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Abstract

The family of autoregressive conditional duration models, introduced by Engle and

Russell (1998), plays a central role in modeling data on duration, such as the du-

ration between trades at a stock exchange. This paper develops a new method for

testing the lack-of-fit of a given parametric autoregressive conditional duration model

having Markov structure. The test statistic is of Kolmogorov-Smirnov type based on

a particular martingale transformation of a marked empirical process. The test is

asymptotically distribution free, consistent against a large class of fixed alternatives

and has non-trivial asymptotic power against a class of nonparametric local alterna-

tives converging to the null hypothesis at the rate of O(n−1/2). In a simulation study,

the test performed significantly better than the general purpose Ljung-Box Q-test.

The new test is an important addition to the literature because, in empirical studies,

one would want to consider more complicated non-Markov models only if a simpler

Markov model does not fit well.
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1 INTRODUCTION

The class of autoregressive conditional duration (ACD) models, introduced by Engle

and Russell (1998), is widely used in financial econometrics for modeling durations,

such as the duration between consecutive trades at a stock exchange and waiting time

for the change in price of an asset to exceed a threshold level. In financial economet-

rics, they are used for studying market microstructure. They could also be used in

other areas, for example, for modeling waiting time for service at a queue. A large

proportion of the class of ACD models have a complicated probabilistic structure.

Consequently, assessing the goodness-of-fit of such models is a non-trivial task. In

empirical studies one would want to consider such more elaborate models only if a

simpler one does not fit. This paper develops a formal test for this purpose. More

specifically, a method is developed for testing the goodness of fit of a given model

from the simpler subclass of Markov ACD models.

To introduce the ACD class of models, let ti denote the time of the ith trade and

let Yi = ti − ti−1, for i = 1, . . . , n. Thus, Yi, the ith duration, is the duration between

the (i − 1)th and ith trades. Let Hi denote the σ-field generated by {Yi, Yi−1, ...},

and νi = E[Yi|Hi−1]. An ACD model for Yi takes the form,

Yi = νiεi, i ∈ Z := {0,±1, . . .}, (1)

where {εi, i ∈ Z} is a sequence of positive independent and identically distributed

(i.i.d.) random variables with E(ε0) = 1, 0 < var(ε0) < ∞, and εi is stochastically

independent of {(νs, Ys−1), s ≤ i}.

Parametric modeling of νi has attracted considerable attention in the recent lit-

erature; see Pacurar (2008), for a recent survey. Relatively, literature is scant on

testing for the lack-of-fit of a parametric ACD model. A common practice for eval-

uating an ACD model appears to be to carry out simple diagnostic tests to examine



4

the dynamical and distributional properties of the estimated residuals; for example

see, Jasiak (1998), Giot (2000), Ghysels et al. (2004), Bauwens and Veredas (2004),

Luca and Gallo (2004) and Bauwens (2006). The approach employed by Engle and

Russell (1998), and the most common to be seen in subsequent studies, is to apply

the Ljung-Box Q-test. However, see Pacurar (2008) for a discussion on some issues

related to this test.

Some authors examine the moment restrictions of the standardized durations im-

plied by the ACD model. Engle and Russell (1998) introduce a test for no excess

dispersion of the estimated residuals, paying particular attention on checking the

first and second moments of the residuals when the error distribution is assumed

to be either exponential or Weibull. Meitz and Teräsvirta (2006) propose Lagrange

multiplier type tests for specification testing.

The focus of the present paper is to introduce a new test that is asymptotically

distribution free for testing the goodness of fit of a given Markov ACD model. To be

more specific, let Yi, i ∈ Z, be a stationary and ergodic Markov process that follows

model (1) with νi = τ(Yi−1) for some positive measurable function τ(·), defined on

R
+ := [0,∞). Accordingly,

Yi = τ(Yi−1)εi, where τ(y) = E(Yi | Yi−1 = y), y ≥ 0, i ∈ Z. (2)

Let Θ j R
q for some positive integer q, Ψ(y, θ) be a given positive function of (y, θ)

where y ≥ 0 and θ ∈ Θ, and let M = {Ψ(·, θ) : θ ∈ Θ} denote the correspond-

ing parametric family. The objective of this paper is to propose an asymptotically

distribution free test of

H0 : τ(y) = Ψ(y, θ), for some θ ∈ Θ and ∀ y ≥ 0, vs H1 : not H0. (3)

The test is introduced in section 2. It is based on a marked empirical process

of residuals, analogous to the ones in Stute, Thies and Zhu (1998) and Koul and
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Stute (1999). The main result of section 2 says that the asymptotic null distribu-

tion of the test statistic is that of the supremum of standard Brownian motion on

[0, 1]. Therefore, the test is asymptotically distribution free, and a set of asymptotic

critical values are available for general use. Consistency against a fixed alternative

and the asymptotic power against a sequence of local nonparametric alternatives are

discussed in section 3. Perhaps it is worth mentioning that the latter result about

local power is completely new and has not been discussed in any existing papers in

the context of time series analysis. Section 4 contains a simulation study. An illus-

trative example is discussed in section 5. In the simulation study, the proposed test

performed significantly better than the Ljung-Box Q-test. The proofs are relegated

to an Appendix.

2 The test statistic and its asymptotic null distri-

bution

This section provides an informal motivation for the test, defines the test statistic and

states its asymptotic null distribution. First, subsection 2.1 provides a motivation

for the test and a brief indication of the approach adopted in constructing the test

statistic. Then, subsection 2.2 introduces the regularity conditions, defines the test

statistic and states the main result on its asymptotic null distribution.

Let {Y0, Y1, . . . , Yn} be observations of a positive, strictly stationary and ergodic

process {Yi} that obeys the model (2). Let G denote the stationary distribution

function of Y0 and σ2 := var(ε1). Let τ , Ψ and the testing problem be as in (2) and

(3). Let θ denote the true parameter value under H0 and let ϑ denote an arbitrary

point in Θ. Under H0, G may depend on θ, but we do not exhibit this dependence.
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2.1 Motivation for the test statistic

This subsection provides a motivation for the test and an overview of the general

approach. The regularity conditions are not discussed here; they will be provided in

the next subsection. Let T (y, ϑ) =
∫ y

0
[{τ(x)/Ψ(x; ϑ)} − 1]dG(x), and

Un(y, ϑ) = n−1/2

n∑

i=1

{ Yi

Ψ(Yi−1, ϑ)
− 1

}
I(Yi−1 ≤ y), y ≥ 0, ϑ ∈ Θ, (4)

where we have assumed that τ, Ψ and G are continuous.

First, consider the special case when the true parameter value θ in H0 is given.

