.2). We shall
study the ergodic properties of Y.

Theorem 5.4. {Yt}t∈Td is ergodic, if and only if

(5.3) lim
T→∞

1
C(T )

∫
B(T )
‖Utg ∧ g‖ααdt = 0 ,

for all g ∈ ∨-span{ft : t ∈ Td}, where U = {Ut}t∈Td is the group action on
Lα+(S, µ) defined as Utg := (dµ ◦ φt/dµ)1/αg ◦ φt, t ∈ Td.

Proof. Observe that {Y α
t }t∈Td is a 1–Fréchet random field with spectral

representation {fαt }t∈Td ⊂ L1
+(S, µ). Thus, it is enough to focus on the case

α = 1 and in the sequel let ‖·‖ denote the L1 norm (see also Remark 5.3).
Without loss of generality, suppose Y = {Yt}t∈Td has the form Yt(ω) =
Y ◦ θt(ω), where {θt}t∈Td is a measure–preserving Td–action on (Ω,F , P).
Then, similarly as in (2.8), for all Ỹ ∈ L1(Ω, σY, P), write

AT Ỹ (ω) ≡ 1
C(T )

∫
B(T )

Ỹ ◦ θt(ω)λ(dt) ,

and by Theorem 2.10,

lim
T→∞

‖AT Ỹ − E(Ỹ |IY)‖ = 0 ,
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where IY is the invariant σ–algebra consisting of sets in σY invariant w.r.t.
all shift operators. Then, {Yt}t∈Td is ergodic, if and only if E(Ỹ |IY) =
EỸ , P-a.e. for all Ỹ ∈ L1(Ω, σY, P) by Lemma 4.1, if and only if

(5.4) lim
T→∞

‖AT Ỹ − EỸ ‖ = 0 for all Ỹ ∈ L1(Ω, σY, P) .

In particular, it is equivalent to show that (5.4) holds for all Ỹ ∈ H, where
H is a linearly dense subset of L1(Ω, σY, P), consisting of random variables
of the following form:

(5.5) η = 1{Yt1≤a1,··· ,Ytn≤an} , n ∈ N, ti ∈ Td and ai ∈ R.

Moreover, since η is bounded by 1 and so is AT η, in (5.4) we can equivalently
use the L2–norm. Therefore, observing that

‖AT η − Eη‖2L2(Ω,σY,P) = E|AT η − P(Yt1 ≤ a1, · · · , Ytn ≤ an)|2

= E|AT η − exp{−‖hη‖}|2

with hη(s) :=
∨n
i=1 a

−1
i fti(s) ∈ Lα(S, µ) corresponding to η given in (5.5),

Condition (5.4) is equivalent to

(5.6) lim
T→∞

E|AT η − exp{−‖hη‖}|2 = 0 , ∀η ∈ H .

By straightforward calculation, (5.6) becomes

(5.7) lim
T→∞

E|AT η|2

exp{−2 ‖hη‖}
= 1 for all η ∈ H .

Observing that

E|AT η|2 =
1

C(T )2

∫
B(T )

∫
B(T )

P(Yti+t ≤ ai, Yti+τ ≤ ai, 1 ≤ i ≤ n)dτdt

=
1

C(T )2

∫
B(T )

∫
B(T )

exp{−‖Ut−τhη ∨ hη‖}dτdt ,

and

exp{−‖Ut−τhη ∨ hη‖
exp{−2 ‖hη‖}

= exp
{
− ‖Ut−τhη ∨ hη‖+ ‖hη‖+ ‖Ut−τhη‖

}
,

we have

E|AT η|2

exp{−2 ‖hη‖}
=

1
C(T )2

∫
B(T )

∫
B(T )

exp
{
− ‖Ut−τhη ∧ hη‖

}
dτdt .
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Plugging in the above equality and applying Lemma 4.3, we can show
that (5.7) holds, if and only if

(5.8) lim
T→∞

1
C(T )2

∫
B(T )

∫
B(T )
‖Ut−τhη ∧ hη‖ dτdt = 0 for all Y ∈ H .

Since R(t, τ) := ‖Ut−τhη ∧ hη‖ is a nonnegative definite function on Td ×
Td, by Bochner’s theorem (see e.g. Corollary 2.3 in [15]), the l.h.s. of (5.8)
becomes

(5.9) lim
T→∞

1
C(T )2

∫
B(T )

∫
B(T )

∫
Td

ei(t−τ)>xν(dx)dτdt

= lim
T→∞

1
C(T )2

∫
Td
|eit>xdt|2ν(dx) = ν({0}) ,

for some finite symmetric measure ν on Td. At the same time, by the inver-
sion formula of the Fourier transform,

(5.10) ν({0}) = lim
T→∞

1
C(T )

∫
B(T )
‖Uthη ∧ hη‖ dt .

