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Abstract

In recent years, multivariate spatial models have been proven to be an effective
tool for analyzing spatially related multidimensional data arising from a common un-
derlying spatial process. Currently, the Bayesian analysis is perhaps the only solution
available in this framework where prior selection plays an important role in the infer-
ence. The present article contributes towards the development of Bayesian inferential
methodology for hierarchical spatial multivariate generalized linear mixed models. The
two main contributions of this article are the development of a shrinkage-type default
prior and innovative computational techniques for the Gibbs sampling implementation.
The default prior elicitation is non-informative but results in a proper posterior on the
related parameter spaces. This elicitation not only provides robust inference (with
respect to prior choice), but also provides improved estimation. In the computational
step, we have developed a transformation of the parameters that avoids sampling from
restricted domains, thus providing more stability and efficiency in the Gibbs implemen-
tation. The methodology has been extended to the case of missing responses in the
multi-dimensional setup. Both simulations and real examples are provided to validate
and illustrate the proposed methodology.

Keywords: Generalized linear mixed models, conditional autoregressive models, de-
fault Bayesian analysis, health disparity
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1 Introduction

Many spatial problems, particularly those concerning environmental, health and socio-economic

variables, are inherently multivariate, meaning that two or more such variables are recorded

at each spatial location simultaneously. Multivariate spatial analysis is becoming more rele-

vant and prevalent with the advent of geographic information systems (GIS) that allow the

display of spatial data at varying spatial resolutions. Sain and Cressie (2007) viewed the

developments of spatial analysis in two main categories: models for geostatistical data (that

is, the indices of data points belong in a continuous set) and models for lattice data (data

with indices in a discrete or countable set), while specifically mentioning that the latter is

not as developed.

The issue of “health disparity” is central to the distribution of federal and state aid

based on socio-economic indicators. Health disparity studies analyze how health status of

individuals vary across various socio-economic groups and spatial locations, in particular in

relation to a specific disease. Multiple response variables are available as indicators of health

status, and as a result, models for multivariate spatial lattice data are an indispensable tool

for analyzing health disparity data. Recently, Sain and Cressie (2007), Kim et al. (2001),

Gelfand and Vounatsou (2003), Jin et al. (2005) explored multivariate spatial models for

lattice data, adopting the Bayesian framework as the natural inferential approach. The only

exception, Sain (2009) developed the maximum likelihood estimation procedure for a special

case, namely the multivariate conditional autoregressive (CAR) normal model of Sain and

Cressie (2007).

Although the Bayesian inferential framework is a natural choice for spatial lattice data,

one obvious obstacle is the choice of prior distribution for the model parameters. All previous

works mentioned above are based on standard subjective, and at best, vague priors to account

for the lack of subjective knowledge. Subjective specification of priors have the obvious

drawback of introducing bias in the estimation procedure, the extent of which may not be

easy to gauge in applications. A default, or non-informative prior, is therefore preferable for

the Bayesian approach. However, in the case of hierarchical generalized linear models as in

this paper, putting non-informative priors (i.e., improper priors) result in the posterior being

improper. This led Natarajan and Kass (2000) to develop default priors in the context of

generalized linear mixed models (GLMM) for which the posterior can be established to be

proper.

A generalized linear mixed model (GLMM) with a multivariate Gaussian CAR model can

be viewed as a special case of a general random effects model with specific restrictions on the

structure of the covariance matrix. The Natarajan-Kass prior neither takes into account the

special structure of the covariance matrix nor considers the dimension reduction capabilities
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of a CAR model in the spatial case. In fact, some simple modifications greatly reduce the

number of parameters while maintaining flexibility in modeling (Sain and Cressie, 2007).

This work is motivated from an application of joint mapping of lung cancer mortality

incidence and poverty for all counties in the state of Michigan. The questions we seek to

address are two-fold: First, whether health and socio-economic disparities are correlated, and

second, if so, are the correlations stronger in certain spatial locations compared to others.

In this paper, we develop a new default prior for the multivariate spatial lattice data in the

context of spatial multivariate GLMM. The standard analysis using subjective and vague

priors indicates significant prior sensitivity compared to the proposed prior, which justifies

the use of the latter in real applications. Our Bayesian computational scheme is different

from previous approaches. We adopt a new parametrization of the multivariate CAR model

based on the Cholesky and spectral decompositions of matrices. The enormous advantage

gained through this re-parametrization is the removal of constraints on the parameter space

induced by the positive definiteness requirement on the inverse covariance matrix. The

Bayesian inferential procedure is illustrated through simulation and an application based on

SEER data for the state of Michigan.

The rest of the article is organized as follows: Section 2 develops the multivariate GLMM

model in the spatial context. Section 3 discusses the motivation for developing the proposed

default prior by taking the spatial information into account. The resulting posterior distri-

bution is shown to be proper in this section for both complete and missing data cases. The

Gibbs steps are outlined in Section 4 whereas Section 5 gives the numerical findings for both

simulated and real data. This is followed by a brief discussion summarizing our findings in

Section 6 and the Appendix.

2 Multivariate Generalized Linear Mixed Models

In what follows, we assume that there are n distinct sites on a spatial domain where obser-

vations on p variables are recorded. Let the multivariate data consist of the p-dimensional

random vector yj ≡ (y1j, y2j, · · · , ypj)
′ for the j-th site, for j = 1, 2, · · · , n. Corresponding

to the response yij, denote by xij = (xij1, xij2, xijqi
)′ to be the qi × 1 vector of explanatory

variables. The following two stage hierarchical model is considered for the distribution of

the np× 1 vector of all observables y ≡ (y′1,y
′
2, · · · ,y′n)′: In the first stage of the hierarchy,

the variables yij are independent with density

fij(y | ηij) = C(y) exp{ ηijy − hi(ηij)}, (1)
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where fij belongs to an exponential family of densities with canonical parameter ηij, and

hi(ηij) is the normalizing constant satisfying

exp{hi(ηij) } =

∫
C(y) exp{ ηijy } dy.