Because θ is known, the integral transform T (·, θ) is uniquely determined by τ(·),

assuming G is known. Therefore, inference about the functional form of τ(·) could be

based on an estimator of T (·, θ). From (2) it follows that under H0, T (y, θ) = EI(Y0 ≤

y)[{Y1/Ψ(Y0, θ)} − 1] = 0, for all y ≥ 0. Further, an unbiased estimator of T (y, θ) is

n−1/2Un(y, θ). It is shown later that, under H0, Un(y, θ) converges weakly to W ◦ G,

where W is standard Brownian motion on [0,∞). Therefore, a Kolmogorov-Smirnov

type test could be based on supy |Un(y, θ)|, which converges weakly to sup0≤t≤1 |W (t)|

under H0.

Now, consider the testing problem (3), where H0 specifies a parametric family for

τ(y). Let θ̂ be a n1/2-consistent estimator of θ. An estimator of T (y, θ) is n−1/2Un(y, θ̂).

The limiting null distribution of Un(y, θ̂) depends on θ̂ and the unknown parameter θ

in a complicated fashion. Therefore, the method outlined in the previous paragraph

for known θ is no longer applicable, and it does not lead to an asymptotically distri-

bution free test. To construct such a test we appeal to a martingale transform method

that has been successfully applied to location, regression and autoregressive models

in Stute et al. (1998) and Koul and Stute 1999). This approach yields a functional of

Un(y, θ̂) that converges weakly, under H0, to W ◦ G. Constructing such a functional

and establishing its weak converges is the focus of the next subsection.
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The process Un(y, ϑ) is an extension of the so called cumulative sum process for

the one sample setting to the current set up. The use of cumulative sum process

for testing the lack-of-fit of a given regression function goes back to von Neumann

(1941) where he proposed a test of constant regression based on an analog of this

process. More recently, analogs of this process have been used by several authors to

propose asymptotically distribution free lack-of-fit tests of hypotheses similar to (3)

in additive regression type models. More specifically, tests have been developed when

the null hypothesis specifies a parametric family for the mean function of a regression

model, the mean function of the autoregressive model, and the conditional variance

function in a regression model; for example, see Stute et al. (1998), Koul and Stute

(1999), Dette and Hetzler (2009), Koul and Song (2010). A common feature of all

these studies is that they are all for additive models. The ACD model studied in this

paper is multiplicative and hence is structurally different.

2.2 The test and the main results

Let F denote the cumulative distribution function [cdf ] of ε1. In the sequel, ‖a‖

denotes Euclidean norm for any vector a ∈ R
q and ‖D‖ := sup{‖aT D‖; a ∈ R

q, ‖a‖ =

1}, for a q × q real matrix D. Now let us introduce a set of regularity conditions.

(C1). The cdf G is continuous, G(y) > 0 for y > 0, and EY 4
0 < ∞. The sequence

of random variables {εi} is positive and i.i.d. with E(ε1) = 1, 0 < σ2 < ∞ and εi is

stochastically independent of {Yj−1, j ≤ i}.

(C2). The cdf F of ε1 has a bounded Lebesgue density f .

(C3). (a) Ψ(y, ϑ) is bounded away from zero, uniformly over y ∈ R
+ and ϑ ∈ Θ.

(b) The true parameter value θ is in the interior of Θ, and
∫ ∞

0
|Ψ(y, θ)|2 dG(y) < ∞.

Moreover, for all y, Ψ(y, ϑ) is continuously differentiable with respect to ϑ in



8

the interior of Θ.

For ϑ ∈ Θ and y ≥ 0, let Ψ̇(y, ϑ) =
[
(∂/∂ϑ1)Ψ(y, ϑ), · · · , (∂/∂ϑq)Ψ(y, ϑ)

]T

,

g(y, ϑ) = Ψ̇(y, ϑ)/Ψ(y, ϑ), and C(y, ϑ) =

∫

z≥y

g(z, ϑ)gT (z, ϑ) dG(z).

(C4). sup
√

n|Ψ(Yi−1, ϑ) − Ψ(Yi−1, θ) − (ϑ − θ)′Ψ̇(Yi−1, θ)| = op(1), where the sup is

taken over {1 ≤ i ≤ n,
√

n‖ϑ− θ‖ ≤ K} and K is a given arbitrary positive number.

(C5). There exists a q × q square matrix ġ(y, θ) and a nonnegative function h(y, θ),

both measurable in the y-coordinate, and satisfying the following: ∀ δ > 0,∃ η > 0

such that ‖ϑ − θ‖ ≤ η implies

‖g(y, ϑ) − g(y, θ) − ġ(y, θ)(ϑ − θ)‖ ≤ δh(y, θ)‖ϑ − θ‖, ∀ y ≥ 0,

Eh2(Y0, θ) < ∞, E‖ġ(Y0, θ)‖‖g(Y0, θ)‖j < ∞, j = 0, 1.

(C6).
∫ ∞

0
‖g(y, θ)‖2 dG(y) < ∞.

(C7). C(y, θ) is a positive definite matrix for all y ∈ [0,∞).

(C8). ‖gT (·, θ)C−1(·, θ)‖ is bounded on bounded intervals.

(C9).
∫
‖gT (y, θ)C−1(y, θ)‖ dG(y) < ∞.

(C10). There exists an estimator θ̂n of θ satisfying n1/2‖θ̂n − θ‖ = Op(1).

Remark 1. An example of θ̂n satisfying Condition (C10) is the quasi maximum

likelihood (QML) estimator of θ given by

θ̂n = arg min
ϑ∈Θ

Qn(ϑ), where Qn(ϑ) = n−1

n∑

i=1

{ Yi

Ψ(Yi−1, ϑ)
+ ln Ψ(Yi−1, ϑ)

}
. (5)
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Conditions (C2), (C8) and (C9) are needed to ensure tightness of some sequences

of stochastic processes appearing in the proofs.

Conditions (C3)−(C6) are concerned with the smoothness of the parametric model

being fitted to the conditional mean function.

Now, let Ûn(y) := U(y, θ̂n), ĝ(y) := g(y, θ̂n), Gn(y) := n−1
∑n

i=1 I(Yi−1 ≤ y),

and Ĉy :=
∫

x≥y
ĝ(x)ĝT (x) dGn(x). The proposed test is to be based on the following

analog of the Stute-Thies-Zhu’s transform of the Ûn:

Ŵn(y) := Ûn(y) −
∫ y

0

ĝ(x)T Ĉ−1
x

∫

z≥x

ĝ(z)dÛn(z) dGn(x). (6)

This in turn has roots in the work of Khmaladze (1981).