Combining (5.8), (5.9) and (5.10), we have proved the desired result.

The ergodicity of stationary α–Fréchet random fields {Yt}t∈Td is closely
related to the recurrence properties of the underlying Td–action. As in the
sum–stable case, we have

Theorem 5.5. {Yt}t∈Td is ergodic, if and only if the Td–action {φt}t∈Td
has no nontrivial positive component.

Proof. Theorem 5.4 and the multiparameter stochastic ergodic theorem
(Theorem 2.9) allow us to extend the proof of Theorem 8 in [10] to the
multiparameter setting.

The following theorem gives a simple necessary and sufficient condition
for the mixing of measurable stationary α–Fréchet random field.

Theorem 5.6. {Yt}t∈Td is mixing, if and only if

lim
n→∞

‖ftn ∧ f0‖ = 0 for all {tn}n∈N ∈ T .

The result follows by using similar arguments as in the proofs of Theorem
3.3 and Theorem 3.4 in [37].
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Remark 5.7. The recent work of Kabluchko and Schlather [11] provides
simple characterizations of ergodicity and weak mixing (of all orders) for
general classes of stationary max–infinitely divisible processes. Their results
apply to the max–stable setting. For the case of processes, they provide an
alternative characterization of positive recurrence to that in Theorem 5.1.

We conclude this section with an interesting result showing the equiva-
lence of weak mixing and ergodicity for the general class of positively de-
pendent stationary random fields, which includes as particular cases max–
infinitely divisible and max–stable random fields (and processes). Recall
that the field X = {Xt}t∈Td is said to be positively dependent or associ-
ated if all its finite–dimensional distributions are associated. Namely, for all
ti ∈ T, 1 ≤ i ≤ n, we have

Cov(g1(X̃), g2(X̃)) ≥ 0, with X̃ = {Xti}ni=1,

for all coordinate–wise monotone non–decreasing functions g1 and g2 such
that the above covariance is well–defined. All max–infinitely divisible pro-
cesses (fields) are associated (see e.g. [21]). This implies, in particular that,
for all X̃ = {Xtj}nj=1,

(5.11) P{X̃ ≤ x, X̃ ≤ y}−P{X̃ ≤ x}P{ X̃ ≤ y} = Cov(g1(X̃), g2(X̃)) ≥ 0,

where x, y ∈ Rn, g1(u) = 1{u≤x}, g2(u) = 1{u≤y}, and where the inequali-
ties are coordinatewise.

Theorem 5.8. Let X = {Xt}t∈Td be a measurable stationary random
field, which is positively dependent (i.e. associated). Then, X is ergodic, if
and only if it is weakly mixing.

Proof. We will only consider the case T = R, T = Z being simpler. The
convergence (4.5) implies (4.2) and thus weak mixing implies ergodicity.

Suppose now that X is ergodic. Let µ be the distribution of the process
X defined on BRRd as follows:

µ(A) := P{X ∈ A}, ∀A ∈ BRRd .

Consider the shift–operators θτ (x) ≡ x(τ) := {xt+τ}t∈Rd , τ ∈ Rd, x ∈ RRd .
The stationarity of the process X implies that {θτ}τ∈Rd is a µ−measure
preserving Rd−action on RRd .

To prove weak mixing, it is enough to show that

(5.12)
1
T d

∫
(0,T )d

|µ(A ∩B(τ))− µ(A)µ(B)|dτ −→ 0, as T →∞,
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for all fixed A, B ∈ BRRd , where B(τ) ≡ θτ (B). Let C = {{x ∈ RRd : ai <
xti ≤ bi, 1 ≤ i ≤ n} : n ∈ N, ai, bi ∈ R} be the semiring of cylinder sets with
finite–dimensional rectangular faces. For all ε > 0, there exist cylinder sets
from the ring generated by C, namely, Aε = ∪mk=1Aε,k and Bε = ∪nk=1Bε,k,
with Aε,k, Bε,k ∈ C, such that

µ(A∆Aε) < ε and µ(B∆Bε) = µ(B(τ)∆Bε(τ)) < ε.

Observe that

|µ(A ∩B(τ))− µ(A)µ(B)| ≤ |µ(Aε ∩Bε(τ))− µ(Aε)µ(Bε)|
+|µ(A ∩B(τ))− µ(Aε ∩Bε(τ))|+ |µ(A)− µ(Aε)|+ |µ(B)− µ(Bε)|
≤ |µ(Aε ∩Bε(τ))− µ(Aε)µ(Bε)|+ 3ε.