It can be shown (see, for example, McCullagh and Nelder (1989)) that hi(·) is a differentiable

function with inverse h−1
i . In the second stage, the canonical parameter ηij is related to xij

via a link function in the usual generalized linear model set-up,

ηij = x′ijβi + εij (2)

where βi is a qi × 1 vector of regression coefficients and εij are error random variables. The

hierarchical specification is completed by eliciting the distribution for the error component

εijs, namely, ε ∼ Nnp(0,D) where εj ≡ (ε1j, ε2j, · · · , εpj)
′ is the p× 1 error vector at the j-th

spatial site, ε ≡ (ε′1, ε
′
2, · · · , ε′n)′ is the np × 1 vector of all the error variables and D is the

covariance matrix (of dimension np × np ) of ε. Such models based on an unstructured D

are called a random-effects GLMs or generalized linear mixed models (GLMMs), and has

been the subject of many theoretical as well as practical studies in recent years.

2.1 Multivariate Gaussian CAR

In the spatial context, the distribution of ε, and hence D, can be given a more concrete

structure based on neighboring dependencies. Following Mardia (1988), we define the multi-

variate Gaussian CAR model as follows: For some p× p matrices Γj and Λjk, suppose that

the vector εj is p-variate Gaussian with

E(εj | ε−j) =
∑

k∈Nj

Λjk εk, and V ar(εj | ε−j) = Γj, for j = 1, 2, · · · , n, (3)

where ε−j ≡ { εk : k ∈ Nj } denotes the rest of the ε at all locations k in the neighborhood

Nj. The existence of the joint distribution for ε is guaranteed by the symmetry and positive

definiteness of D which, respectively, translates to

Λjk Γk = Γj Λ′
kj (4)

for all pairs (j, k), and Block(−Γ−1
j Λjk) is positive definite with Λjj = −I. Then, from

Mardia (1988), ε is Nnp(0,D) with

D = {Block(−Γ−1
j Λjk)}−1. (5)
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We introduce some more notation here relevant to the spatial context. The weight matrix

W = ((wjk)) (of dimension n× n ) consists of entries

wjk =

{
1 if j and k are neighbors, and

0, otherwise.
(6)

with wjj ≡ 0 for j, k = 1, 2, · · · , n. For each site j, define wj+ ≡
∑

k∈Nj
wjk to be the sum

that represents the total number of neighbors of site j, and M to be the n × n diagonal

matrix

M = diag(w1+, w2+, · · · , wn+). (7)

It is convenient both computationally as well as for practical analysis to represent all the

Γj and Λjk in terms of two common p × p matrices Γ and H , respectively. The first stage

of parametrization is to take

Γj =
Γ

wj+

and Λjk =
wjk

wj+

·H . (8)

The first part of equation (8) entails a common covariance matrix Γ for all sites j, rescaled

by the weight factor w−1
j+ . It follows that sites with a larger number of neighbors will have

lower variability, which is reasonable to expect. The second part of equation (8) entails a

common set of regression coefficients H rescaled by the inverse of the number of neighbors

wj+. The matrix Γ must be positive definite since Γj represents the covariance matrix of εj

given ε−j. Substituting (8) in (4), the symmetry requirement of (4) is equivalent to

HΓ = ΓH ′ (9)

or, in other words, F ≡ Γ−1/2HΓ1/2 should be symmetric, where Γ1/2 is the (unique) square

root matrix of Γ and Γ−1/2 is its inverse.

With the above re-parametrization, the distribution of ε is multivariate normal with

mean 0 and covariance matrix D, which is now a function of Γ and F only. In fact, the

inverse of D has the expression

D−1 = (In ⊗ Γ−1/2)(M ⊗ Ip −W ⊗ F )(In ⊗ Γ−1/2) (10)

where A ⊗ B represents the Kronecker product of two matrices A and B. To ensure that

D−1 is positive definite, we state the following theorem:

Theorem 1. Let λ1, λ2, · · · , λp denote the eigenvalues of F = Γ−1/2HΓ1/2. The covariance

matrix D is positive definite if −1 ≤ λk ≤ 1 for all k = 1, 2, · · · , p.
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The reader is referred to the Appendix for the proof. The concatenated vector of all ηijs at

the j-th spatial location is denoted by ηj ≡ (η1j, η2j, · · · , ηpj)
′. Further, η ≡ (η′1,η

′
2, · · · , η′n)′

represents the np× 1 vector of all ηij variables. Since ε ∼ Nnp(0,D), it follows that

η ∼ Nnp(Xβ,D) (11)

where β = (β′1, β
′
2, · · · , β′p)

′ is the q×1 concatenated vector of all regression coefficients with

q =
∑p

i=1 qi, and X is the p n× q design matrix given by

X =




X1

X2

...

Xn




(np×q)

, with Xj =




x′1j 0 · · · 0

0 x′2j · · · 0
...

...
. . .

...

0 0 · · · x′pj




(p×q)

(12)

denoting the design matrix at the j-th spatial location for j = 1, 2, · · · , n.

2.2 Handling Partial and Missing Observations

In some applications, part of the y observations can be either missing or partially observed,

thus requiring the development of spatial hierarchical GLMMs for partially observed data

structures. The sets M, P and C represent all pairs (i, j) where yij is either missing,

partially observed or completely observed, respectively. Given η, the conditional likelihood

contribution corresponding to the partially observed data, Dobs say, can be written as the

product of two components

`(Dobs |η) =
∏

(i,j)∈C
fij(yij | ηij)

∏

(i,j)∈P
Fij(Pij | ηij) (13)

taken over the sets C and P , with

Fij(Pij | ηij) =

∫

yij∈Pij

fij(yij | ηij) dyij (14)

denoting the contribution arising from the partial information that yij belongs to the set Pij.