The next theorem provides the required weak convergence result, where W is

standard Brownian motion on [0,∞). Recall from Stone (1963) that the weak con-

vergence in D[0,∞) means the weak convergence in D[0, y], for every 0 ≤ y < ∞.

Here, and in the sequel, the symbol “=⇒” denotes weak convergence.

Theorem 1. Suppose that (2), (C1)−(C10) and H0 hold. Further, suppose that, for

some β > 0, γ > 0, we have that

(a) E‖g(Y0, θ)‖4 < ∞, (b) E{‖g(Y0, θ)‖4|Y0|1+β} < ∞,

(c) E{(‖g(Y1, θ)‖2‖g(Y0, θ)‖2|ε1 − 1|2|Y1|}1+γ < ∞. (7)

Then, for any consistent estimator σ̂ of σ,

σ̂−1Ŵn(y) =⇒ W ◦ G(y), in D[0,∞) and the uniform metric.

Let 0 < y0 < ∞. For rest of this section, let us assume that the conditions of The-

orem 1 are satisfied, unless the contrary is clear. Then, it follows from the foregoing

theorem that σ̂−1Ŵn(y) =⇒ W ◦G(y) on D[0, y0] with respect to the uniform metric.

Therefore, σ̂−1Ŵn(y) converges weakly to a centered Gaussian process. Further, as
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shown in the next section, σ̂−1Ŵn(y) has a drift under H1. This suggests that a test

of H0 vs H1 could be based on a suitably chosen functional of σ̂−1Ŵn(y). To this

end, let us define

Tn =
{
σ̂
√

Gn(y0)
}−1

sup
0≤y≤y0

|Ŵn(y)|. (8)

Now, by arguments similar to those in Stute et al. (1998), we have that Tn
d→

sup0≤t≤1 |W (t)|. Therefore, an asymptotic level-α test rejects H0 if Tn > cα where

P (sup0≤t≤1 |W (t)| > cα) = α. While the foregoing result holds for any fixed y0, in

practice, its choice would depend on the data. A practical choice of y0 could be the

99-th percentile of {Y0, . . . , Yn} (see, Stute et al. 1998).

For computing Ŵn(y), the following equivalent expression may be used:

Ŵn(y) =
1√
n

n∑

i=1

ri

[
I(Yi−1 ≤ y) − 1

n

n∑

j=1

GiI(Yj−1 ≤ Yi−1 ∧ y)
]
, (9)

where ri := {Yi/Ψ(Yi−1, θ̂n) − 1} and Gi := ĝT (Yj−1)Ĉ
−1
Yj−1

ĝ(Yi−1).

A candidate for σ̂2 in the foregoing theorem is

σ̂2 := n−1

n∑

i=1

{ Yi

Ψ(Yi−1, θ̂n)
− 1

}2

. (10)

Observe that, under H0, (C3)(b), (C6) and (C10) imply that (A.15) below holds true,

which together with the Law of Large Numbers imply σ̂2 →p σ2.

3 Asymptotic Power

In this section we show, under some regularity conditions, that the above test is

consistent against certain fixed alternatives, and that it has nontrivial asymptotic

power against a large class of n−1/2-local nonparametric alternatives.



11

3.1 Consistency

Let v /∈ M be a known positive measurable function defined on R
+. The alternative

we are interested in is

Ha : τ(y) = v(y), ∀y ≥ 0. (11)

Consider the following set of conditions.

(C11). (a) The estimator θ̂n of θ, obtained under the assumption that H0 holds,

converges in probability to some point in Θ under Ha; we shall also denote this limit

by θ. (b) infy∈R+ v(y) > 0. (c) E[v(Y0)/Ψ(Y0, θ)] 6= 1 and Ev2(Y0) < ∞ under Ha,

where θ is as in part (a) of this condition, and conditions (C3)(b) and (C5)−(C7)

are assumed to hold. (d) There exists a d > 0 and a nonnegative function t(y, θ),

measurable in the y-coordinate, such that, ‖Ψ(y, ϑ) − Ψ(y, θ)‖ ≤ t(y, θ)‖ϑ − θ‖ and

Et2(Y0, θ) < ∞, for y ≥ 0 and ‖ϑ − θ‖ ≤ d.

(e) E
([ v(Y0)

Ψ(Y0, θ)
− 1

]
I(Y0 ≤ y)

)
− B(y, θ) 6= 0, for some y > 0, (12)

where D(x, θ) := E
(
[v(Y0)/Ψ(Y0, θ) − 1]g(Y0, θ)I(Y0 ≥ x)

)
, and

B(y, θ) :=

∫ y

0

gT (x, θ)C−1(x, θ)D(x, θ)dG(x).

Now, the following theorem states the consistency of the proposed test.

Theorem 2. Assume that (2), Ha, (C1), (C3)(a) and (C11) hold, and that the

estimator σ̂2 converges in probability to a constant σ2
a > 0. Then, P (Tn > cα) → 1.

That is, the test that rejects H0 whenever Tn > cα, is consistent for Ha.

Under Ha, by (C1), (C3)(a), (C11) and the Ergodic Theorem [ET], the σ̂2 of (10)

converges in probability to σ2
a := σ2E{v(Y0)/Ψ(Y0, θ)}2+E{v(Y0)/Ψ(Y0, θ)−1}2 > 0.



12

3.2 Local Power

Let γ /∈ M be a positive measurable function on R
+, θ be as in H0, and consider the

following sequence of alternatives

Hnγ : τ(y) = Ψ(y, θ) + n−1/2γ(y), y ≥ 0. (13)

Assume that θ̂n continues to be
√

n-consistent under Hnγ. Let

ρ(y) := E
[ γ(Y0)

Ψ(Y0, θ)
g(Y0)I(Y0 ≥ y)

]
.

Then we have the following theorem.

Theorem 3. Assume that (2), Hnγ, (7) and conditions (C1)−(C10) hold, and that

the σ̂ in Theorem 1 continues to be a consistent estimator of σ. Also, assume that

the function γ in (13) satisfies E[γ2(Y0)] < ∞. Then, for all y0 > 0,

lim
n→∞

P (Tn > cα) = P
(

sup
0≤y≤y0

|W ◦ G(y) + σ−2M(y)| ≥ cα

)
,

where M(y) = E
[
{γ(Y0)/Ψ(Y0, θ)}I(Y0 ≥ y)

]
−

∫
x≤y

gT (x)C−1
x ρ(x) dG(x). Conse-

quently, the test based on Tn of (8) has nontrivial asymptotic power against Hnγ, for

all γ for which M 6= 0.