Since ε > 0 is arbitrary, it suffices to show that the convergence in (5.12)
holds with A and B replaced by Aε and Bε. Without loss of generality,
suppose that Aε,k, 1 ≤ k ≤ m and also Bε,k, 1 ≤ k ≤ n are disjoint. We
then have that

P(Aε∩Bε(τ))−P(Aε)P(Bε) =
m∑

k1=1

n∑
k2=1

P(Aε,k1∩Bε,k2(τ))−P(Aε,k1)P(Bε,k2).

This, since m and n are fixed, implies that it suffices to show that (5.12)
holds for all A and B in the semiring C.

Let A = {x ∈ RRd : a1,i < xti ≤ a2,i, 1 ≤ i ≤ r} and B = {x ∈ RRd :
b1,i < xti ≤ b2,i, 1 ≤ i ≤ r}, where ak = {ak,i}ri=1 and bk = {bk,i}ri=1, k =
1, 2 are fixed. Let also X̃ = {Xti}ri=1, and observe that

1{a1<X̃≤a2}
=

∑
i∈{1,2}r

δi1{X̃≤a(i)}
,

where δi ∈ {−1,+1}, i = {i(j)}rj=1, i(j) ∈ {1, 2} and a(i) = {ai(j),j}rj=1.
By using a similar expression for 1{b1<X̃≤b2}

, (involving the same δi’s)
we obtain

P(A ∩B(τ)) ≡ P{a1 < X̃ ≤ a2, b1 < X̃(τ) ≤ b2}
=

∑
i∈{1,2}r

∑
j∈{1,2}r

δiδjP{X̃ ≤ a(i), X̃(τ) ≤ b(j)},(5.13)

where X̃(τ) = {Xτ+ti}ri=1 and also

P(A)P(B) ≡ P{a1 < X̃ ≤ a2}P{b1 < X̃ ≤ b2}
=

∑
i∈{1,2}r

∑
j∈{1,2}r

δiδjP{X̃ ≤ a(i)}P{X̃ ≤ b(j)},(5.14)
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where the probabilities stand for expectations of indicators. Now, by sub-
tracting (5.14) from (5.13), and applying the triangle inequality, we get

|P(A ∩B(τ))− P(A)P(B)|(5.15)
≤

∑
i,j∈{1,2}r

|P{X̃ ≤ a(i), X̃(τ) ≤ b(j)} − P{X̃ ≤ a(i)}P{X̃(τ) ≤ b(j)}|.

The ergodicity of the field X, implies that for all i, j ∈ {1, 2}r,

1
T d

∫
(0,T )d

(
P{X̃ ≤ a(i), X̃(τ) ≤ b(j)}−P{X̃ ≤ a(i)}P{X̃(τ) ≤ b(j)}

)
dτ −→ 0,

as T →∞. Since X is associated, however, the last integrand is non–negative,
for all τ ∈ Rd (recall (5.11), above) and thus

1
T d

∫
(0,T )d

∣∣∣P{X̃ ≤ a(i), X̃(τ) ≤ b(j)}−P{X̃ ≤ a(i)}P{X̃(τ) ≤ b(j)}
∣∣∣dτ −→ 0,

as T →∞. By considering the integral average in (5.15), we get

1
T d

∫
(0,T )d

|P(A ∩B(τ))− P(A)P(B)|dτ −→ 0,

as T → ∞. We have thus shown that for associated fields the convergence
in (4.2) implies (4.5) for all A and B in the semiring C. The above approxi-
mation arguments show that this is so for all A and B in BRRd .

6. Examples. This section contains two examples of stable random
fields and their ergodic properties via the positive–null decomposition of
the underlying action. These examples show the usefulness of our results
to check whether or not a stationary SαS (or max–stable) random field is
ergodic (or equivalently, weakly mixing).

The first example is based on a self–similar SαS processes with stationary
increments introduced by [3] as a stochastic integral with respect to an
SαS random measure, with the integrand being the local time process of
a fractional Brownian motion. We extend these processes by replacing the
fractional Brownian motion by a Brownian sheet. We can call it a Brownian
sheet local time fractional SαS random field following the terminology of [3].

Example 6.1. Suppose (Ω′,F ′, P ′) is a probability space supporting
a Brownian sheet {Bu}u∈Rd+

. By [4], {Bu} has a jointly continuous local

time field
{
l(x, u) : x ∈ R, u ∈ Rd

+

}
defined on the same probability space.

