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Abstract

A Receiver Operating Characteristic (ROC) curve reflects the performance of a system which

decides between two competing actions in a test of statistical hypothesis. This paper addresses

the inference on ROC curves for the following problem: how can one statistically validate the

performance of a system with a claimed ROC curve, ROC0 say? Our proposed solution consists

of two main components: First, a flexible family of distributions, namely the multivariate

binormal mixtures, is proposed to account for intra-sample correlation and non-Gaussianity of

the marginal distributions under both the null and alternative hypotheses. Second, a semi-

parametric inferential framework is developed for estimating all unknown parameters based on

a rank likelihood. Actual inference is carried out by running a Gibbs sampler until convergence,

and subsequently constructing a highest posterior density (HPD) set for the true but unknown

ROC curve based on the Gibbs output. Real data are analyzed to support out theoretical

results.

Keywords: Bayesian computation, group invariance, mixture models, Semi-parametric infer-

ence, ROC band.

1 Introduction

The Receiving Operating Characteristics (ROC) curve is a popular tool for assessing the per-

formance of a system which decides between two competing actions in a test of statistical

hypotheses. A large variety of fields (for example, engineering, biology, genetics, finance and

others) require the development of ROC curves for systems performance assessment. For this

reason, the study of construction and inference on ROC curves has received a good deal of

attention in the above-mentioned fields. Studies related to inference on ROC curves include

DeLong et al. (1988), Alonzo and Pepe (2002), Cai (2004), and Braun and Alonzo (2008) in

biological applications, and Kamitsuji and Kamatani (2006) in genetics.
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The aim of this paper is to develop the inferential tool for validating ROC curves in engi-

neering applications, with special emphasis on biometrics and biometric authentication systems.

Biometric recognition or biometrics refers to the automatic authentication of a person based on

his/her physiological or behavioral characteristics (see, for example, Jain et al. 1999, and Mal-

toni et al. 2003), and is gaining widespread use due to security and safety concerns. Biometric

recognition offers many advantages over traditional PIN number or password and token-based

approaches: the rightful owner of the biometric template can be easily identified, a biometric

trait cannot be easily transferred, forgotten or lost, and it is difficult to duplicate a biometric

trait. Some well-known examples of traits used in biometric recognition are fingerprint, iris,

face, signature, voice, hand geometry, retina, and ear.

A number of commercial recognition systems based on biometric traits has been deployed.

Often, it is necessary to ascertain the claim of a biometric vendor that the system in question

has performance given by the ROC curve ROC0. This calls for inference based on test samples,

and in particular, the construction of confidence bands at a pre-specified level, say 100(1−α)%

for some 0 < α < 1, for the true but unknown ROC curve. Once the ROC confidence bands

are constructed, one can determine the validity of the vendor’s claim at 100(1 − α)% level by

checking whether ROC0 is within the derived confidence bands or not.

A number of challenges must be addressed when constructing confidence bands for the

ROC curve. First, multiple values of the test statistic used to either accept or reject the null

hypothesis is based on the same test sample, and therefore, are correlated; an example of this

scenario is given in Section 5. Indeed, many earlier efforts to validate the performance of a

biometric system assume that the multiple acquisitions of the test statistic are independent

of each other (see, for example, Bolle et al. (2000)), and this assumption entails that the

true coverage probability of the confidence bands is lower than 100(1 − α)% (see Section 5).

The second challenge is to construct confidence bands for a curve. There are many examples

of previous methodologies that construct confidence intervals for pre-specified values of the

false accept rates (FARs), and then combine these intervals to obtain a confidence band for

the ROC curve. In presence of correlated observations, Bolle et al. (2004) introduced the

subsets bootstrap approach to construct these confidence intervals whereas Schuckers (2003)

proposed the beta-binomial family to model the correlation between the multiple biometric

acquisitions as well as to account for varying false reject rate (FRR) and FAR values for different

subjects. A well-known problem of combining confidence intervals in this way is that of multiple

comparisons: The confidence level of the combined 100(1 − α)% confidence intervals is not
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100(1−α)%; in fact, it is much lower (see Section 5). A Bonferroni type correction can be done

in this case. However, the resulting bands turn out to be unnecessarily large. Horváth et al.

(2008), for example, compute confidence bands for ROC curves based on smoothed bootstrap

methods and the Bonferroni inequality.

Dass et al. (2006) presents a new method for constructing confidence regions for the ROC

curve that alleviates the multiple comparison problem without resorting to the Bonferroni

inequality. However, the essence of Dass et al. (2006) is still to combine confidence intervals

corresponding to a number of pre-specified values of the FAR, and therefore, is not an approach

that generates confidence curves. Another challenge that has to be faced is the problem of

non-Gaussianity where the distributions of the test statistic under the null and alternative

hypotheses are highly non-Gaussian. This calls for distributional models for the observations

that are flexible, in that they can represent a wide range of distributional characteristics in a

variety of contexts. It is important to note that the challenges mentioned here are not unique to

biometric authentication, and in fact, are faced in many fields where inference on ROC curves

is sought. The proposed methodology is thus relevant and applicable in a variety of disciplines.

The rest of the paper is organized as follows. In Section 2, we introduce the proposed

models for deriving the ROC confidence bands, and notation that will be used throughout the

paper. The Bayesian inferential framework is presented in Section 3, along with the appropriate

likelihood and prior distributions. Section 4 presents the computational schemes and outlines

steps to construct the 100(1 − α)% highest posterior density (HPD) sets for the ROC curve

based on samples from the Gibbs output. Section 5 provides experimental results for real data

from fingerprint based authentication. A summary and concluding remarks are provided in

Section 6, whereas theoretical results and their proofs are provided in the Appendix.