Remark 2. A routine argument shows that the estimator θ̂n defined at (5) continues

to satisfy (C10), under Hnγ. In fact one can verify that under Hnγ and the assumed

conditions, n1/2(θ̂n − θ) →D N
(
C−1(0, θ)E{γ(Y0)g(Y0, θ)/Ψ(Y0, θ)}, σ2C−1(0, θ)

)
.

Note also that the σ̂2 in (10) continues to be a consistent estimator of σ2 under

Hnγ. For, under Hnγ,

σ̂2 = n−1

n∑

i=1

{
εi

Ψ(Yi−1, θ)

Ψ(Yi−1, θ̂n)
− 1

}2

+ n−2

n∑

i=1

{
εi

γ(Yi−1)

Ψ(Yi−1, θ̂n)

}2

+ 2n−1

n∑

i=1

{
n−1/2 Ψ(Yi−1, θ)

Ψ2(Yi−1, θ̂n)
(εi − 1)εiγ(Yi−1)

}

+ 2n−1

n∑

i=1

{
n−1/2

[
Ψ(Yi−1, θ) − Ψ(Yi−1, θ̂n)

]

Ψ2(Yi−1, θ̂n)
εiγ(Yi−1)

}
.
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One can verify, under Hnγ and the conditions (C3)(b), (C6) and (C10), that (A.15)

below holds true. Thus, the first term in the right hand side of the last equality, by a

routine argument, converges in probability to σ2. Since, E[γ2(Y0)] < ∞, Ψ is bounded

away from zero and ε1 is independent of Y0, with the aid of the Ergodic Theorem,

the second term is op(1). Since, by (C3)(b), n−1/2 max1≤i≤n |Ψ(Yi−1, θ)| = op(1), a

routine argument together with (A.15) yields that the last two terms are also op(1).

4 A simulation study

A simulation study was carried out to compare the new test introduced in this paper

with the Ljung-Box Q-test, which is perhaps one of the more commonly used one in

this context. The data generating process [DGP] is defined by

M(m) : Yi = τiεi, where τi = 0.2 + 0.5Yi−1 + mτi−1, i = 1, . . . , n (14)

where m is a nonnegative number. In our study, we considered the values 0, 0.2 and

0.4. The null and alternative hypotheses are

H0 : Ψ(y, ϑ) = 0.2 + ϑy, and H1 : Not H0 (15)

respectively, where it is assumed that y ≥ 0 and ϑ > 0. Thus, M(0) is the null model,

and M(0.2) and M(0.4) are two models under the alternative hypothesis. For the

error term, we considered the following Weibull [W], Generalized Gamma [GG] and

Burr [B] distributions:

W: fW (x, a) = (a/b)(x/b)a−1 exp{−(x/b)a}, a = 0.6

GG: fGG(x, a, c) = {bacΓ(a)}−1cxac−1 exp{−(x/b)c}, a = 3, c = 0.3

B: fB(x, a, d) = (a/b)(x/b)a−1{1 + d(x/b)a}−(1+d−1), a = 1.3, d = 0.4

For each of these, the scale parameter b was chosen so that E(ε1) = 1. For each

error distribution and the model M(m), the sample sizes n = 500 and n = 1000
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were considered. Thus, the design has a 2 × 3 × 3 factorial structure with 2 sample

sizes, 3 error distributions, and 3 specifications for τi. To start the recursive data

generating process, the initial value of τ was set equal to {0.2/(0.5 − m)} which is

the unconditional mean of Y under M(m). To ensure that the effect of initialization

is negligible, we generated (n + ` + 1) observations with ` = 300, discarded the first `

observations and used the remaining n+1 observations. All the simulation estimates

are based on 1000 repetitions.

It follows from the null hypothesis in (15) that the parametric family to be fitted

is M = {Ψ(·, ϑ) : Ψ(y, ϑ) = 0.2 + ϑy, ϑ > 0, y ≥ 0}. Let θ̂n denote the quasi-

maximum likelihood estimator (5) of θ and let σ̂2 be given by (10). Then, we have

that Ψ̇(y, ϑ) = y, g(y, ϑ) = Ψ̇(y, ϑ)/Ψ(y, ϑ) = y/(0.2 + ϑy), y ≥ 0, ϑ > 0,

ĝ(y) = g(y, θ̂n) =
y

0.2 + θ̂ny
, ri =

Yi

Ψ(Yi−1, θ̂n)
− 1 =

Yi

0.2 + θ̂nYi−1

− 1 and

Ĉy = n−1

n∑

i=1

ĝ(Yi−1)ĝ
T (Yi−1)I(Yi−1 > y) = n−1

n∑

i=1

( Yi−1

0.2 + θ̂nYi−1

)2

I(Yi−1 > y).

With the forgoing choices, and y0 as the 99.5% quantile, we have that

Tn = {σ̂
√

0.995}−1 sup
0≤y≤y0

|Ŵn(y)| = {σ̂
√

0.995}−1 max
1≤i≤[n0.995]

|Ŵn(Y(i−1))|,

where Ŵn is as in (9).

The large sample level-α critical value cα of Tn is equal to the 100(1−α)% quantile

of sup0≤t≤1 |W (t)|. These values, prepared by Dr R. Brownrigg, are available at

http://homepages.mcs.vuw.ac.nz/∼ray/Brownian. For α = 0.01, 0.05 and 0.10, these

critical values are 2.807034, 2.241403 and 1.959964, respectively.

To compare the performance of the new test statistic Tn with a competitor, we

considered the Ljung-Box Q-statistic applied to the estimated residuals as in Engle

and Russell (1998). This test appears to be the one that is commonly used in empirical
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studies involving ACD models. The critical values for a Q(k) with lag length k are

obtained from the χ2 distribution with k degrees of freedom.

The results are presented in Tables 1−3. Each entry in these tables is the pro-

portion of times H0 was rejected out of the 1000 repetitions. For each entry p in

the table, a corresponding standard error could be computed as {p(1− p)/1000}−1/2.

These tables show that the estimated sizes are close to the nominal levels. Therefore,

the estimated rejection rates in these tables can be used to compare the performance

of the two tests. Let us recall that M(0.2) and M(0.4) are two specific models under

the alternative hypothesis. The rejection rates in Tables 1−3 for these two mod-

els show that, the new test performed substantially better than the general purpose

Ljung-Box Q-test.

5 An example

In this section, we shall briefly discuss an example to illustrate the testing procedure,

using NYSE price duration data. Price durations from NYSEs Trade and Quote

(TAQ) database were studied in detail by Giot (2000), Bauwens and Giot (2003) and

Fernandes and Grammig (2005). The data for this example were downloaded from

the home page of Dr. Joachim Grammig, who in turn acknowledges Bauwens and

Giot for providing the data. We refer to Fernandes and Grammig (2005) and Giot

(2000) for a detailed description of the data. The sample consists of the first 1017 of

the seasonally adjusted Exxon price durations for the period September to November

of 1996. The price duration is defined as the waiting time to witness a cumulative

change in the mid-quote price of at least $0.125.