To write down the (unconditional) likelihood for the hierarchical GLMM, we integrate over

the distribution of η in (11):

`(Dobs |β, F ,Γ) =

∫

η

`(Dobs |η) f0(η |β, F ,Γ) dη (15)

where f0 is the distribution of η given in (11). Examples of partially observed data are

common in rare diseases. For example, when mapping cancer incidences, certain counties do

not report the exact number of incidences if the total number is less than a known threshold.

In this case the partial information is Pij = { yij < τ } where τ is the known threshold.

6



3 Default Prior Elicitation

This section discusses the appropriate default priors on the model parameters β, H and

Γ. Since each βi represents the regression effects to the mean of the observations yij, it is

natural to elicit a standard “flat” non-informative prior on each βi for i = 1, 2, · · · , p:

πN(β) ∝ 1 (16)

It is also natural to consider the Jeffrey’s type non-informative prior on Γ of the form

πJ(Γ) ∝ (det(Γ))−(p+1)/2. We state

Theorem 2. Let π0(H) be a proper prior on H. The default prior specification

π0(β,H ,Γ) = πN(β)× πJ(Γ)× π0(H) (17)

gives a posterior distribution on the parameters that is improper.

Proof: We refer the reader to a proof in the Appendix. The consequence of Theorem 2

is that new motivation is required for the development of a default prior on Γ, which should

make the posterior proper. We discuss the development of such a prior in the subsequent

paragraphs.

Our justification for the default prior comes from looking at the conditional update of each

ηij given the data yij and the rest of the η elements (excluding ηij). In the normal-normal

case, one can explicitly derive an expression for the weights that represent the contribution

of the data, yij, and the rest of the η to the conditional mean of ηij. However, in the

case of non-conjugate GLMMs, it is not possible to obtain a closed form expression for the

weights. An approximate approach can be considered based on a quadratic expansion of

the exponential family pdf to yield a similar analysis as in the normal-normal model. We

consider the prediction of the vector ηj given yj and η−j (which are the rest of the ηijs

excluding the ones at site j). The GLM approach to estimating ηj is iterative and expands

the function his in (1) around the current estimate η∗j . From Taylor’s expansion, we have

hi(ηij) ≈ hi(η
∗
ij) + (ηij − η∗ij)h

(1)
i (η∗ij) +

1

2
(ηij − η∗ij)

2h
(2)
i (η∗ij). (18)

Using the expansion above, the exponential family of densities can be expanded around η∗j
similarly as

p∏
i=1

exp{ ηijyij − hi(ηij) }

≈
p∏

i=1

exp

{
ηijyij − hi(η

∗
ij)− (ηij − η∗ij)h

(1)
i (η∗ij)−

1

2
(ηij − η∗ij)

2h
(2)
i (η∗ij)

}

∝ exp

{
−1

2
(ηj − η∗j)

′H(2)
j (ηj − η∗j) + η′j(yj − h

(1)
j )

}
,
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where h
(1)
j =

(
h

(1)
1 (η∗1j), h

(1)
2 (η∗2j), · · · , h

(1)
p (η∗pj)

)′
is the p× 1 of first derivatives, and

H
(2)
j = diag

(
h

(2)
1 (η∗1j), h

(2)
2 (η∗2j), · · · , h(2)

p (η∗pj)
)

(19)

is the diagonal matrix of all second derivatives of hi, i = 1, 2, · · · , p evaluated at η∗j . The

Taylor’s expansion above allows us to revert back to the normal-normal case where by com-

pleting squares, the observational part for ηj can be derived as

exp

{
−1

2
(ηj − η∗i (yi))

′H(2)
j (ηj − η∗i (yi))

}

with η∗i (yi) ≡
(
H

(2)
j

)−1

(yj −h
(1)
j + H

(2)
j η∗i ). The contribution from the multivariate Gaus-

sian CAR prior in (11) (i.e., the rest of the η elements) is

exp
{
−wj+

2
(ηj − ηCAR

j )′(Γ−1)(ηj − ηCAR
j )

}

where ηCAR
j = H

∑
k∈Nj

wij

wj+
ηk. Combining the likelihood and prior parts, the conditional

mean of ηj (again by completion of squares) turns out to be

(H
(2)
j + Γ−1 wj+)−1H

(2)
j η∗j(yj) + (H

(2)
j + Γ−1 wj+)−1Γ−1wj+ηCAR

j (20)

with (matrix) weights

W 1j = (H
(2)
j + Γ−1 wj+)−1H

(2)
j and W 2j = I −W 1j (21)

corresponding to the direct estimate yj and the population mean. Our proposal is to induce

a prior on Γ such that the prior on

W 1j =
(
H

(2)
j + Γ−1 wj+

)−1

H
(2)
j =

(
H

(2)
j

wj+

+ Γ−1

)−1
H

(2)
j

wj+

is uniform. A similar technique was used by Daniels (1998) and Natarajan and Kass (2000)

in the univariate non-spatial context. Since W 1j varies with j, we first replace it by its

average across all the sites. Thus, we set

w0 =
1

np

∑
j

trace

(
H

(2)
j

wj+

)
.

Substituting
H

(2)
j

wj+
by its average w0 Ip in the expression of W1j above, we get the matrix U

defined by

U ≡ (
w0Ip + Γ−1

)−1
w0Ip = ( w0Γ + Ip)

−1 w0Γ
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Note that 0 ≤ U ≤ Ip in terms of positive definiteness with det(U ) representing the volume

of the weight matrix U . We seek a prior on Γ that is induced by a default prior on det(U ).