We will define an SαS random field based on this local time field, which



ERGODIC PROPERTIES OF SUM– AND MAX– STABLE FIELDS 23

inherits the stationary increments property from {Bu}u∈Rd+
. Let Mα be an

SαS random measure on Ω′ × R with control measure P ′ × Leb living on
another probability space (Ω,F , P ). Following verbatim the calculations of
[3] we have

Zu =
∫

Ω′×R
l(x, u)(ω′)Mα(dω′,dx), u ∈ Rd

+

is a well–defined SαS random field which has stationary increments over
d–dimensional rectangles.

We now concentrate on the increments of {Zu} taken over d–dimensional
rectangles. For any t ∈ Zd+, define

(6.1) Xt = ∆Zt :=
1∑

i1=0

1∑
i2=0

· · ·
1∑

id=0

(−1)i1+i2+···+id+dZt+(i1,i2,...,id) .

Clearly {Xt}t∈Zd+
is a stationary SαS random field, which can be extended

(in law) to a stationary SαS random field X := {Xt}t∈Zd by Kolmogorov’s
extension theorem. We claim that X is generated by a null Zd–action. To
prove this, define, for all n ≥ 1, τ (n) := (n4/d, n4/d, . . . , n4/d), and for all
n ≥ 1 and t ∈ Zd+,

Tn,t :=
{
s : ti + n4/d ≤ si ≤ 1 + ti + n4/d for all i = 1, 2, . . . , d

}
.

For each t ∈ Zd+, take a positive real number at in such a way that
∑
t∈Zd+

at =
1. Defining ∆l(x, t) in parallel to (6.1) and following the proof of (4.7) in
[3], we can establish that∫

Ω′

∫
R
e−x

2/2
∑
t∈Zd+

∞∑
n=1

at∆l
(
x, t+ τ (n)

)
dxdP ′

=
∑
t∈Zd+

at

∞∑
n=1

∫
Tn,t

ds√
1 +

∏d
i=1 si

≤
∞∑
n=1

1√
1 + n4

<∞ .

This shows, in particular, that
∑
t∈Zd+

∑∞
n=1 at∆l

(
x, t+ τ (n)

)
(ω′) < ∞ for

P ′ × Leb–almost all (ω′, x) ∈ Ω × R. Besides, it can be easily shown that∑
t∈Zd+

at∆l (x, t) (ω′) > 0 for P ′ × Leb–almost all (ω′, x) ∈ Ω × R (see, for
example, [41]). Hence by Theorem 3.1, it follows that X is generated by a
null action and hence is weakly mixing.
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The next example is based on a class of mixing stationary SαS process
considered in [24]. We look at a stationary SαS random field generated by d
independent recurrent Markov chains at least one of which is null–recurrent.
This is a class of stationary SαS random fields which are weakly mixing as
a field but not necessarily ergodic in every direction.

Example 6.2. We start with d irreducible aperiodic recurrent Markov
chains on Z with laws P

(1)
i (·), P (2)

i (·), . . . , P (d)
i (·), i ∈ Z and transition

probabilities (p(1)
jk ), (p(2)

jk ), . . . , (p(d)
jk ) respectively. For all l = 1, 2, . . . , d, let

π(l) = (π(l)
i )i∈Z be a σ–finite invariant measure corresponding to the family

(P (l)
i ). Let P̃ (l)

i be the lateral extension of P (l)
i to ZZ; that is under P̃ (l)

i ,
x(0) = i, (x(0), x(1), . . .) is a Markov chain with transition probabilities
(p(l)
jk ) and (x(0), x(−1), . . .) is a Markov chain with transition probabilities

(π(l)
k p

(l)
kj /π

(l)
j ). Assume at least one (say, the first one) of the Markov chains

is null–recurrent and define a σ–finite measure µ on S =
(
ZZ
)d

by

µ(A1 ×A2 × · · · ×Ad) =
d∏
l=1

( ∞∑
i=−∞

π
(l)
i P̃

(l)
i (Al)

)
,

and observe that µ is invariant under the Zd–action {φ(i1,i2,...,id)} on S de-
fined as the coordinatewise left shift, that is,

(6.2) φ(i1,...,id)

(
a(1), . . . , a(d))(u1, . . . , ud) =

(
a(1)(u1 +i1)), . . . , a(d)(ud+id)

)
for all

(
a(1), . . . , a(d)

)
∈ S and u1, . . . , ud ∈ Z.