We employ the proposed test for testing the adequacy of the following Markov

ACD model: Ψ(y, ϑ) = ϑ1 + ϑ2y, ϑ = (ϑ1, ϑ2)
T ∈ (R+)2. In the standard nota-
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tion, this is ACD(1,0) model. We used the QML estimator (5) to estimate the

model. This yields Ψ(y, θ̂) = 1.034 + 0.067y, with standard errors 0.054 and

0.037 for the estimates 1.034 and 0.067, respectively. Figure 1 provides a plot of

{σ̂
√

0.995}−1|Ŵn(y)| against y. From this graph, we have Tn = 1.4758, which is

the supremum of this graph. From the tables of Dr. R. Brownrigg available at

http://homepages.mcs.vuw.ac.nz/∼ray/Brownian, the 22% and 46% critical values

are 1.6 and 1.2 respectively. Therefore, the large sample p-value for Tn = 1.4758 is

between 0.22 and 0.46. Therefore, the test indicates that there is no evidence that

the model Ψ(y, ϑ) = ϑ1 + ϑ2y, does not fit the data.

6 Conclusion

The contribution of this paper has methodological and theoretical components. We

developed a new lack-of-fit test for a given ACD model having a Markov structure.

The family of such Markov ACD models is a simple subfamily of the well-known

ACD family introduced by Engle and Russell (1998). For example, such a Markov

ACD model does not have infinite memory. In empirical studies, one would want to

consider a general non-Markov ACD model only if a simpler Markov ACD model does

not fit. Because the test makes use of the specific structure of the Markov processes,

in contrast to the general purpose ones such as the Ljung-Box Q-test, there are some

grounds to conjecture that the test is likely to perform well. In fact, the new test

performed better than the Ljung-Box Q-test in a simulation study. Therefore, the

indications are that the new test would be useful in empirical studies involving ACD

models.

This paper also makes a theoretical contribution. The approach of constructing

a process such as Ŵn(·) through a particular martingale transformation of an empir-
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ical process marked by the residuals, and then using it to construct asymptotically

distribution free test, is fairly recent. At this stage, this method has been developed

for location, regression and AR(1) models. This paper is the first one to develop the

method for multiplicative time series models.

The ideas that underlie this approach are nontrivial. It is likely to suit only special

classes of models. Therefore, the details in the Appendix to this paper, would provide

valuable insight and facilitate extension to other models.
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APPENDIX: PROOFS

In this section we present the proofs of Theorem 1 and Theorem 2. We first obtain

several needed preliminaries. The following lemma provides a general weak conver-

gence result about the marked empirical process

αn(y) = n−1/2

n∑

i=1

`(Yi−1)(εi − 1)I(Yi−1 ≤ y),

where ` is a nonnegative measurable function on R
+. This result will be used in the

proofs of the other results in this section.

Lemma 1. Assume that model (2), (C1) and (C2) hold, and that infy∈R+ τ(y) > 0.

Suppose, in addition, that for some β > 0, γ > 0,

(a) E`4(Y0) < ∞, (b) E{`4(Y0)|Y0|1+β} < ∞,

(c) E{`2(Y0)`
2(Y1)|ε1 − 1|2|Y1|}1+γ < ∞. (A.1)

Then, αn =⇒ W ◦ ρ, in the space D[0,∞] with respect to uniform metric, where

ρ(y) := σ2E`2(Y0)I(Y0 ≤ y).

Remark 3. The above lemma is similar to Lemma 3.1 of Koul and Stute (1999) but it

does not directly follow from that lemma. The main reason is that the present model

is multiplicative while the one considered in Koul and Stute (1999) is an additive.

Proof of Lemma 1. The convergence of finite dimensional distributions of αn(·)

follows by an application of the CLT for martingales [Hall and Heyde (1980), Corollary

3.1]. To show the tightness of αn(·) we now argue as in Koul and Stute (1999). First

fix 0 ≤ t1 < t2 < t3 ≤ ∞. Then,

[αn(t3) − αn(t2)]
2[αn(t2) − αn(t1)]

2 = n−2
∑

i, j, k, l

UiUjVkVl,
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where Ui = `(Yi−1)(εi−1)I(t2 < Yi−1 ≤ t3) and Vi = `(Yi−1)(εi−1)I(t1 < Yi−1 ≤ t2).

Since εi is independent of {Yi−1, Yi−2, · · · , Y0} and E(εi) = 1,

E
{

n−2
∑

i, j, k, l

UiUjVkVl

}
= n−2

∑

i, j<k

E{ViVjU
2
k} + n−2

∑

i, j<k

E{UiUjV
2
k }. (A.2)

Note that by (A.1)(a) the above expectations exist.

We shall now find bounds for the two sums in the right hand side. We only

consider the first sum. A bound for the second sum can be obtained similarly. First,

let k be an arbitrary integer in the range 2 ≤ k ≤ n. Then, by the inequality

(a + b)2 ≤ 2a2 + 2b2, a, b ∈ R, and the stationarity of {Yi},
∑

i, j<k

E{ViVjU
2
k} ≤ 2σ2

[
E

{( k−2∑

i=1

Vi

)2

`2(Yk−1)I(t2 < Yk−1 ≤ t3)
}

+ E{V 2
1 `2(Y1)I(t2 < Y1 ≤ t3)}

]
. (A.3)

By conditioning on Yk−2 and using Fubini’s theorem and the CauchySchwarz inequal-

ity, the first expectation inside brackets is the same as

E
{( k−2∑

i=1

Vi

)2
∫ t3

t2

`2(y)

τ(Yk−2)
f
( y

τ(Yk−2)

)
dy

}

≤
∫ t3

t2

{
E

( k−2∑

i=1

Vi

)4}1/2{
`4(y)E

[ 1

τ 2(Y0)
f2

( y

τ(Y0)

)]}1/2

dy.

Since the Vi’s form a centered martingale difference array, by the Burkholder’s inequal-

ity [Chow and Teicher (1978), page 384] and the fact (
∑k−2

i=1 V 2
i )2 ≤ (k−2)(

∑k−2
i=1 V 4

i ),

E
( k−2∑

i=1

Vi

)4

≤ KE
( k−2∑

i=1

V 2
i

)2

≤ K(k − 2)2EV 4
1 .