The class of multivariate Beta distribution given by

f(U | a, b) = C(det(U ))a−(p+1)/2(det(Ip −U ))b−(p+1)/2

with a > (p − 1)/2 and b > (p − 1)/2 forms a class of prior for U . The uniform prior on

the weight matrix U is obtained by setting a = b = (p + 1)/2. The resulting prior on Γ

corresponding to uniform volume of U is

πUV (Γ) = det (Ip + w0Γ)−(p+1) . (22)

This is also the prior developed in Natarajan and Kass (2000) leading to shrinkage-type

estimators in the non-spatial context. The uniform volume prior is proper from Theorem 2

of Natarajan and Kass (2000).

The prior on H is induced via F . The prior on F is taken to be independent of Γ and

is elicited as follows: Writing the spectral decomposition of F as

F = QΛQ′, (23)

we put a uniform prior on Q and in view of Theorem 1, we put a uniform prior U(−1, +1)

on the eigenvalues in Λ. The default prior on (β, F ,Γ) is thus

π0(β,F ,Γ) = πN(β)× πUV (Γ)× 1

2p
. (24)

For each i = 1, 2, · · · , p, the design matrix corresponding to the i-th response variable is the

n × qi matrix X̃ i = (xi1, xi2, · · · , xin)′. The submatrix X̃Ci
is formed by taking all rows j

of X̃ i for which (i, j) ∈ C. We state

Theorem 3. Assume that fij and Fij in (13) are bounded above by a constant independent

of ηij for each pair (i, j). Using the default prior (24), the posterior is proper if there exists

qi linearly independent row vectors in X̃Ci
for each i = 1, 2, · · · , p such that

∫

Γ

∫

F

∫

β

∫

η

(
p∏

i=1

qi∏
j=1

fij(yij | ηij)

)
f0(η |β, F ,Γ) dη π0(β,F ,Γ) dβ dF dΓ < ∞, (25)

where f0 and π0 is, respectively, the distribution of η and the prior, as given in (11) and

(24).

Remark 1: Under the assumptions of Theorem 3, 0 ≤ fij ≤ A and 0 ≤ Fij ≤ B, say. In

our applications, fij is taken to be either a Poisson pmf or a normal pdf. For the Poisson
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(or, generally for a discrete distribution), it easily follows that the bounds A = B = 1,

independent of i and j. When fij is normal with mean ηij and fixed standard deviation σ0,

it follows that A = 1/
√

2πσ0 and B = 1, thus independent of i and j again. Generally for

densities, the bound A needs to be established on a case-by-case basis.

Remark 2: Theorem 3 shows that propriety can be achieved if there are at least qi sites on

the lattice for which the yijs are completely observed. The only further check that we have

to perform is to see if the design matrix corresponding to those sites X̃Ci
is non-singular.

This is a requirement for each i, so the conditions of Theorem 3 can be checked separately

for each i = 1, 2, · · · , p.

4 Bayesian Inference

The Gibbs sampler is a natural method for posterior simulations in the case of GLMMs,

and is also the method utilized for our spatial models. A slightly different (yet equivalent)

parametrization of the spatial multivariate GLMM is considered subsequently. Instead of

Γ−1/2, the lower triangular matrix L obtained from the Cholesky decomposition of Γ−1 is

used. Also, we define the matrix B ≡ LQ with entries B = ((buv))
p
u,v=1 where Q is the

orthogonal matrix from the spectral value decomposition of F . The following string of

equalities demonstrate that D is a function of B and Λ: We have

D−1 = (In ⊗L)(M ⊗ Ip −W ⊗ F )(In ⊗L′)

= (In ⊗L)(M ⊗ Ip −W ⊗QΛQ′)(In ⊗L′)

= (In ⊗L Q)(M ⊗ Ip −W ⊗Λ)(In ⊗Q′ L′)

= (In ⊗B)(M ⊗ Ip −W ⊗Λ)(In ⊗B′).

The enormous advantage of the re-parametrization in terms of B is that the entries of B

are unconstrained. Note that it is possible to obtain Q and L uniquely from B using the

QR decomposition of B′ = QR where Q is orthogonal and R is upper triangular. It follows

that L = R′ and Q = Q′.

The four main steps of the Gibbs sampler are:

• Update ηij: The update of ηij is carried out based on the following (conditional)

posterior density of ηij given the rest of the parameters:

π(ηij | · · · ) ∝ exp{ ηijyij − hi(ηij)− Aij

2
(ηij − η∗ij)

2} (26)

10



where η∗ij ≡ x′ijβi + ε∗ij, and ε∗ij has the expression ε∗ij = 1∑p
v=1 b2iv

ε0,

ε0 =

p∑
v=1

b2
ivλv

∑

k∈Nj

wjk

wj+

εik

︸ ︷︷ ︸
(1)

−
p∑

v=1

p∑

u=1,u6=i

bivbuvεuj

︸ ︷︷ ︸
(2)

+

p∑
v=1

p∑

u=1,u6=i

bivbuvλv

∑

k∈Nj

wjk

wj+

εuk

︸ ︷︷ ︸
(3)

(27)

with εuv = ηuv − x′uvβuv for all (u, v) = 1, 2, · · · , p except for (u, v) = (i, j), and Aij =

wj+

∑p
v=1 b2

iv. The updating formula in (27) is based on three components: The first

component (terms in (1) above) involve ηik values for spatial sites k ∈ Nj for the same

variable index i, the second component involves ηuj for the other variables u 6= i but

for the same spatial location j, whereas the third component involves ηuk for variables

other than i and sites in k ∈ Nj. The update of ηij is based on histogramming the

conditional posterior density in (26) for each fixed pair (i, j) and cycling through all the

combinations of (i, j) ∈ {(1, 1), (1, 2), · · · , (1, n), · · · , (p, n)}. This is the ηij updating

step when yij is completely observed, that is, for (i, j) ∈ C. When yij is missing, the

first term in equation (26) will be absent. The standard method of analyzing partially

observed yij is to treat it as missing and update the value based on the truncated

distribution fij(· | ηij) given that yij ∈ Pij.