2 The statistical tests of hypotheses

We consider the following hypotheses testing problem in biometric authentication with the

aim of recognizing the individual based on an input biometric trait. Let I0 be the true (but

unknown) identity of an individual who provides a biometric query Q and a claimed identity

Ic. Consider the test of hypotheses

H0 : I0 6= Ic vs. H1 : I0 = Ic, (1)
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where the null hypothesis H0 states that the user is an impostor and the alternative H1 implies

that the user is a genuine. The test is proceeded with matching the query Q with the template

T of the claimed identity Ic in the database based on a similarity measure S(Q,T ). Large

(respectively, small) values of S implies that T and Q are similar (respectively, dissimilar) to

each other. For a pre-specified threshold λ, the decision (or action) is to reject H0 if S(Q,T ) > λ

and accept H0 otherwise. It is well known that there can be two types of errors associated with

the hypotheses in (1): the false accept and the false reject rates, FAR and FRR, respectively.

The FAR is the Type I error probability (i.e., the probability of rejecting H0 when H0 is true)

which corresponds to erroneously concluding the user is genuine when in fact the user is an

impostor. The FRR is the Type II error probability (i.e., the probability of accepting H0 when

H1 is true) which concludes that the user is an impostor when in fact the user is genuine.

Subsequently, the genuine accept rate (GAR) is 1 − FAR (which is the probability that the

user is accepted given that he/she is genuine) corresponds to the power of the test based on

S(Q,T ). The ROC curve is the plot of (FAR, GAR) for varying threshold values λ, and reflects

the relationship between the FAR versus the GAR. In symbols,

ROC(λ) = (FAR(λ), GAR(λ)) (2)

for all values of 0 < λ < ∞. The ROC is often used to assess the performance of a (biometric

authentication) system: System 1 is said to perform better compared to System 2 in the range

of thresholds λ1 ≤ λ ≤ λ2 if ROC1(λ) > ROC2(λ2) for all λ1 ≤ λ ≤ λ2. It is convenient to

re-parameterize the ROC curve in terms of the FAR = t, say, with 0 < t < 1. Solving for λ in

equation (2) and assuming all distribution functions are strictly monotone, we get the following

parametrization of the ROC curve

ROC(t) = (t, GAR(FAR−1(t))) (3)

in terms of t; in (3), FAR−1(t) is the unique value of λ for which FAR(λ) = t.

3 Multivariate Binormal Mixture Distributions

The aim of this section is to develop a parametric form for the ROC curve while taking into

account the highly non-Gaussian distributions of S(Q,T ) under H0 and H1. One such prelimi-

nary assumption is that of binormality. Let X and Y denote random variables representing the

values of S(Q,T ) under H0 and H1, respectively. The assumption of binormality entails that
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there exists a monotone increasing transformation τ such that: (1) τ(X) follows a standard nor-

mal distribution, and (2) τ(Y ) follows a normal distribution with mean µ and variance σ2. The

attractiveness of the binormality assumption is that it alleviates the problem of non-Gaussian

distributions while allowing us to retain a parametric form for the ROC curve. This can be

seen as follows: the distribution of X, represented by the df F say, is transformed to a standard

normal distribution by choosing τ(x) = Φ−1 ◦ F (x) where Φ is the df of the standard normal

distribution. If, further, the distribution function of Y , G say, satisfies

G ◦ τ−1(y) ≡ Φ((y − µ)/σ), (4)

then the binormality assumption becomes valid. McClish (1989) shows that the ROC curve

under the binormality assumption is given by

R(t) = Φ(a + bΦ−1(t)), (5)

where a = µ/σ, b = 1/σ. Inference under the binormality assumption has been carried out

in a number of earlier studies based on the likelihood of the data; see, for example, Swets

(1986), Hanley (1989), Hsieh and Turnbull (1996), and Metz et al. (1998) for the related

studies. A considerable amount of work is concentrated on a rank-based likelihood and various

methodologies are proposed on this likelihood (cf. Dabrowska and Doksum, 1998; Zou and

Hall, 2000; Alonzo and Pepe, 2002; Cai and Moskowitz, 2004). Recently, Gu and Ghosal (2008)

propose a Bayesian method based on a rank likelihood to obtain consistent estimators under

mild conditions.

A major limitation of the binormality assumption is equation (4), which states that after

transformation, the Y -data is also normally distributed with some mean and variance. In

this paper, we aim to retain the attractive parametrization of the ROC curve in (5) under

the binormality assumption while doing away with the limitation in (4). A flexible family

of distributions that can represent a variety of distributional forms is the mixture of normal

distributions. Thus, we impose a less stringent requirement that

G ◦ τ−1(y) ≡
K∑

k=1

pk Φ((y − µk)/σk), (6)

where K is the number of mixture components, pk (k = 1, 2, . . . , K) is the mixing probability

with 0 < pk < 1 and
∑K

k=1 pk = 1, and µk and σk are, respectively, the mean and standard

deviation of the k-th normal component for k = 1, 2, . . . , K. To maintain identifiability with
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respect to the labeling of the K components, the constraint

µ1 < µ2 < · · · < µK (7)

is maintained. We state

Theorem 1 Under the assumption in (6), the ROC curve has a parametric form given by

ROC(t) =
K∑

k=1

pkΦ(ak + bkΦ−1(t)), (8)

where ak = µk/σk,bk = 1/σk, independent of the monotone increasing function τ .

The reader is referred to the proof in the Appendix.

Correlated observations arise in the derivation of the ROC curve in at least two ways:

first, a common biometric input Q can be matched with two or more templates, T and T ′, to

obtain the similarity measures S(Q,T ) and S(Q,T ′), in which case there is a significant corre-

lation between S(Q,T ) and S(Q,T ′). Second, there is a significant correlation when matching

multiple impressions of the same finger: S(Q,T ) and S(Q′, T ′) are correlated if Q and Q′

are impressions from one finger and T and T ′ are impressions from another (possibly differ-

ent) finger. In the latter case, the genuine correlation (corresponding to the same finger) is

usually significantly larger than the impostor (corresponding to different fingers) case. Any

multivariate distribution elicited for the similarity measures S(Q,T ) must also be exchange-

able, and therefore, these similarity measures should possess common marginals. This can be

argued as follows: in the first scenario above, whether Q is first matched with T and then

T ′ to obtain the vector (S(Q,T ), S(Q,T ′))T should be equivalent to matching with T ′ first

and then T . One can also make a similar argument in the second scenario for the vector

(S(Q,T ), S(Q,T ′), S(Q′, T ), S(Q′, T ′))T .