Here and in the rest of the proof, K is a generic constant that does not depend on n,

k or the chosen t1, t2 and t3 but may vary from expression to expression. Now, let

F1(t) := E(ε1 − 1)4E
(
`4(Y0)I(Y0 ≤ t)

)
, 0 ≤ t ≤ ∞,

F2(t) :=

∫ t

0

{
`4(y)E

[ 1

τ 2(Y0)
f2

( y

τ(Y0)

)]}1/2

dy, 0 ≤ t ≤ ∞.
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Then, we obtain, EV 4
1 = E(ε1 − 1)4E

(
`4(Y0)I(t1 < Y0 ≤ t2)

)
= [F1(t2) − F1(t1)] and

∫ t3
t2

{
`4(y)E

[
f2(y/τ(Y0))/τ

2(Y0)
]}1/2

dy = [F2(t3) − F2(t2)]. Hence, the first expecta-

tion inside brackets in (A.3) is bounded from the above by

K(k − 2)[F1(t2) − F1(t1)]
1/2[F2(t3) − F2(t2)]. (A.4)

Since, EY 4
1 < ∞, we have that E(ε1−1)4 < ∞. Then, by assumption (A.1)(a), F1 is a

continuous nondecreasing bounded function on R
+. Clearly, F2 is also nondecreasing

and continuous. We shall now show that F2(∞) is finite.

To this end, let r be a strictly positive continuous Lebesgue density on R
+ such

that r(y) ∼ y−1−β as y → ∞, where β is as in (A.1)(b). Then, by the Cauchy-Schwarz

inequality and Fubini’s theorem, we have that 0 < f/τ is uniformly bounded,

F2(∞) ≤
[ ∫ ∞

0

`4(y)E
[ 1

τ 2(Y0)
f 2

( y

τ(Y0)

)]
r−1(y) dy

]1/2

≤ K

[
E

{∫ ∞

0

`4(y)
1

τ(Y0)
f
( y

τ(Y0)

)
r−1(y) dy

}]1/2

< ∞,

where the finiteness of the last expectation follows from (A.1)(b).

By conditioning on Y0, using Fubini’s theorem, Hölder’s inequality and the γ as in

(A.1)(c), we obtain that the second expectation inside brackets in (A.3) is the same as

∫ t3

t2

E

{
I(t1 < Y0 ≤ t2)`

2(Y0)`
2(y)

( y

τ(Y0)
− 1

)2 1

τ(Y0)
f
( y

τ(Y0)

)}
dy

≤
{

EI(t1 < Y0 ≤ t2)
}γ/(1+γ)

×
∫ t3

t2

[
E

{
`2(Y0)`

2(y)
( y

τ(Y0)
− 1

)2 1

τ(Y0)
f
( y

τ(Y0)

)}1+γ
]1/(1+γ)

dy.

Thus,

E{V 2
1 `2(Y1)I(t2 < Y1 ≤ t3)} ≤ [G(t2) − G(t1)]

γ/(1+γ)[F3(t3) − F3(t2)], (A.5)

where, for t ∈ [0,∞],

F3(t) :=

∫ t

0

[
E

{
`2(Y0)`

2(y)
( y

τ(Y0)
− 1

)2f
(
y/τ(Y0)

)

τ(Y0)

}1/(1+γ)
]1+γ

dy.
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Clearly, F3 is a nondecreasing and continuous function on R
+. For the boundedness,

we shall show that F3(∞) is finite. Towards this end, let s be a strictly positive

continuous Lebesgue density on R
+ such that s(y) ∼ y−1−1/γ as y → ∞, where γ is as

in (A.1)(c). Arguing as in the case of F2, we obtain that F3(∞) is less than or equal to

[ ∫ ∞

0

E
{

`2(Y0)`
2(y)

( y

τ(Y0)
− 1

)2 1

τ(Y0)
f
( y

τ(Y0)

)}1+γ

s−γ(y) dy

]1/(1+γ)

≤ K
[
E

{
`2(Y0)`

2(Y1)(ε1 − 1)2s−γ/(1+γ)(Y1)
}1+γ]1/(1+γ)

< ∞,

This yields that F3 is also a continuous nondecreasing and bounded function on R
+.

Now, by (A.3), (A.4) and (A.5) and summing from k = 2 to k = n we obtain

n−2
∑

i, j<k

E{ViVjU
2
k} ≤ K

{
[F1(t2) − F1(t1)]

1/2[F2(t3) − F2(t2)]

+ n−1[G(t2) − G(t1)]
γ/(1+γ)[F3(t3) − F3(t2)]

}
.

By similar arguments, the second sum in the right hand side of (A.2) also has a similar

bound. Consequently, tightness of {αn} follows from Theorem 15.6 in Billingsley

(1968). This completes the proof of Lemma 1. ¥

For the proof of Theorem 1 we need some more additional results. The next

lemma gives the needed weak convergence result for Un(y, θ).

Lemma 2. Suppose (2), (C1), (C2), (C3)(a) and H0 hold. Then, σ−1Un(y, θ) =⇒

W ◦ G(y), in D[0,∞] and uniform metric.

Proof. Under H0 and (C3)(a), τ(y) = Ψ(y, θ) is bounded away from zero uniformly

in y. Since, by (C1), EY 4
0 < ∞ then condition (A.1) is satisfied for `(y) ≡ 1. Thus,

an application of Lemma 1 completes the proof ¥

For brevity, write Un(y) = Un(y, θ), g(y) = g(y, θ) and Cy = C(y, θ), and define

Wn(y) := Un(y) −
∫ y

0

gT (x)C−1
x

[ ∫ ∞

x

g(z) dUn(z)
]

dG(x), µi(y) := I(Yi−1 ≥ y).
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The following lemma gives the weak convergence of Wn.

Lemma 3. Under (2), (C1)−(C9) and H0, σ−1Wn(y) =⇒ W ◦G(y), in D[0,∞] and

uniform metric.

Proof. Arguing as in Stute et al (1998) and using a conditioning argument, one can

verify that Cov{σ−1Wn(r), σ−1Wn(s)} = G(r ∧ s).

To establish the convergence of finite dimensional distributions, let Fi be the

σ-algebra generated by {εi, εi−1, · · · , Yi, Yi−1, · · · } , i ∈ Z and

hi(y) = σ−1(εi − 1)
{
I(Yi−1 ≤ y) −

∫ y∧Yi−1

0

gT (x)C−1
x g(Yi−1) dG(x)

}
, i = 1, · · · , n.

Note that E
(
hi(y)|Fi−1

)
= 0, for all i and σ−1Wn(y) = n−1/2

∑n
i=1 hi(y), for all y.