• Update β: The update of β requires a re-ordering of the variables involved. For

each i = 1, 2, · · · , p, define ηr
i and εr

i to be the n × 1 vectors corresponding to the

i-th variable, that is, ηr
i = (ηi1, ηi2, · · · ηin)′ and εr

i = (εi1, εi2, · · · εin)′. Also, let ηr ≡
((ηr

1)
′, (ηr

2)
′, · · · , (ηr

p)
′) and εr ≡ ((εr

1)
′, (εr

2)
′, · · · , (εr

p)
′) denote the np× 1 vector of re-

ordered entries from η and ε, respectively. The covariance matrix of εr is subsequently

a re-ordered version of D given by

(Dr)−1 = (B ⊗ In)(Ip ⊗M −Λ⊗W )(B′ ⊗ In). (28)

Also, let X̃ = ((Block Diagonal{X̃ i})) denote the block diagonal matrix consisting of

the design matrices for the i-th response variable for i = 1, 2, · · · , p. The conditional

posterior distribution of β is multivariate normal with mean µβ, and covariance matrix

Sβ where

µβ = (X̃
′
(Dr)−1X̃)−1(X̃

′
(Dr)−1ηr) and Sβ = (X̃

′
(Dr)−1X̃)−1, (29)

respectively.

• Update Λ: An enormous advantage of the re-parametrization in terms of B and Λ

earlier is when updating Λ: The diagonal entries of Λ can be updated independently

11



of each other. Consider the p× n matrix, Υ, constructed by putting εij in its i-th row

and j-th column entry. Define a new matrix p× n matrix E as

E = B′Υ (30)

and let e′i be the i-th row of E, for i = 1, 2, · · · , p. The conditional posterior density

of λk is given by

π(λ | · · · ) ∝ exp

{
−1

2
e′k(M − λW ) ek

}
(det (M − λW ))1/2 (31)

in the range of −1 ≤ λ ≤ 1 independently for each k = 1, 2, · · · , p. The update of λk is

based on histogramming the conditional posterior density in (31) for each fixed k and

cycling through all k = 1, 2, · · · , p.

• Update B: The conditional posterior density of B has the expression

π(B | · · · ) ∝ exp

{
−1

2

p∑

k=1

e′k(M − λkW ) ek

}
× det ( w0I + BB′ )−(p+1)

× det(BB′)(n+1)/2 (32)

where e′k ≡ e′k(B) is as defined in (30) but now viewed as a function of B. The latter

part of the conditional density in (32) is the contribution of the default prior on Γ. The

update of B is carried out by updating each entry buv one at a time. The conditional

posterior density of buv is the same (upto a constant of proportionality) as in (32). The

actual update of buv is performed by histogramming the density in (32) and cycling

through all combinations (u, v) with u, v = 1, 2, · · · , p.

5 Experimental Results

5.1 Simulation study

We have conducted extensive simulation studies to check the performance of our methodol-

ogy. The experimental settings closely mimic county-level data for southern lower Michigan

obtained from the SEER database. We took p = 2 with y1j and y2j representing binomial re-

sponses on n = 40 spatial sites with neighborhood structure determined by the adjacency in-

formation among Michigan counties. Given η, the observed data yij ∼ Binomial
(
Tij,

eηij

1+eηij

)
,

for i = 1, 2 and j = 1, 2, · · · , 40, independent of each other; Tij is the total number of trials

selected independently from a Uniform(22, 48) distribution. The distribution of η is mul-

tivariate Gaussian CAR with the following true parameter specifications: β1 = (−1, 0.3)′,
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β2 = (−0.5,−0.2)′,

Γ =

(
0.5 0.1

0.1 0.125

)
and F =

(
0.7 −0.1

−0.1 0.2

)
.

The first components of β1 and β2 correspond to the intercept terms. Here q1 = q2 = 2

and additional covariate information is gathered from independent normal distributions:

X1 ∼ N(0, σ2 = 0.3) and X2 ∼ N(1, σ2 = 0.5).

Two choices of priors were considered for Γ, namely, (a) the default prior πUV (Γ) ∝
det(Ip + ω0Γ)−(p+1) and (b) the proper inverse Wishart given by πIW (Γ) = IW (ρ, ρA),

where ρ ≥ p. The inverse Wishart distribution is a generalization of the inverse gamma

for the variance parameter in a multivariate setting. If Γ ∼ IW (m,Ψ), the expecta-

tion and variance of entries of Γ are given by E(Γkl) = Ψkl/(m− p− 1) and var(Γkl) =
(m−p+1)Ψ2

kl+(m−p−1)ΨkkΨll

(m−p)(m−p−1)2(m−p−3)
where Γkl and Ψkl are the (k, l)-th entries of p× p matrices Γ and

Ψ, respectively. When ρ is large, E(Γ) ≈ A, and var(Γij) ≈ 1/ρ, leading to a high con-

centration of probability around the initial guess of A. Thus, this prior does not represent

non-informative prior knowledge. Choice (b) was proposed by Sain and Cressie (2007) as the

choice of vague prior for Γ when ρ is large, which is not the case (actually, Sain and Cressie

(2007) put a prior on Γ−1 which is Wishart(ρ, (ρA)−1), but this is equivalent to choice (b)

since Γ ∼ IW (m,Ψ) iff Γ−1 ∼ W (m,Ψ−1)).