The binormality assumption can be generalized to the multivariate case to incorporate cor-

relation as follows: the random vectors X = (X1, X2, · · · , Xr)′ and Y = (Y1, Y2, · · · , Ys)′, with

possibly different integers r and s are said to possess the multivariate bi-normal mixture prop-

erty if there exists a common componentwise monotone increasing transformation τ such that

τ(X) ≡




τ(X1)

τ(X2)
...

τ(Xr)



≡




Z1

Z2

...

Zr



≡ Z ∼ Nr(0, B0), (9)
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where Nr(0, B0) denotes a multivariate normal distribution (of dimension r) with mean vector

0 and correlation matrix B0, and simultaneously,

τ(Y) ≡




τ(Y1)

τ(Y2)
...

τ(Ys)



≡




W1

W2

...

Ws



≡ W, (10)

with W having a mixture of multivariate normal pdfs:

g(w) =
K∑

k=1

pkφs(·|νk,Σk), (11)

where φs(· |νk,Σk) is the pdf of an s-variate normal distribution with mean vector νk and

covariance matrix Σk. Here νk = (µk, µk, . . . , µk)′ and Σk = σ2
k · B1, where B1 is a correlation

matrix. Exchangeability necessitates that the correlation matrices B0 and B1 have the forms

of

Bj = (1− ρj)Isj + ρj 1sj1
′
sj

(12)

for j = 0, 1 where in (12), Isj is the identity matrix of dimension sj×sj with s0 = r and s1 = s,

and 1sj is the unit vector of dimension sj × 1. Note that ρj is restricted to be in the range

−1/(sj − 1) ≤ ρj ≤ 1 in order for Bj to be positive definite.

3.1 An Invariance Property

Assume that the set of all observations consists of m independent and identically distributed

(iid) copies of X, denoted by X1,X2, . . . ,Xm where Xi = (Xi1, Xi2, . . . , Xir)′, and n iid copies

of Y, Y1,Y2, . . . ,Yn, where Yl = (Yl1, Yl2, . . . , Yls)′. The distributions of X and Y are assumed

to satisfy the multivariate binormal mixture assumption given in equations (9) and (11). The

group of transformations

G = { τ : τ is a monotone increasing function} (13)

leaves the ROC curve (see Theorem 1) invariant under the group action of function composition.

To find the maximal invariant statistic under this group action, we first develop some notation.

For i = 1, 2, . . . , m, let Zi = (Zi1, . . . , Zir)′ denote the vector of the transformed X-variables Xi,

that is Zi = τ(Xi). Similarly, define Wl = (Wl1, . . . , Wls)′ to be the vector of the transformed

Y -variable Yl, Wl = τ(Yl), for l = 1, 2, . . . , n. Let D = (x′1,x′2, . . . ,x′m,y′1,y′2, . . . ,y′n)′ denote
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the concatenated vector of observed data, and q = (z′1, z′2, . . . , z′m,w′
1,w

′
2, . . . ,w

′
n)′ denote the

corresponding transformed variables. Both D and q are of length N = rm + sn.

Subsequently, we define two reduced statistics in terms of the observation vector D. Let

R(D) ≡ (RN1, . . . , RNN )′ be the ranks of the observations in the vector D with the convention

that rank 1 (respectively, N) denoting the smallest (respectively, largest) observation in the set.

Also, denote the vector of labels L(j)(D) ≡ (L(j)
1 , L

(j)
2 , · · · , L(j)

N )′ for j = 1, 2 where the entries of

L(1) are 0 or 1 according to whether the entry corresponds to a X or Y observation. The entries

of L(2) take values in the label set { 1, 2, · · · ,max(r, s)} representing the component of the X

(or Y ) observation the entry came from. Both L(1)(q) and L(2)(q) have explicit expressions

given as follows: L(1)(q) = (0, 0, 0, · · · , 0︸ ︷︷ ︸
rm times

, 1, 1, · · · , 1︸ ︷︷ ︸
sn times

)′ and

L(2)(q) = (1, 2, · · · , r, 1, 2, · · · , r, · · · , 1, 2, · · · , r︸ ︷︷ ︸
length rm

, 1, 2, · · · , s, 1, 2, · · · , s, · · · , 1, 2, · · · , s︸ ︷︷ ︸
length sn

)′.

Under the multivariate binormality mixture assumption, the ranks and labels of q, R(q), L(1)(q)

and L(2)(q), preserve those of D. So, we can define a collection of invariant statistics under the

group action of G given by Dobs ≡ (R(D),L(1)(D),L(2)(D)). We state

Theorem 2 The statistic Dobs is maximal invariant under the group action of G.

We refer the readers to the proof in the Appendix.

4 Bayesian Inference for ROC curves

4.1 The partial likelihood and prior specifications

For the K-component mixture of multivariate normals, let µµµK = (µ1, µ2, · · · , µK), σσσK =

(σ1, σ2, · · · , σK), and pppK = (p1, . . . , pK−1) denote the vectors of means, standard deviations,

and mixing probabilities. For fixed K, we also denote the set of all the parameters by Θ =

(µµµK , σσσK , pppK , ρ0, ρ1). Note that Θ ≡ Θ(K) is a function of K with dimension of the parameter

space being 3K + 1. The partial likelihood of Dobs given Θ can be thus written as