Because Cov
(
σ−1Wn(x), σ−1Wn(y)

)
= Cov

(
W ◦ G(x), W ◦ G(y)

)
, by CLT for mar-

tingales, e.g., cf. Corollary 3.1 of Hall and Heyde (1980), all finite dimensional dis-

tributions of σ−1Wn converge to those of W ◦ G.

Lemma 2 implies the tightness of the process Un(·) in uniform metric. It remains

to prove the tightness of the second term in Wn. Denote it by W2n. Then,

W2n(y) =
1√
n

n∑

i=1

(εi − 1)

∫ y

0

gT (x)C−1
x g(Yi−1)µi(x)dG(x).

Proceeding as on page 231 of Koul and Stute (1999), let A(y) :=
∫ y

0
‖gT (x)C−1

x ‖

dG(x), y ∈ [0,∞]. By condition (C9), 0 < A(∞) < ∞. Because G is continuous, the

function A(y) := A(y)/A(∞) is strictly increasing continuous distribution function

on [0,∞]. Moreover, using the fact ‖Cx‖ ≤
∫
‖g‖2dG, for all 0 ≤ x ≤ ∞, and by the

Fubini Theorem, for y1 < y < y2,

E
[
W2n(y1) −W2n(y2)

]2
= σ2

∫ y2

y1

∫ y2

y1

gT (x1)C
−1
x1

Cx1∨x2
C−1

x2
g(x2) dG(x1) dG(x2)

≤ σ2

∫
‖g(y)‖2 dG(y)[A(y2) −A(y1)]

2A2(∞).
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This bound, together with Theorem 12.3 of Billingsley (1968), imply that W2n is

tight. This completes the proof of Lemma 3. ¥

For the proof of Theorem 1 we also make use of Lemma 3.4 of Stute et al. (1998)

which in turn is a generalization of Lemma 3.2 of Chang (1990). For the sake of

completeness we reproduce it here.

Lemma 4. Let V be a relatively compact subset of D[0, y0]. Then with probability 1,

for all y0 < ∞,
∫ y

0
v(x)[dGn(x) − dG(x)] −→ 0 as n → ∞, uniformly in 0 ≤ y ≤ y0

and v ∈ V .

Proof of Theorem 1. Fix a y0 > 0. Recall Ûn(y) = Un(u, θ̂n) and let

W̃n(y) := Un(y) −
∫ y

0

ĝT (x)Ĉ−1
x

[ ∫ ∞

x

ĝ(z) dUn(z)
]

dGn(x).

We shall first show that sup0≤y≤y0

∣∣Ŵn(y) − W̃n(y)
∣∣ = op(1). Write

Ŵn(y) − W̃n(y) = Ûn(y) − Un(y) −
∫ y

0

ĝT (x)Ĉ−1
x Jn(x) dGn(x), (A.6)

where Jn(y) :=
∫ ∞

y
ĝ(z) dÛn(z) −

∫ ∞

y
ĝ(z) dUn(z).

First, consider Ûn(y)−Un(y). Let ∆n := n1/2(θ̂n−θ). By the mean value theorem,

there is a sequence of random vectors {θ∗n} in Θ with ‖θ∗n−θ‖ ≤ ‖θ̂n−θ‖, and such that

Ûn(y) − Un(y) = −∆T
nn−1

n∑

i=1

εig(Yi−1)I(Yi−1 ≤ y) + ∆T
nRn(y), (A.7)

where Rn(y) := −n−1

n∑

i=1

( Ψ(Yi−1, θ)

Ψ(Yi−1, θ∗n)
g(Yi−1, θ

∗
n) − g(Yi−1)

)
εiI(Yi−1 ≤ y).

Since, by (C3)(a), Ψ is bounded from below, κ := 1/ infy,ϑ Ψ(y, ϑ) < ∞. By the



26

triangle inequality, supy≥0 ‖Rn(y)‖ is bounded from the above by

n−1

n∑

i=1

∥∥∥
( Ψ(Yi−1, θ)

Ψ(Yi−1, θ∗n)
− 1

)
g(Yi−1, θ

∗
n)εi +

(
g(Yi−1, θ

∗
n) − g(Yi−1)

)
εi

∥∥∥

≤ κ max
1≤i≤n

|Ψ(Yi−1, θ) − Ψ(Yi−1, θ
∗
n)|

(
n−1

n∑

i=1

‖g(Yi−1, θ
∗
n)εi‖

)

+ n−1

n∑

i=1

∥∥(
g(Yi−1, θ

∗
n) − g(Yi−1)

)
εi

∥∥. (A.8)

By condition (C4),

max
1≤i≤n

|Ψ(Yi−1, θ) − Ψ(Yi−1, θ
∗
n)| ≤ ‖∆n‖n−1/2‖ max

1≤i≤n
‖Ψ̇(Yi−1, θ)‖ + op(n

−1/2). (A.9)

Since (C3)(b) gives
∫
|Ψ(y, θ)|2 dG(y) < ∞, along with (C6), we obtain

∫
‖Ψ̇(y, θ)‖2 dG(y) ≤

∫
‖g(y)‖2 dG(y)

∫
|Ψ(y, θ)|2 dG(y) < ∞.

This in turn implies that

n−1/2 max
1≤i≤n

‖Ψ̇(Yi−1, θ)‖ = op(1). (A.10)

Thus, in view of (A.9) and (C10), max1≤i≤n |Ψ(Yi−1, θ)−Ψ(Yi−1, θ
∗
n)| = op(1). By the

triangle inequality

n−1

n∑

i=1

‖g(Yi−1, θ
∗
n)εi‖ ≤ n−1

n∑

i=1

‖g(Yi−1)‖εi + n−1

n∑

i=1

‖g(Yi−1, θ
∗
n) − g(Yi−1)‖εi.

Since E(ε1) = 1, and ε1 is independent of Y0, by the ET and (C6), the first term

in the right hand side converges almost surely (a.s.) to E‖g(Y0)‖ < ∞. By (C5),

the second term, on the set {‖θ̂∗n − θ‖ ≤ η}, with η and h as in (C5), is less than

or equal to {n−1
∑n

i=1 ‖ġ(Yi−1)‖εi + n−1
∑n

i=1 δh(Yi−1, θ)εi}‖θ̂∗ − θ‖. Then, (C5) and

(C10) together with the ET imply

n−1

n∑

i=1

‖g(Yi−1, θ
∗
n)εi‖ = Op(1). (A.11)
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From these derivations, we obtain that the first term in the upper bound (A.8) is

op(1). A similar argument together with condition (C5) shows that the second term

in this bound tends to zero, in probability.