The priors (a) and (b) for Γ above in turn induce priors on B. This is based on the

transformations Γ → Γ−1, Γ−1 → LL′, and (L,Q) → B. The derivation of the Jacobian

for the composition transformation from (Γ,Q) → B is given in the Appendix. The priors

on B turn out to be (i) πUV (B) = det(ω0Ip + BB′)−(p+1) det(BB′)1/2, (ii) πIW (B) =

exp
{−ρ

2
tr(ABB′)

} × det(BB′)
ρ−p
2 respectively, for the priors (a) and (b) for Γ. Prior

choices for β are (i) the default non-informative constant prior πN(β) ∝ 1, and (ii) the

proper subjective prior πG(βk) ∼ N(0, σ2
k Iqk

) independently for each k = 1, 2, · · · , p. Using

(ii), it is easy to see that the posterior for β is N(µ,S) where

µ = SX ′(Dr)−1ηr, S−1 = X ′(Dr)−1X + Σ−1. (33)

Here, Σ = Block Diagonal(σ2
kIqk

). Thus, we investigate the following three prior choices:

(I) πUV (B) and πN(β) and (II) πIW (B) and πG(βk) with ρ = 5, A = Ip and σ2
k = 100, and

(III) πIW (B) and πG(βk) with ρ = 100, 000, A = Ip and σ2
k = 100.

The Gibbs sampler was run for 10, 000 iterations and checked for convergence using

traceplots and the R-statistic of Gelman and Rubin (1992). We established convergence

for all the experiments by 5, 000 iterations; all diagnostic plots are satisfactory but are

suppressed to save space. Outputs from the Gibbs chains were used to compute different

statistics to validate and compare the proposed Bayesian methodology. The three prior
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choices are compared in terms of their ability to derive consistent estimation and prediction

results. The deviation measures of comparisons are (1) relative mean absolute deviation

(RMAD), (2) mean square error (MSE), (3) empirical 90% HPD coverage probabilities (CP),

and (4) width of the 90% HPD set (W). Formulas for a generic quantity θ are given by

RMADθ = (E(θ) − θ0)/θ0, MSEθ = E(θ − θ0)
2, CPθ = P{θ0 ∈ HPD(θ)} and W is the

width of HPD(θ); in the RHS of each expression, θ represents a sample (or samples) from

the posterior, HPD(θ) is the 90% HPD set calculated based on θ samples and θ0 is the true

value set in the simulation experiments. We used 500 replications in each experiment and

report the averages of the deviation measures above. The computational time for all the 500

replications in each experimental setup is approximately 20 − 25 hours. All computations

were carried out using an HP ProLiant DL160 machine (a cluster of nodes) with 8 Intel

Xeon cores and 24GB of memory at the High Performance Computing Center (HPCC) at

Michigan State University.

Table 1 reports a summary of all deviation measures. For convenience of understanding

the results, we report averages over specific components of the unknown parameters; for

example, the β column reports the average over all β components, β11, β12, β21, β22, and

similarly for the other parameters Γ and F . The last column reports averages over all

40 × 2 = 80 predicted values for η; the deviation measures are calculated based on η0, the

true values generated in each replication. Entries in Table 1 clearly shows the sensitivity of

standard prior distributions (i.e., priors (II) and (III)) used in the literature. For example,

for a wrong choice of ρ and A in πIW , the coverage can be even 0 along with high MSE and

RMAD. This effect can be reduced with a more sensible prior choice, for example, choice

(II). On the other hand, πUV always provides sensible results. One might notice that the

sensitivity of priors (II) and (III) is highest for Γ compared to the other columns in Table

1. This is due to the fact that the prior for Γ changes significantly for the three choices

(I-III) whereas we always use the default uniform prior for F . The regression parameters β

are less affected by the prior choice compared to Γ due to the fact that β is related to the

mean parameter with large prior variance while Γ is related to dispersion. Nevertheless, the

standard choice of Gaussian prior on β also appears to be somewhat sensitive, but not to

the extent of Γ. Although the η components are not fixed model parameters (i.e., they vary

from county to county), their inference can also be sensitive to the different prior choices. To

explain the discrepancies in the Γ entries, Figure 1 plots the posterior densities of Γ22, the

(2, 2)-th entry of Γ, corresponding to the three different prior choices for a arbitrarily chosen

replicate. Note that under prior (III), the prior mean is I2 whereas the prior variance is 10−5

making it highly concentrated on a value different from the true Γ22; while we understand

that the small prior variance is unreasonable, this choice is not uncommon (see, for example,

Sain and Cressie, 2007). The situation improves under prior (II) where the prior mean is the

14



same but the prior variance is 0.2 which gives a comparatively higher prior mass around the

true Γ22. Overall, the proposed default prior πUV performed well in all respects. This prior

is thus a robust choice. We have also explored with another choice of Γ, namely

Γ =

(
10 6

6 5

)
.

The results are similar to one discussed here and is therefore not presented. The componen-

twise univariate spatial analysis was carried out and, as expected, the multivariate analysis

had superior performance.

We also performed similar experiments with 10% missing observations. The results are

reported in Table 2. Comparative trends similar to the complete data case with priors (I-III)

are also observed here.

5.2 Real data examples

The Bayesian inferential framework developed in this paper is applied to study bivariate

dependence of a number of health-socio-economic indicators in the state of Michigan. Two

studies are conducted with different pairs of response variables: (1) lung cancer mortality

incidence and poverty, and (2) lung cancer mortality and air quality index (AQI) measure-

ments. Study (1) and (2) illustrate the complete and missing data applications, respectively.

The source of our socio-economic data is SEER (URL: seer.cancer.gov). In each application,

the Gibbs sampler was run for 10, 000 iterations and checked for convergence as in the sim-

ulated data. Posterior samples are obtained from the Gibbs chains for computing the mean,

standard deviation and 90% highest posterior density (HPD) intervals for all the parameters.