Let X = {X(i1,i2,...,id)}(i1,...,id)∈Zd be a stationary SαS random field defined
by the integral representation (3.1) with Mα being a SαS random measure
on S with control measure µ and

f(i1,i2,...,id) = f ◦ φ(i1,i2,...,id) , i1, i2, . . . , id ∈ Z

with

f(x(1), x(2), . . . , x(d)) = 1{x(1)(0)=x(2)(0)=···=x(d)(0)=0} , x
(1), x(2), . . . , x(d) ∈ ZZ .

Clearly, the restriction of (6.2) to the first coordinate is a null flow because
the first Markov chain is null–recurrent (see Example 4.1 in [35]) and hence
(6.2) is a null Zd–action. This shows, in particular, that X is weakly mixing.
However, if d > 1 and some of the Markov chains are positive–recurrent
then the restriction of µ in the corresponding coordinate directions are finite
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and hence by Theorem 4.5, X is not ergodic along those directions. In this
case, the random field cannot be mixing because it is not mixing in every
coordinate direction. This gives examples of stationary d–dimensional (d >
1) SαS random fields which are weakly mixing but not mixing. See Example
4.2 in [6] for such an example in the d = 1 case.

Remark 6.3. Note that, in the above examples, the kernels are non-
negative functions and the cocycles are trivial and hence we can define α–
Fréchet analogues of these fields by replacing the integrals with respect to
the SαS random measures by extremal integrals with respect to α–Fréchet
random sup–measures with the same control measures as above. Since the
underlying action is the same, using Theorem 5.5, we can establish that the
corresponding α-Fréchet fields are weakly mixing. In particular, when d > 1,
we can obtain an example of an α–Fréchet field which is weakly mixing but
not mixing.

Acknowledgment. The authors are thankful to Jan Rosiński for suggesting
the problem of equivalence of ergodicity and weak mixing for the max–stable
case, and to Yimin Xiao for a number of useful discussions on the properties
of local times of Brownian sheet.

APPENDIX A: PROOFS OF AUXILIARY RESULTS

A.1. Proof of Lemma 2.2. Set

(A.1) u(I(G)) := sup
ν∈Λ(G)

µ(Sν) .

Without loss of generality, we assume µ(S) < ∞ (recall that µ is σ–finite),
whence u(I(G)) <∞. Then, there exists a sequence of measures {νn}n∈N ⊂
Λ(G), such that un := µ(Sνn)→ u(I(G)) as n→∞. Set

PG :=
∞⋃
n=1

Sνn .

Clearly, PG is measurable. We show that there exists νG ∈ Λ(G) such that
SνG = PG and µ(PG) = u(I(G)). Indeed, we can define on (S,B) the measure

(A.2) νG(A) :=
∞∑
n=1

1
2nun

νn(A) for all A ∈ B.

Clearly, νG ∈ Λ(G), SνG = PG mod µ, and µ(PG) ≤ u(I(G)) by (A.1). It is
also clear that for all n ∈ N, νn � νG , and hence PG ⊃ Sνn mod µ. This
implies µ(PG) ≥ un for all n ∈ N. We have thus shown that µ(PG) = u(I(G)).
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To complete the proof, we show PG is unique modulo µ–null sets. Sup-
pose there exist P (1)

G and P
(2)
G such that µ(P (1)

G ) = µ(P (2)
G ) = u(I(G)) and

µ(P (1)
G 4P

(2)
G ) > 0. Suppose ν(1), ν(2) ∈ Λ(G) are defined as in (A.2), so

that Sν(i) = P
(i)
G for i = 1, 2. Clearly, ν(1) + ν(2) ∈ Λ(G). Then, we have

P
(1)
G ∪ P

(2)
G ⊂ I(G) and µ(P (1)

G ∪ P
(2)
G ) > u(I(G)), which contradicts (A.1).

The proof is thus complete.

A.2. Proof of Theorem 2.3. First we introduce some notations. For
all transformation φ on (S,B, µ), write

Λ(φ) := {ν � µ : ν finite positive measure on S, ν ◦ φ−1 = ν} .

We need the following lemma.

Lemma A.1. Suppose φ is an arbitrary invertible, bi-measurable and
non–singular transformation on (S,B, µ). Then

µ(φ−1(Sν)4Sν) = 0 for all ν ∈ Λ(φ) .

Proof. First, we show for all ν ∈ Λ(φ), µ(φ−1(Sν)4Sν) = 0. If not, then
set E0 := φ−1(Sν) \Sν , F0 = φ(E0) and suppose µ(E0) > 0. Since φ is non–
singular, µ(F0) > 0. Note that F0 ⊂ Sν and µ ∼ ν on Sν , whence ν(F0) > 0.
Note also that ν(Scν) = 0 and ν ◦ φ−1 = ν imply ν(F0) = ν ◦ φ−1(F0) =
ν(E0) ≤ ν(Scν) = 0. This contradicts ν(F0) > 0. We have thus shown that
µ(φ−1(Sν) \ Sν) = 0.