`(Dobs|Θ) =
∫
· · ·

∫

R(q)=R(D)
`0(z|ρ0) `1(w |µµµK , σσσK , pppK , ρ1) dq, (14)

where q = (z′,w′)′ is an N -dimensional concatenated vector in RN with z = (z′1, z′2, . . . , z′m)′

and w = (w′
1,w

′
2, . . . ,w

′
n)′. Further,

`0(z| ρ0) =
m∏

i=1

φr(zi| 0, 1, B0) and `1(w |µµµK , σσσK , pppK , ρ1) =
n∏

j=1

K∑

k=1

pkφs(wj |νk,Σk ) (see (11))

(15)
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are, respectively, the multivariate normal and mixture normal likelihoods associated with the

z and w variables. Since it is quite difficult to work with the integral as well as the sum over

k corresponding to the mixture in (14), we treat these integrals as missing data as is typically

done in these situations. Augmenting the missing components to the likelihood in (14) gives

the complete likelihood as

L(q |Θ) = `0(z|ρ0)

(
n∏

l=1

K∏

k=1

( pkφs(wl |νk,Σk ))I{Cl=k}
)

I{q : R(q) = R(D) }; (16)

two indicator functions are introduced in (16): I{Cl = k} takes the value 1 or 0 according to

whether the mixture label corresponding to yl, Cl, is equal to k, and the indicator function

I{q : R(q) = R(D) } to account for all missing data q whose ranks coincide with those from

the observed data D.

The following prior specifications are used for the Bayesian inferential framework: Under

independent a priori, we use the following proper priors on Θ:

µk ∼ N(η, κ−1), (17)

subject to the increasing constraints on µµµK , say, µ1 < µ2 · · · < µK ,

σ2
k

iid∼ igamma(α0, β0), pppK ∼ dirichlet (δ, δ, . . . , δ), and ρj ∼ unif

(
− 1

sj − 1
, 1

)
for j = 0, 1, (18)

where ‘igamma’, ‘dirichlet’ and ‘unif’ stand for the inverse gamma (with shape and scale para-

meters α0 and β0, respectively), Dirichlet, and uniform distributions on the respective parameter

spaces. The full and marginal posterior distributions are given by

π(Θ, q |R(D),L(1)(D),L(2)(D)) =
L(q |Θ) · π0(Θ)∫

Θ L(q |Θ) · π0(Θ) dΘ
(19)

and

π(Θ |R(D),L(1)(D),L(2)(D)) =
∫

{q :R(q)=R(D) }
π(Θ, q |R(D),L(1)(D),L(2)(D)) dq, (20)

where π0(Θ) is the prior specified in (17) and (18). The prior components of π0 are chosen

for their conjugacy properties with respect to the conditional likelihood and entails convenient

updating steps for the Gibbs sampler (see Section 4.3). The selection of the hyperparameters

α0, β0 and δ are discussed in the experimental results section in Section 5. Note that the

posteriors in (19) and (20) are based on a fixed (yet unknown) value of K.
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4.2 Estimation of K

This section outlines how one can construct the consistent estimator, K̂N . The transformation

τ is unknown but as mentioned earlier, the choice τ = Φ−1 ◦ F allows for normality of the x

observations after transformation by τ . To estimate F consistently, we use the model based

clustering algorithm of Fraley and Raftery (2006) (mbclust) which assumes that the underlying

distribution is a mixture of Gaussians. The algorithm mbclust performs a model selection

procedure to obtain the number of mixture components and associated component parameter

estimates using the Bayes Information Criteria (BIC). The steps are as follows:

1. The marginal distribution of each component of xi, (i = 1, 2, · · · ,m) is F . Considering the

data consisting of the first component of each xi, mbclust gives the estimate of F , F̂ , in

terms of a mixture of univariate Gaussian densities. It follows that F̂ is exactly consistent

(as m → ∞) for any true F that is represented by a mixture of Gaussian densities.

Further, an attractive property of Gaussian mixtures is that they can approximate any

arbitrary density to a desired accuracy. Hence it follows that F̂ can be made arbitrarily

close to any F (with a density) as m →∞.

2. Using the monotone transformation τ̂ = Φ−1 ◦ F̂ , the original x and y observations are

transformed to x∗ = τ̂(x) and y∗ = τ̂(y) by applying τ̂ componentwise.

3. Again we apply mbclust to the dataset comprising of the first component of each y∗l ,

l = 1, 2, · · · , n. The assumption of multivariate binormality mixture in (11) entails that

observations in this dataset are iid from the univariate Gaussian mixture

K∑

k=1

pkφ1(·|µk, σ
2
k), (21)

and K̂N is taken to be the number of components in the mixture estimated by mbclust.

Once K̂N is obtained, the unknown value of K is fixed at K̂N for subsequent inference on

Θ.

4. Initial estimate of Θ: Estimates of pppk, µk, and σk for k = 1, . . . , K̂ are automatically

determined by mbclust in the previous step. For running the MCMC procedure, these

values are taken to be the initial estimate of Θ. The initial values of the correlations, ρ0

and ρ1, are obtained by calculating the sample correlations between the first and second

components of x∗i , i = 1, 2, · · · ,m, and of y∗l , l = 1, 2, · · · , n, respectively.
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Remark 1: Note that the above procedure needs not be restricted to the first and second

component of x and y observations. In fact, in Section 5, we consider the estimate of Θ based

on an average of the estimates obtained by the above procedure for every pair of components

of x and y (respectively, r(r − 1)/2 and s(s− 1)/2 many pairs).

Remark 2: Once K̂N is determined, we fix the value of the unknown K = K̂N for subsequent

analysis. In particular, the inference on Θ is now based on the posterior (19) with K̂N plugged

in for the unknown K. We remark that regardless of the prior specification, the posterior is

always consistent at the true value of the parameters (K0,Θ0(K0)). We state

Theorem 3 Let m/(m + n) → λ as m,n → ∞. The posterior in (20) is consistent for Θ0,

that is, for any neighborhood U0 of Θ0,

lim
N→∞

π(Θ ∈ U0 | R(D),L(1)(D),L(2)(D)) = 1 a.s.
[
P∞

(K0,Θ0)

]
, (22)

where
[
P∞

(K0,Θ0)

]
denotes the joint distribution of all XXX and YYY under the K0-normality model.