5.2.1 Complete Data Example: Study 1

The mortality of lung cancer, the first component of the response variable in Study 1, is

rare enough relative to the population in the 68 counties of lower Michigan that a Poisson

distribution is appropriate. We write the model (conditional on η1j) as

y1j
ind∼ Poisson(Eje

η1j), i = 1, 2 and j = 1, 2, · · · , 68,

where y1j measures the observed number of deaths in county j and Ej is the estimated

population at risk; we assume Ej is known and give a way for calculating them later. The

poverty count, y2j, is taken to be the second component of the response variable in Study

1. We model y2j as a Binomial with the number of trials being the total county population

and success probability eη2j

1+eη2j . The associated covariates for y1j are the intercept, PM25
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(particulate matter with size < 2.5 µm obtained from EPAs NEI database), and the extents

of urbanization, non-white population and non-industry (these are measured as proportions).

Covariates for poverty are the intercept, and the extents of urbanization and non-industry.

Thus, q1 = 5 and q2 = 3.

To calculate Ej, we take each county’s age distribution into account, which is available

from U.S. Census 2000. The expected age-adjusted number of deaths due in county j is

Ej =
m∑

k=1

ωkNk
j ,

for j = 1, 2, · · · , 68 where ωk =
∑68

j=1 Dk
j /

∑68
j=1 Nk

j is the age-specific death rate due to lung

cancer for age group k and Nk
j is the total population at risk in county j for age group k.

The county level maps of the age-adjusted standardized mortality ratios (SMRs), Y1j/Ej for

lung cancer shown in Figure 2 exhibit evidence of correlation over space. Figure 2 also gives

the spatial distribution of poverty levels which can be seen to be highly spatially correlated

with lung cancer (simple correlation between lung cancer and poverty is around 0.4).

We present summary conclusions of our analysis. The standard errors of the parameters

estimates for prior (I) are smaller compared to priors (II) and (III). For example, the average

standard error of regression coefficients for lung cancer is 0.61 under prior (I), and 0.65 and

1.28 for (II) and (III), respectively. For the variance component parameters, the standard

errors and widths of HPD sets are comparable under priors (I) and (II). Note that the

inference for Γ is highly misleading for prior (III) since most of the posterior probability is

concentrated around the prior mean. Another difference is that the covariate PM25 (related

to the particle matter in the air) for lung cancer incidence is positive and significant under

(I), whereas it is insignificant under priors (II) and (III). For prior (III), the posterior mean

takes a negative value which is not very realistic. For brevity, other statistics along with the

smooth map of η are suppressed.

5.2.2 Missing Data Example: Study 2

In Study 2, AQI is taken as the second component of the response variable in place of poverty.

AQI information is obtained from the EPA AQI report site. Air pollutant monitoring stations

are sparsely located in 32 out of 68 lower Michigan counties, and thus, constitutes missing

information. The covariates for AQI are the intercept and the non-industrialization status

of the county (q2 = 2). We take y2j to be normally distributed with mean η2j and fixed

standard deviation σ0, estimated using our data and set at 0.1.

Results for the standard errors and width of HPD sets for the parameters are similar to

the complete data case. There are two striking features in this application. First, the extent

of urbanization for lung cancer incidence is negative and significant under (I) whereas it is
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positive under the other two priors (which may not be reasonable). Second, the regression

coefficient for racial segregation (non-white) is significant under (I) and (II) but not under

(III). This shows the sensitivity of the subjective elicitation under the missing data setup as

well.

6 Conclusion

The Bayesian inferential framework is perhaps the only solution available for analyzing hier-

archical spatial multivariate data. In the absence of reliable subjective information, the use

of Jeffreys type non-informative priors or diffuse conjugate priors is popular. However, in the

context of the hierarchical spatial multivariate GLMMS, we have shown that none of these

priors will work; the Jeffreys prior yields a posterior that is improper whereas the diffuse

conjugate prior is highly sensitive. This characteristic has also been observed in Natarajan

and Kass (2000) in a simpler setup, namely in univariate GLMMs without any spatial com-

ponents. This led us to elicit priors on the model parameters that will be close to Jeffreys

but still yield a proper posterior for inference.

The development of prior elicitation can be thought of as an extension of Natarajan

and Kass (2000) in the spatial context. Besides the prior development, we propose some

innovative computational techniques for the Gibbs implementation. Suitable transformations

are made on the parameters which avoid sampling from restricted domains, thus providing

more stability and efficiency in the Gibbs steps. The methodology has been extended to the

case of missing responses in the multi-dimensional setup.

We have carried out extensive simulation studies to establish the superiority of the pro-

posed methodology. As we have mentioned in the Introduction, the motivation of this work

came from Michigan SEER data analysis. We have provided two real examples briefly merely

for illustration. Both examples support the use of the newly proposed prior rather than com-

monly used Jeffreys or diffuse conjugate priors.
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Appendix

Proof of Theorem 1: A necessary and sufficient condition for D to be positive definite

(pd) is the expression for D−1 to be positive definite. Since Γ−1/2 is pd and hence non-

singular, it follows from (10) that (M ⊗ Ip − W ⊗ F ) should be positive definite. The

eigenvalues of (M ⊗ Ip −W ⊗ F ) is the same as the eigenvalues of (M ⊗ Ip −W ⊗ Λ),

which is the collection of all eigenvalues of M − λkW , for k = 1, 2, · · · , p. Now, requiring

that M −λkW be diagonally dominant (which implies positive definiteness), it follows that

|λk|
∑

l∈Nj

wjl ≤ wj+ ⇒ |λk|wj+ ≤ wj+ ⇒ |λk| ≤ 1 (34)

for all k = 1, 2, · · · , p.