Next, we show that µ(Sν \ φ−1(Sν)) = 0. Indeed, set E1 := Sν \ φ−1(Sν),
we have ν(Sν) = ν(E1) + ν(φ−1(Sν) ∩ Sν). At the same time, ν(Sν) =
ν ◦ φ−1(Sν) = ν(φ−1(Sν) ∩ Sν) + ν(E0), where E0 := φ−1(Sν) \ Sν . Since
ν(E0) = 0 as shown in the first part of the proof, the two equations above
imply ν(E1) = 0, since ν is finite. Finally, by the fact that ν ∼ µ on Sν , we
have µ(Sν \ φ−1(Sν)) ≡ µ(E1) = 0.

Now we prove Theorem 2.3. (i) Fix φ ∈ G. Note that by Lemma 2.2,
there exists νG ∈ Λ(φ) ⊂ I(G) such that SνG = PG . Then, by Lemma A.1,
µ(φ−1(PG)4PG) = 0. By the fact that all φ ∈ G are invertible, we have
that φ−1(NG)c = φ−1(N c

G) and by the identity A4B = Ac4Bc, we have
µ(φ−1(NG)4NG) = 0. The previous argument is valid for all φ ∈ G.

(ii) Consider L1(PG ,B ∩ PG , µ|PG ), where B ∩ PG := {A ∩ PG : A ∈ B} and
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µ|PG is the restriction of µ tn B ∩ PG . Define

(A.3) φ̃f(s) ≡
[
φ̃(f)

]
(s) :=

d(µ ◦ φ−1)
dµ

(s)f ◦ φ−1(s)1PG∩φ(PG)(s)

for all f ∈ L1(PG , µ|PG ) .

In this way, the mapping φ̃ is a restricted version of φ̂ on L1(PG , µ|PG ) in
the sense that

(A.4) φ̃f = φ̂f , µ|PG -a.e. for all f ∈ L1(PG , µ|PG ) ⊂ L1(S, µ) .

Recall that by Lemma 2.2 there exists ν ∈ Λ(G) such that φ̂(dν/dµ) =
dν/dµ for all φ ∈ G and supp(ν) = PG . Whence, for ν̃ := ν|PG , we have
φ̃(dν̃/dµ|PG ) = dν̃/dµ|PG ) for all φ ∈ G and ν̃ ∼ µ|PG . Note that all locally
compact abelian groups are amenable (see, e.g., Example 1.1.5(c) in [32]).
Thus, Theorems 1 (part (1) and (8)) in [40] applied to G̃ and f , implies that

∞∑
n=1

φ̃unf(s) =∞ , µ|PG -a.e. for all {φ̃un}n∈N ⊂ G̃ ,

which, by (A.4), is equivalent to (2.3).

(iii) Similarly as in (ii), restrict G to L1(NG ,B ∩NG , µ|NG ) and apply The-
orem 2 (part (1) and (8)) in [40].

A.3. Proof of Theorem 2.4. We only sketch the proof of this result.

(i) We apply Theorem 1 (part (1) and (6)) in [40]. Recall that the adjoint
operator of φ̂

φ̂∗ : (L1)∗ → (L1)∗ , where (L1)∗ = L∞

is such that for all f ∈ L1(S, µ) and h ∈ L∞(S, µ),∫
S
f(s)[φ̂∗(h)](s)µ(ds) =

∫
S

[φ̂(f)](s)h(s)µ(ds) .

The last integral equals∫
S

d(µ ◦ φ−1)
dµ

(s)f ◦ φ−1(s)h ◦ φ ◦ φ−1(s)µ(ds) =
∫
S
f(s)h ◦ φ(s)µ(ds) ,

whence [φ̂∗(h)](s) = h ◦ φ(s) , µ-a.e.. Thus, if W is a weakly wandering set
w.r.t. G, we have

∞∑
n=1

φ̂∗tn1W (s) < 2 for some {φtn}n∈N ⊂ G .
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Now, part (6) of Theorem 1 in [40] is equivalent to the nonexistence of a
weakly wandering set of positive measure.

(ii) The proof is similar to the proof of Proposition 1.4.7 in [1].

A.4. Proof of Lemma 4.1. Suppose (4.2) holds and D ∈ σx such
that φ−1

t (D) = D for all t ∈ Td. Taking A = B = D in (4.2) we get
P(D) = P(D)2, from which P(D) = 0 or 1.