The reader is referred to the proof in the Appendix.

4.3 A Bayesian computational procedure

We utilize the Gibbs sampler to obtain inference from the full posterior in (19) based on the

six main updating steps given below:

1. Update µk: Each µk is updated from its conditional distribution:

π(µk | · · · ) = N

(
akAk + bkη

ak + bk
,

1
ak + bk

)

subject to the restriction µk−1 < µk < µk+1 with the convention that µ0 ≡ −∞ and

µK̂N+1 = +∞; in the expression of the conditional posterior above,

ak =
1′s1

B−1
1 1s1 nk

σ2
k

, bk = κ, Ak =

∑

l : Cl=k

1′s1
B−1

1 wl

nk1′s1
B−1

1 1s1

,

and nk = #{l : Cl = k}.

2. Update σ2
k: The variances σ2

k’s are updated from the conditional distribution

π(σ2
k | · · · ) = igamma

(
nk

2
+ α0,

[∑
l : Cl=k (wl − µk)

′
B−1

1 (wl − µk)
2

+
1
β0

]−1
)

.
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3. Update ρ0 and ρ1: The correlations are updated from the following conditional distri-

butions:

π(ρ0| · · · ) ∝ 1
|B0|m/2

exp

{
−1

2

m∑

i=1

z
′
iB

−1
0 zi

}
,

and

π(ρ1| · · · ) ∝ 1
|B1|n/2

exp



−

1
2

K∑

k=1

∑

l : Cl=k

[
(wl − µk)

′
Σ−1

k (wl − µk)
]


 .

The conditional distributions for ρ0 and ρ1 above do not have closed forms. For these two

parameters, a histograming technique is utilized for generating samples.

4. Update pK : We update the weights pppK from the conditional distribution

pppK ∼ dirichlet(δ + n1, δ + n2, · · · , δ + nK̂N
).

5. Update Cl: The allocation variables Cls are updated as follows. We first compute

P (Cl = k) =
pkφs(wl |νk,Σk )

K∑

k=1

pkφs(wl |νk,Σk )

for k = 1, . . . , K̂N ,

and use a discrete inverse cdf method for generating the label Cl.

6. Update z and w: Fix u ∈ {1, 2, · · · , r}. We denote the rank of ziu, R(ziu), by r0. To

update ziu (which is the u-th component of the vector zi for i = 1, 2, · · · ,m), we consider

the partition of the covariance matrix B0 into four parts, namely,

B0 =




B00 b0u B00

b
′
0u 1 b

′
0u

B00 b0u B00




(23)

where b0u is the u-th column of B0 excluding the (u, u)-th entry and B00 is the submatrix

formed by deleting the u-th row and u-th column from B0. The conditional distribution

of ziu is given by

π(ziu | · · · ) = N(b
′
0uB−1

00 zi,−u, 1− b′0uB−1
00 b0u)

subject to the constraint that zL ≤ ziu ≤ zU ; in the formulas above, zi,−u is the vector

zi with ziu removed, and zL and zU are those variables in z whose ranks correspond to

r0 − 1 and r0 + 1, respectively (again, the convention zL = −∞ if r0 = 1 and zU = ∞ if

r0 = N is adopted). In a similar fashion, the update of wlv is carried out based on the

conditional distribution

π(wlv | · · · ) = N
(

µk + b
′
1vB

−1
11 (wl,−v − µk), σ2

k (1− b′1vB
−1
11 b1v )

)
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subject to the constraint wU ≤ wlv ≤ wU ; wl and wU retain the same interpretation as

zL and zU given that the rank of wlv equals r0, b1v and B11 constitute a similar partition

of B1 as in (23), and k denotes the mixture label for wl (i.e., Cl = k). Cycling through

i = 1, 2, · · · ,m and u = 1, 2, · · · , r for z and l = 1, 2, · · · , n and v = 1, 2, · · · , s for w

completes this updating step.

A cycle is defined to be one sweep through the updating steps 1-6 above.

4.4 Convergence diagnostics

The assessment of convergence of the Gibbs sampler is carried out based on the methodology of

Gelman and Rubin (1992). A total of 3 chains are run from different starting values for (Θ,q).

The monitoring statistic is taken to be the complete log-likelihood (see (16)) whose value is

evaluated based on the current (Θ,q) output at the completion of each cycle. Gelman and

Rubin (1992) propose the use of the PSRF (potential scale reduction factor) ratio as a measure

to check for convergence. Roughly speaking, the PSRF ratio measures the ratio of between to

within variances of the monitoring statistic from the chains. Thus, a PSRF ratio of close to

1 indicates that the chains have sufficiently mixed and is close to the stationary (or, target)

distribution.

4.5 Inference on ROC curves

This section describes the construction of a 100(1 − α)% highest posterior density (HPD)

region for the true ROC curve based on samples from the Gibbs output after convergence is

established. The HPD set is usually constructed for a range of small FAR values, say [tL, tU ],

where tL = 0.01 and tU = 0.1, for example. Ideally, the HPD region for the ROC curve can be

obtained by determining the corresponding region in Θ-space (i.e., which corresponds to the

highest value of marginal posterior density in (20)), and subsequently mapping this region back

to the space of ROC curves. However, the main challenge here is the presence of N integrals

in the expression of the marginal posterior density which makes any analytical simplification

impossible. We utilize the Gibbs output to obtain the height of the posterior density at specific

Θ-values as well as to construct the HPD region. After convergence has been established, we

run the Gibbs chain further to obtain a current value of Θ, say Θb. Given Θb, the missing

values z and w are sampled M times using Updating Step 6 in Section 4.3. This gives rise to

13
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Figure 1: Trace plots for (a) µ1 and (b) σ2
2 for simulated data. The light grey, dark grey and

black lines represent three different chains.

the samples qf ≡ (zf ,wf ), f = 1, 2, · · · ,M . The marginal posterior density is evaluated as

π(Θb |R(D),L(1)(D),L(2)(D) ) =
1
M

M∑

f=1

π(Θb,qf |R(D),L(1)(D),L(2)(D) ).