Proof of Theorem 2: In order to show that the posterior is improper, it is enough to

show that the marginal of y ≡ (y′1,y
′
2, · · · ,y′n)′ does not exist; that is, the integration with
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respect to the variable η and the parameters H , Γ and β is infinity. The marginal of y has

the expression

m(y) =

∫

η

∫

H

∫

Γ

∫

β

(
p∏

i=1

n∏
j=1

fi(yij | ηij)

)
1

(2π)np/2
(det(D))−1/2 ×

× exp

{
−1

2
(η −Xβ)′D−1(η −Xβ)

}
dη π(H) dH

1

(det(Γ))(p+1)/2
dΓ dβ

We make a change of variable from η → ε using the transformation ε = η − Xβ. Next,

write det(D) = det(Γ)n × g0(H) for some function g0 of H , and note that the expression

within the exponent can be simplified to −1
2
tr(Γ−1S) where

S =
n∑

j,l=1

Hjlεjε
′
l

with Hjl ≡ −wjl H if j 6= l, and Hjj = wj+ Ip. Now, integrating with respect to Γ, the

marginal reduces to

m(y) =

∫

H

∫

β

∫

ε

(
p∏

i=1

n∏
j=1

fi(yij | εij + x′ijβi)

)
1

(det(S))n/2
dε dβ (g0(H))−1 π(H) dH ,

ignoring proportionality constants. We make a change of variable from ε → u defined by

ε11 = u11 and εij = uiju11 for (i, j) 6= (1, 1) with an associated Jacobian of unp−1
11 . With this

substitution,

S = u2
11 S∗

where S∗ =
∑n

j,l=1 HjlU jl where U jl = Vj V ′
l with V1 = (1, u21, u31, · · · , up1)

′ and Vj =

(u1j, u2j, · · · , upj) for j ≥ 2. It follows that

det(S) = u2p
11 det (S∗)

Subsequently,

m(y) =

∫

H

∫

β

∫

u

(
p∏

i=1

n∏
j=1

fi(yij |u∗iju11 + x′ijβi)

)
1

u11

1

(det(S∗)n/2)
du dβ (g0(H))−1 π(H) dH ,

where u∗ij = uij for (i, j) 6= (1, 1), u∗11 = 1 and S∗ =
∑n

j,l=1 HjlU jl). It follows that the

integral with respect to u11 diverges around u11 = 0 proving that m(y) = ∞.

Proof of Theorem 3: Without loss of generality, we take the first qi rows of X̃Ci
to

be the linearly independent rows. It follows that the marginal of y,

m(y) ≤ C0

∫

F

∫

Γ

∫

β

∫

η

(
p∏

i=1

qi∏
j=1

fij(yij | εij + x′ijβi)

)
f0(η |β F ,Γ) dβ dη π(F ) dF πUV (Γ) dΓ
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where C0 is a constant depending on A and B and the submatrix X∗
i = (x

′
i1, x

′
i2, · · · , x

′
iqi

)′

is of dimension qi × qi with full rank qi. Making a change of variable from βi → ri =

(εi1, εi2, · · · , εiqi
)′ + X∗

i βi for i = 1, 2, · · · , p, condition (25) implies that

m(y) ≤
p∏

i=1

det(X∗
i )

∫

ε

∫

F

∫

Γ

f0(ε |F ,Γ) dε π(F ) dF πUV (Γ) dΓ

≤
p∏

i=1

det(X∗
i ) < ∞

since the integrands all integrate to finite numbers; f0 integrates to 1 with respect to ε , and

π(F ) and πUV (Γ), respectively integrates to 1 with respect to F and Γ since they are proper

priors.

Derivation of the Jacobian from (Γ,Q) → B: We consider three transformation

steps: (Γ,Q)
(a)→ (Γ−1,Q)

(b)→ (L, Q)
(c)→ B, where (a) is an inverse transformation, (b)

is Cholesky decomposition and (c) is QR decomposition. The Jacobian of each transfor-

mation can be obtained as follows (Muirhead (1982)): (a) dΓ = det(Γ−1)−(p+1) dΓ−1, (b)

dΓ−1 = 2p
∏p

i=1 Lp+1−i
ii dL′, and (c) dB =

∏p
i=1 Lp−i

ii dL′(Q d∗Q′), where (Q d∗Q′) defines

the Haar measure on the set of p × p orthogonal matrices. Thus, defining dQ ∝ (Qd∗Q′),

we have dΓdQ = det(Γ−1)−(p+1) 2p
∏p

i=1 Lp+1−i
ii dL′dQ ∝ det(Γ−1)−(p+1)

∏p
i=1 LiidB ∝

det(Γ−1)−p−1/2dB ∝ det(BB′)−(p+1/2)dB.
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θ β Γ F η

Prior (I) (II) (III) (I) (II) (III) (I) (II) (III) (I) (II) (III)

RMAD 0.253 0.250 0.258 0.799 1.660 2.994 0.956 0.982 0.990 0.557 0.533 0.558

MSE 0.017 0.017 0.017 0.045 0.113 0.336 0.166 0.167 0.169 0.066 0.071 0.085

CP 0.861 0.894 0.925 0.896 0.618 0.000 0.881 0.859 0.859 0.874 0.933 0.932

W 0.383 0.430 0.478 0.546 0.642 0.027 1.236 1.161 1.107 0.787 0.943 1.040

Table 1: Deviations measures for averages over β, Γ, F and η for the complete data case.

θ β Γ F η

Prior (I) (II) (III) (I) (II) (III) (I) (II) (III) (I) (II) (III)

RMAD 0.256 0.254 0.263 1.037 1.782 2.992 0.916 0.928 0.929 0.539 0.559 1.132

MSE 0.018 0.018 0.018 0.074 0.143 0.336 0.155 0.157 0.158 0.071 0.075 0.090

CP 0.911 0.936 0.951 0.923 0.634 0.000 0.931 0.890 0.882 0.889 0.936 0.934

W 0.445 0.495 0.534 0.710 0.746 0.026 1.294 1.210 1.157 0.840 0.977 1.059

Table 2: Deviations measures for averages over β, Γ, F and η the missing data case.
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Figure 1: Posterior densities for Γ22 corresponding to the three prior choices.
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Figure 2: Observed SMR of Lung Cancer and Poverty in Michigan
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