To prove the converse, observe that by Theorem 2.10, it follows that

1
C(T )

∫
B(T )

1φ−1
t (A)λ(dt) a.s.→ P(A)

as n → ∞. Multiplying above by 1B and using dominated convergence
theorem, (4.2) follows.

A.5. Proof of Theorem 4.7.. To prove Theorem 4.7, we first need
the following lemma.

Lemma A.2. Assume {Xt}t∈Td is a stationary SαS random field with
spectral representation {ft}t∈Td ⊂ Lα(S,B, µ), α ∈ (0, 2). Then, {Xt}t∈Td is
weakly mixing, if and only if, there exists a density one set D ⊂ Td, such
that

(A.5) lim
n→∞

µ
{
s :
∣∣∣ p∑
j=1

βjfτj (s)
∣∣∣ ∈ K ,

∣∣∣ q∑
k=1

γkftk+t∗n(s)
∣∣∣ > ε

}
= 0

for all p, q ∈ N, βj , γk ∈ R, τj , tk ∈ Td ,
compact K ⊂ R \ {0}, ε > 0 and {t∗n}n∈N ∈ TD .

Proof. It transpires from the proofs in [16] that a stationary process
{Xt}t∈Td is weakly mixing if and only if there exists a density one set D ⊂ Td
such that

(A.6) lim
n→∞

E
[

exp(i
p∑
j=1

βjXτj ) exp(i
q∑

k=1

γkXtk+t∗n)
]

= E exp(i
p∑
j=1

βjXτj ) E exp(i
q∑

k=1

γkXtk)

for all p, q ∈ N, βj , γk ∈ R , τj , tk ∈ T and {t∗n}n∈N ∈ TD .

To prove Lemma A.2 from (A.6), it suffices to follow closely and carefully
(see Remark A.3 below) the argument of Gross in [5] (Section 2 therein).
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Remark A.3. Gross’s argument, however, is based on the following
weaker condition for weak mixing:

(A.7) lim
n→∞

E
[

exp(iθ1X0) exp(iθ2Xtn)
]

= E exp(iθ1X0) E exp(iθ2X0)

for all θ1, θ2 ∈ R, {tn}n∈N ∈ TD ,

which, according to Gross, follows from the proof of main result in [16]. The
equivalence of (A.6) and (A.7) seems nontrivial and yet not mentioned in [5].

Now, in order to complete the proof of Theorem 4.7, it suffices to prove
the following lemma.

Lemma A.4. Assume α ∈ (0, 2) and {Xt}t∈Td is a stationary SαS pro-
cess with spectral representation {ft}t∈Td ⊂ Lα(S,B, µ). Then (A.5) is true
if and only if (4.8) is true.

Proof. Clearly (A.5) implies (4.8). Now suppose that (4.8) is true. we
will show (A.5). For any p, q ∈ N and τj , tk ∈ Td, write

(A.8) gp(s) :=
p∑
j=1

βjfτj (s) and hq(s) :=
q∑

k=1

γkftk(s) ,

We will prove (A.5) by induction on (p, q). By (4.8), we have that (A.5)
holds for (p, q) = (1, 1).
(i) Suppose for fixed (p, q) (A.5) holds, we will show that (A.5) holds for
(p+1, q). If not, then there exists {t∗n}n∈N ∈ TD such that for some compact
K ⊂ R \ {0} and δ > 0, we have µ(En) ≥ δ with

En :=
{
s : |gp(s) + βp+1fτp+1(s)| ∈ K , |Ut∗nhq(s)| > ε

}
.

Here for all t ∈ Td,

Ut
( q∑
k=1

γkftk

)
(s) :=

q∑
k=1

γkftk+t(s) .

Without loss of generality, we can assume K ⊂ (0,∞). Then, since K
is compact, there exists 0 < dK < M such that K ⊂ [dK ,M ]. Since
fτ1 , · · · , fτp+1 ∈ Lα(S, µ), we can also choose M to be large enough so that
µ(E0

M ) ≤ δ/2, where

E0
M :=

{
s : |gp(s)| > M or |βp+1fτp+1(s)| > M

}
.



30 Y. WANG, P. ROY AND S. STOEV

Then, we claim that for each n, either of the two sets

Epn :=
{
s : |gp(s)| ∈

[dK
2
,M

]
, |Ut∗nhq(s)| > ε

}
and

Ep+1
n :=

{
s : |βp+1fτp+1(s)| ∈

[dK
2
,M

]
, |Ut∗nhg(s)| > ε

}
has measure larger than δ/4. Otherwise, observe that

En ⊂ Epn ∪ Ep+1
n ∪ E0

M ,

which implies that µ(En) < δ, a contradiction.
It then follows that either {Epn}n∈N or {Ep+1

n }n∈N will have a subsequence
with measures larger than δ/4. Namely, there exists {t∗nk}k∈N ∈ TD such that

µ(Epnk) ≥ δ

4
for all k ∈ N or µ(Ep+1

nk
) ≥ δ

4
for all k ∈ N .