This process is repeated for b = 1, 2, · · · , B in the Gibbs chain for a large value of B. Subse-

quently, the proportion

p(γ) =
1
B

B∑

b=1

I{π(Θb |R(D),L(1)(D),L(2)(D) ) ≥ γ}

is computed for different γ values and γ∗ is selected as the γ value such that p(γ) is closest

to 100(1 − α)%. All Θb samples that satisfy π(Θb |R(D),L(1)(D),L(2)(D) ) ≥ γ∗ fall in the

100(1− α)% HPD region in the Θ-space.

5 Experimental Results

We analyze a publicly available database namely FVC2002, consisting of three sub-databases

DB1, DB2 and DB3 (cf. http://bias.csr.unibo.it/fvc2002/). Each DB database contains

fingerprint images of F = 100 different fingers and L = 8 impressions per finger obtained

using different sensors. See Figure 2 for examples of fingerprint impressions from this database.

The white squares in Figure 2 denote the location of the fingerprint feature called minutiae (a

minutiae is a ridge anomaly consisting of either a ridge bifurcation or a ridge ending; see Zhu

et al. (2007) for more details). The white lines in Figure 2 denote the minutiae orientation:

this is the direction of the ridge flow at that minutiae location. The minutiae location and

14



orientation information consists of fingerprint features that are subsequently used for matching.

The similarity measure S(Q,T ) is based on the observed number of feature matches, w0, between

Q and T based on a matching algorithm. Figure 3 gives two examples of the matching procedure.

The pair Q and T in panels (a,b) are an impostor pair corresponding to the null hypothesis H0

in (1) whereas panels (c,d) represent a genuine pair (corresponding to H1 in (1)). Subsequently,

a matching score is obtained as

S0 =
w0

min(m0, n0)
× 1000, (24)

where m0, n0 and w0 are, respectively, the number of minutiae in Q, in T , and the number of

minutiae matches between Q and T . Higher values of S0 indicate a higher degree of similarity

between Q and T , thus leading to the rejection of H0.

The performance of a fingerprint based authentication system depends on the matching

algorithm used. Often, biometric vendors claim that their matching algorithms are superior

than currently available systems and thus, it is necessary to validate their claims. Deriving

ROC confidence bands is one way of validating (or refuting) the claim. We obtained the

matching scores based on the algorithm described in Zhu et al. (2007). The two sets of

minutiae locations and directions (corresponding to Q and T ) are rotated and translated to

find the highest matching number of minutiae within a pre-specified bounding box. The highest

matching number is taken to be w0 and the matching score S0 is calculated as in (24). In Figure

3, the matching numbers w0 based on this algorithm is 7 and 16, respectively.

Impostor scores are obtained by considering all image pairs (Q,T ) arising from different

fingers while genuine scores are obtained from image pairs from the same finger. Thus, for the

FVC2002 DB1 database there are
(100

2

)×8×8 = 316, 800 impostor and
(8
2

)×100 = 5, 600 genuine

scores. The
(8
2

)
genuine scores for each finger are highly correlated based on the discussion

presented after equation (8); for example, the score from impressions 1 and 2, and the score

from impressions 1 and 3 are highly correlated since one of the input image is common to both

scores. For each of the 100 fingers, we randomly select a baseline impression followed by two

other impressions to get the first pair of a bivariate score. The procedure is repeated again with

the remaining impressions to obtain a second pair of the bivariate score, and finally repeated

for all the 100 fingers in each DB database to get n = 3 × 2 × 100 = 600 genuine bivariate

scores. This constitutes the Y data.

For the X data, the procedure is as follows. Since the number of impostor scores was too

large, we selected a random sample of 100 pairs of different fingers out of
(100

2

)
in each DB

15



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Sample fingerprint images from the FVC2002 database. Panels (a-d) show 4 impres-

sions of one finger whereas panels (e-h) show 4 impressions of a different finger.

database. For each finger pair, two impressions were randomly selected, one from 8 impressions

of the first finger and the other from 8 impressions of the second finger. This procedure is

repeated once more to give a bivariate impostor score. Finally, repeating this procedure for all

the 100 fingers in each DB database gives m = 3× 2× 100 = 600 bivariate impostor scores.

The Gibbs sampler was run for 10, 000 iterations. Figure 4 gives two examples of these trace

plots corresponding to three different chains (represented by light grey, grey and black lines).

Convergence was established after 9, 000 iterations using Gelman and Rubin’s R-statistic. The

90% confidence bands for the ROC curve is given in Figure 6 for t = FAR values from 10−4 to

10−1 (see (3)) with the same specifications for B and M as in the simulation experiments. To

illustrate the need for dependent bivariate modeling, we give the posterior distributions of ρ0

and ρ1 in Figure 5. The 90% HPD set for ρ0 and ρ1 is [0.01, 0.33] and [0.33, 0.56], respectively,

indicating that the correlation is significant for both the impostor and genuine cases, with

higher value for the latter.
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(a) (b) (c) (d)

Figure 3: Examples of impostor and genuine matching based on (Q,T ) pairs: Panels (a,b) and

(c,d) give an impostor and genuine (Q,T ) pair for matching with S(Q,T ) equalling 7 and 16

matches, respectively.
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Figure 4: Trace plots for (a) µ1 and (b) σ2
1 for the fingerprint matching score data. The light

grey, dark grey and black lines represent three different chains.
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Figure 5: Posterior distribution of (a) ρ0 and (b) ρ1.
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Figure 6: The 90% confidence band for the true ROC curve based on the fingerprint data.

6 Concluding Remarks

We have outlined a methodology for validating system performance based on HPD confidence

bands for the ROC curve under multivariate dependence. The resulting methodology utilizes

rank information and mixture distributions, and is therefore, flexible. The approach can be

used reliably on datasets that exhibit various forms of joint dependence as well as marginal

distributions. The inferential framework for deriving the ROC bands is Bayesian which is

developed via Gibbs sampling. Our future work will be to extend the normal mixture model

to more general mixture distributions.
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Appendix: Theoretical Results

Proof of Theorem 1: The random variables τ(X) and τ(Y ) have distribution functions

Fτ ≡ F ◦ τ−1 and Gτ ≡ G ◦ τ−1, respectively. The expression for the ROC curve is ROCτ (t) =

1 − Gτ (λ) where 1 − Fτ (λ) = t. Note that there is no ambiguity in the definition of the

ROC curve with regard to which components of X or Y are taken since all of X1, X2, · · · , Xr

(and Y1, Y2, · · · , Xs) have the same marginals. Solving for λ from the second equation and

substituting in the first gives λ = τ(F−1(1 − t)) and ROCτ (t) = 1 − Gτ (τ(F−1(1 − t))) =

1−G◦F−1(1− t), independent of τ . Specializing to the τ that gives binormality, we get F = Φ

and G =
∑K

k=1 πkΦ((· −µk)/σk). For fixed 0 < t < 1, it follows that λ = Φ−1(1− t) = −Φ−1(t)

and

ROC(t) = 1−G(λ) = 1−
K∑

k=1

πkΦ((λ− µk)/σk) = 1−
K∑

k=1

πkΦ((−Φ−1(t)− µk)/σk)
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=
K∑

k=1

πk(1− Φ((−Φ−1(t)− µk)/σk)) =
K∑

k=1

πkΦ(ak + bkΦ−1(t)),

where ak = µk/σk and bk = 1/σk. QED.

Proof of Theorem 2: Let (x,y) and (x′,y′) be two different sets of observations. It is

easy to see that the vector of ranks R(x,y) and labels L(j)(x,y) for j = 1, 2 are invariant

under any monotone increasing transformation τ . Conversely, suppose L(j)(x,y) = L(j)(x′,y′)

for j = 1, 2 and R(x,y) = R(x′,y′). By applying standard arguments (see, for example, Hájek

and Šidák (1967)) for two sets of observations having the same ranks, there exist a monotone

increasing function such that (x′,y′) = τ(x,y). QED.

Next, we need two lemmas to prove Theorem 3.

Lemma 1 Doob’s Theorem (Ghosal and Van der Vaart (2009)): Let Ξ(n) be observations

whose distribution depends on a parameter θ, both of which take values in Polish spaces.

Assume that θ is equivalent to a Ξ(∞)-measurable random variable, i.e., there exists a Ξ(∞)

measurable function f on Ξ(∞) such that θ = f(ω∞) a.e. [Π × P
(∞)
θ ]. Then the posterior

Π(·|Ξ(n)) is strongly consistent at θ for [Π]-almost every θ.

Lemma 2 Spearman’s rank correlation coefficient (see Nelson (2006)): Let (X, Y ) be a

pair of continuous random variables with a joint distribution associated to the copula C. The

Spearman’s rank correlation coefficient of (X, Y ) is given by

ρC = 12
∫ ∫

III2
uvdC(u, v)− 3 = 12

∫ ∫

III2
C(u, v)dudv − 3, (25)

where III2 = III × III is the product of the unit closed interval III = [0, 1].

Proof of Theorem 3: Let (K0,Θ0) be the true value of the pair (K, Θ). Let νK denote

the Lebesgue measure on R2K × IIIK−1, the range of the parameter space Θ ≡ Θ(K). We

consider the case where the true value K0 lies in the range K = {K : Kmin ≤ K ≤ Kmax }
with known integers Kmin and Kmax. Suppose π0(K, Θ) is a prior on Ω ≡ ∪K∈KR2K × IIIK−1

satisfying π0(K, Θ) = π0(Θ |K) · π0(K) where π0(K) follows a discrete uniform between Kmin

and Kmax, and π0(Θ |K) is the prior elicitation given in equations (17) and (18) for every fixed

K. Note that π0(K, Θ) > 0 for every (K, Θ). Let ν be the measure defined by ν(∪K∈ABK) =
∑

K∈A νK(BK). An application of Doob’s theorem in Lemma 1 guarantees posterior consistency
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in the following way: for (K0,Θ0) a.e. [ν], and for any neighborhood N0 = ∪K∈U0 VK of

(K0,Θ0),

lim
N→∞

π((K, Θ) ∈ N0 | R(D),L(1)(D),L(2)(D)) = 1 a.s.
[
P∞

(K0,Θ0)

]
, (26)

where
[
P∞

(K0,Θ0)

]
denotes the joint distribution of all XXX and YYY under the K0-normality model.

Note that statistics that are consistent for (K0,Θ0) must be obtained for the above conclusion

to hold which we will demonstrate later. For the moment, taking the neighborhood U0 = {K0},
it follows from (26) that for (K0,Θ0) a.e. [ν],

lim
N→∞

π(K = K0 | R(D),L(1)(D),L(2)(D) )

= lim
N→∞

[
π(K = K0, ΘK0 ∈ BK0 | · · · ) + π(K = K0, ΘK0 ∈ Bc

K0
| · · · )] (27)

= 1 + 0 = 1 a.s.
[
P∞

(K0,Θ0)

]
;

the latter set in (27) (K0, B
c
K0

) ⊂ N c
0 and hence the probability tends to zero. Consequently,

lim
N→∞

π(Θ0 ∈ BK0 |K = K0, R(D),L(1)(D),L(2)(D) ) (28)

= lim
N→∞

π(K = K0, ΘK0 ∈ BK0 | · · · )
π(K = K0 | · · · ) = 1/1 = 1 a.s.

[
P∞

(K0,Θ0)

]
. (29)

Denoting the set

A ≡ {ω : lim
N→∞

π(Θ0 ∈ BK0 |K = K0, R(D),L(1)(D),L(2)(D) ) = 1 },

it follows that P∞
(K0,Θ0)(A) = 1 from (28). Since K̂N → K0 a.s.