But the first case contradicts the assumption that (A.5) holds for (p, q) and
the second case contradicts (4.8). We have thus shown that (A.5) holds for
(p+ 1, q).

(ii) Next, suppose (A.5) holds for (p, q) and we show that it holds for
(p, q + 1). If not, then there exists a compact K ⊂ R \ {0} such that

µ
{
s : |gp(s)| ∈ K , |Ut∗n(hq + γq+1ftq+1)(s)| > ε

}
9 0 as n→∞ .

Then, by a similar argument as in part (i), one can show that for all ε > 0,
there exists {t∗n}n∈N ∈ TD and δ > 0 such that we have either

µ
{
s : |gp(s)| ∈ K, |Ut∗nhq(s)| >

ε

2

}
≥ δ > 0

or
µ
{
s : |gp(s)| ∈ K, |γq+1ftq+1+t∗n(s)| > ε

2

}
≥ δ > 0 .

Both cases lead to contradictions. We have thus shown that (A.5) holds for
(p, q + 1). The proof is thus complete.

REFERENCES

[1] J. Aaronson. An Introduction to Infinite Ergodic Theory. American Mathematical
Society, 1997.

[2] S. Cambanis, C.D. Hardin and A. Weron. Ergodic Properties of Stationary Stable
Processes, Stochastic Processes and their Applications, 24:1–18, 1987.



ERGODIC PROPERTIES OF SUM– AND MAX– STABLE FIELDS 31

[3] S. Cohen and G. Samorodnitsky. Random rewards, fractional Brownian local times
and stable self-similar processes. Ann. Appl. Probab., 16(3):1432–1461, 2006.

[4] W. Ehm. Sample function properties of multiparameter stable processes. Z. Wahrsch.
Verw. Gebiete, 56(2):195–228, 1981.

[5] A. Gross. Some mixing conditions for stationary symmetric stable stochastic pro-
cesses. Stochastic Process. Appl., 51(2):277–295, 1994.

[6] A. Gross and J. B. Robertson. Ergodic properties of random measures on stationary
sequences of sets. Stochastic Process. Appl., 46(2):249–265, 1993.

[7] L. de Haan. A spectral representation for max-stable processes. Ann. Probab.,
12(4):1194–1204, 1984.

[8] L. de Haan and J. Pickands III, Stationary min–stable stochastic processes, Proba-
bility Theory and Related Fields, 72(4):477–492, 1986.

[9] L. K. Jones and U. Krengel. On transformations without finite invariant measure.
Advances in Math., 12:275–295, 1974.

[10] Z. Kabluchko. Spectral representations of sum– and max–stable processes, to appear
in Extremes (DOI 10.1007/s10687-009-0083-9), 2008.
http://www.springerlink.com/content/ah5622k118686267/fulltext.pdf

[11] Z. Kabluchko and M. Schlather Ergodic properties of max–infinitely divisible pro-
cesses Preprint, 2009. http://arxiv.org/abs/0905.4196

[12] S. Kolodynski and J. Rosinski. Group self-similar stable processes in Rd, Journal of
Theoretical Probability, 16:855-876, 2003.

[13] U. Krengel. Classification of states for operators. In Proc. Fifth Berkeley Sympos.
Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to
Probability Theory, Part 2, pages 415–429. Univ. California Press, Berkeley, Calif.,
1967.

[14] U. Krengel. Ergodic Theorems. de Gruyter, Berlin, 1985.
[15] G. Lumer. Bochner’s theorem, states, and the Fourier transforms of measures. Studia

Math., 46:135–140, 1973.
[16] G. Maruyama. Infinitely divisible processes, Theory of Probability and its

Applications,15(1):1–22, 1970.
[17] J. Neveu. Existence of bounded invariant measures in ergodic theory. In Proc. Fifth

Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II:
Contributions to Probability Theory, Part 2, pages 461–472. Univ. California Press,
Berkeley, Calif., 1967.

[18] K. Petersen. Ergodic theory, volume 2 of Cambridge Studies in Advanced Mathemat-
ics. Cambridge University Press, Cambridge, 1983.

[19] V. Pipiras and M. S. Taqqu. Stable stationary processes related to cyclic flows. Ann.
Probab., 32(3A):2222–2260, 2004.
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