[
P∞

(K0,Θ0)

]
, the set

B = {ω : K̂N = K0 for all but finitely many Ns}

also has P∞
(K0,Θ0)(B) = 1. Now taking ω ∈ A ∩ B (note that P∞

(K0,Θ0)(A ∩ B) = 1), we have

lim
N→∞

π(Θ(K̂N ) ∈ BK0 |K = K̂N , R(D),L(1)(D),L(2)(D) ) = 1.

The conditional posterior distribution above is exactly equal to the marginal posterior distrib-

ution of Θ in (20).

To complete the proof, we need to construct consistent estimators of Θ. We have al-

ready proved that K̂N → K. Gu and Ghosal (2008) demonstrate the existence of rank-

based statistics that are consistent for Θ when K = 1. Since our case is multivariate with

K > 1, we focus on the marginal distributions of the first component of XXX and YYY (that

is, all indices with L(2)(D) = 1). Following Gu and Ghosal (2008), the pooled observa-

tions SSS = (S1, S2, · · · , SN0) (N0 = m + n) are iid with Si∼(1 − λ)F + λG. It follows that
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Ui = [(1− λ)F + λG] (Si) =
[
(1− λ)Φ + λ

∑K
k=1 πk Φ((· − µk)/σk)

]
(Ni) (where Ni = τ(Si))

are iid uniform (0, 1). Considering the indices of L(1)(D) = 0 (corresponding to the x observa-

tions only), the subset (denoted by indices ijs) consists of iid observations with Nij ∼ N(0, 1)

and Uij ∼ (1 − λ)Φ(Nij ) + λ
∑K

k=1 πk Φ((Nij − µk)/σk). Subsequently, the random variables

Uij are iid from a univariate mixture density gΘ, say. Fixing K at K̂N , regularity conditions

guarantee that the MLE (in terms of the Uij s), for example, is consistent for Θ. Next, Gu and

Ghosal (2008) show that the Uij are a limit of a subsequence of ranks (which necessarily range

from 1 to N0) based on the observations in SSS. In our case, the ranks of SSS are a subset of R(D)

thus ranging from 1 to N = rm + sn. However, one can obtain the reduced ranks of Gu and

Ghosal (2008) by re-ranking the ranks in this subset of R(D) (for example, the smallest rank

in this subset gets new rank 1, the second smallest gets rank 2, and so on).

To prove the consistency at ρ0, we look at the subset of ranks in R(D) that correspond to

L(1)(D) = {0} and L(2)(D) = {1, 2} (i.e. the first and second components of the x observations).

Using the re-ranking procedure discussed above, we re-rank the first and second components

separately and calculate Spearman’s rank correlation coefficient, ρ̂C , based on the reduced

ranks. Note that ρ̂C is consistent for the population value ρC as given in Lemma 2. The copula

corresponding to the x observations is C(u, v) = Φ2(Φ−1(u),Φ−1(v) | ρ ) where Φ2(a, b | ρ ) is the

cdf of a bivariate normal distribution with means 0, standard deviations 1, and correlation ρ.

Plugging in ρ̂C in place of ρC and solving for ρ in (25) gives a consistent estimator of ρ0, ρ̂0. A

similar argument can be made for ρ1 based on the copula for the first and second components

of the y observations,

C1(u, v) =
K∑

k=1

pkΦ2(Φ−1
k (u),Φ−1

k (v)|µk, σk, ρ ), (30)

where Φ2(a, b |µk, σk, ρ ) is the cdf of N(µk,Σ1) and Φ−1
k is the inverse cdf of a normal random

variable with mean µk and variance σ2
k. We plug in the consistent estimators of Θ from the

previous paragraph in the expression for C1 above and the Spearman rank correlation for ρC

in (25). Solving for ρ in (25) gives the consistent estimator of ρ1, ρ̂1.
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Horváth, L., Horváth, Z., and Zhou, W., (2008), Confidence bands for ROC curves.
Journal of Statistical Planning and Inference, 138, 1894-1904.

22



Hsieh, F. S., Turnbull, B. W., (1996), Nonparametric and semiparametric estima-
tion of the receiver operating characteristic curve. Ann. Statist., 24, 25-40.

Jain, A. K., Bolle, R., and Pankanti, S., (1999), (eds) BIOMETRICS: Personal
Identification in Networked Society. Kluwer Academic Publishers, Boston.

Kamitsuji, S., and Kamatani, N., (2006). Estimation of haplotype associated with
several quantitative phenotypes based on maximization of area under a receiver operating
characteristic (ROC) curve. Journal of Human Genetics, 51(4), 314-325.

Maltoni, D., Maio, D., Jain, A. K., and Prabhakar, S., (2003), Handbook of Fin-
gerprint Recognition, Springer-Verlag.

McClish, D.K., 1989. Analyzing a portion of the ROC curve. Medical Decision Making, 9,
190-195.

Metz, C. E., Herman, B. A., and Shen, J., (1998), Maximum likelihood estimation
of receiver operating characteristic (ROC) curves from continuously-distributed data.
Statistics in Medicine, 17, 1033-1053.

Nelson, R. E., (2006), An Introduction to copulas. The second edition, Springer-
Verlag.

Schuckers, M. E., (2003), Using the beta-binomial distribution to assess performance of
a biometric identification device. International Journal of Image and Graphics (Special
Issue on Biometrics), 3(3), 523-529.

Swets, J. A., (1986), Indices of discrimination or diagnostic accuracy: their ROCs
and implied models. Psychol. Bull., 99, 100-117.

Zhu, Y., Dass, S. C., and Jain, A. K., (2007), Statistical models for assessing the
individuality of fingerprints. IEEE Transactions on Information Forensics and Security,
2(3), 391-401.

Zou, K. H., and Hall, W. J., (2000), Two transformation models for estimating an
ROC curve derived from continuous data. Journal of Applied Statistics, 27, 621-631.

23