Thus, supy≥0 ‖Rn(y)‖ = op(1), and uniformly over 0 ≤ y ≤ ∞,

Ûn(y) − Un(y) = −∆T
nn−1

n∑

i=1

εig(Yi−1)I(Yi−1 ≤ y) + op(1)

= −∆T
nn−1

n∑

i=1

g(Yi−1)I(Yi−1 ≤ y) + op(1). (A.12)

The last claim is proved as follows. Since εi is independent of {Yi−1, Yi−2, · · · , Y0},

E(ε1) = 1 and, by (C6), E‖g(Y0)‖ < ∞, ET implies the point wise convergence in

(A.12). The uniformity is obtained by adapting a Glivenko-Cantelli type argument

for the strictly stationary case as explained under (4.1) in Koul and Stute (1999).

Next, consider Jn in (A.6). For the sake of brevity, write ĝi−1 = ĝ(Yi−1) and

gi−1 = g(Yi−1). Because εi = Yi/Ψ(Yi−1, θ),

Jn(y) = −n−1/2

n∑

i=1

ĝi−1

(Ψ(Yi−1, θ̂) − Ψ(Yi−1, θ)

Ψ(Yi−1, θ̂)

)
εiµi(y)

= J1n(y)∆n + J2n(y)∆n + J3n(y)∆n + J4n(y) + J5n(y)∆n + J6n(y)∆n,

where

J1n(y) = − 1

n

n∑

i=1

ĝi−1ĝ
T
i−1µi(y), J2n(y) =

1

n

n∑

i=1

gi−1g
T
i−1(1 − εi)µi(y),

J3n(y) =
1

n

n∑

i=1

(
ĝi−1ĝ

T
i−1 − gi−1g

T
i−1

)
(1 − εi)µi(y),

J4n(y) =
−1√

n

n∑

i=1

[
Ψ(Yi−1, θ̂) − Ψ(Yi−1, θ) − (θ̂ − θ)T Ψ̇(Yi−1, θ)

] ĝi−1εi

Ψ(Yi−1, θ̂)
µi(y),

J5n(y) =
1

n

n∑

i=1

ĝi−1

(
ĝi−1 − gi−1

)T
εiµi(y),

J6n(y) =
1

n

n∑

i=1

ĝi−1g
T
i−1

(
Ψ(Yi−1, θ̂) − Ψ(Yi−1, θ)

Ψ(Yi−1, θ̂)

)
εiµi(y).
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By definition J1n(y) = −Ĉy. We now show that

sup
y≥0

‖Jjn(y)‖ = op(1), j = 2, · · · , 6. (A.13)

Arguing as for (A.12) and (A.11), one obtains, respectively, supy≥0 ‖J2n(y)‖ =

op(1), and n−1
∑n

i=1 ‖ĝi−1‖εi = Op(1). Then, as Ψ is bounded below by 1/κ, condition

(C4) implies that, supy≥0 ‖J4n(y)‖ ≤ √
n max1≤i≤n |Ψ(Yi−1, θ̂) − Ψ(Yi−1, θ) − (θ̂ −

θ)T Ψ̇(Yi−1, θ)|κ n−1
∑n

i=1 ‖ĝi−1‖εi = op(1).

Next, consider J3n(y). Let ġi−1 = ġ(Yi−1, θ), hi−1 = h(Yi−1, θ) where h is as in

assumption (C5), γn := θ̂n−θ and ηi = 1−εi. Then, (C5) and the triangle inequality

implies that, on the set {‖γn‖ ≤ η}, where η is as in (C5),

sup
y≥0

‖J3n(y)‖ ≤ 1

n

n∑

i=1

[
‖ĝi−1 − gi−1‖2 + 2‖gi−1‖

(
‖ĝi−1 − gi−1‖

)]
|ηi|

≤ 1

n

n∑

i=1

[(
δhi−1 + ‖ġi−1‖

)2‖γn‖2 + 2‖gi−1‖
(
δhi−1 + ‖ġi−1‖

)
‖γn‖

]
|ηi|.

Then by (C5), ET and (C10), supy≥0 ‖J3n(y)‖ = op(1). A similar argument proves

(A.13) for j = 5. For the case of j = 6, note that supy≥0 ‖J6n(y)‖ is bounded above by

κ
(

max
1≤i≤n

|Ψ(Yi−1, θ̂) − Ψ(Yi−1, θ)|
)∥∥∥1

n

n∑

i=1

ĝi−1g
T
i−1εi

∥∥∥, (A.14)

where 1/κ is the lower bound on Ψ. By (A.10), (C4) and (C10),

max
1≤i≤n

|Ψ(Yi−1, θ̂) − Ψ(Yi−1, θ)| = op(1). (A.15)

By (C5), (C10) and the ET, on the set {‖γn‖ ≤ η}, where η is as in (C5),

∥∥∥1

n

n∑

i=1

ĝi−1g
T
i−1εi

∥∥∥ ≤ 1

n

n∑

i=1

(‖ġi−1‖‖γn‖ + δhi−1‖γn‖ + ‖gi−1‖)‖gi−1‖εi

= ‖γn‖
(
E‖ġ0‖‖g0‖ + δE(h0‖g0‖) + op(1)

)
+ E‖g0‖2 + op(1)

= E‖g0‖2 + op(1) = Op(1).
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Hence, the upper bound (A.14) is op(1). We have thus proved that

sup
y≥0

‖Jn(y) + Ĉy∆n‖ = op(1). (A.16)

Next, observe supy≥0 ‖Ĉy − Cy‖ ≤ supy≥0

∥∥n−1
∑n

i=1

(
ĝi−1ĝ

T
i−1 − gi−1g

T
i−1

)
µi(y)

∥∥

+ supy≥0

∥∥n−1
∑n

i=1 gi−1g
T
i−1µi(y)−Cy

∥∥. The first term in the right hand side is op(1)

by arguing as for (A.13), j = 3. A Glivenko-Cantelli type argument and ET imply

that the second term is also op(1). Thus, supy≥0 ‖Ĉy − Cy‖ = op(1). Consequently,

the positive definiteness of Cy for all y ∈ [0,∞) implies that

sup
0≤y≤y0

∥∥Ĉ−1
y − C−1

y

∥∥ = op(1). (A.17)

Condition (C5) and ET imply n−1
∑n

i=1 ‖ĝi−1−gi−1‖ = op(1). Hence, (A.17), (C9)

and a routine argument yield n−1
∑n

i=1 ĝT
i−1Ĉ

−1
Yi−1

I(Yi−1 ≤ y) = Op(1), uniformly over

0 ≤ y ≤ y0. Upon combining these facts with (A.6), (A.12) and (A.16), we obtain

sup
0≤y≤y0

|Ŵn(y) − W̃n(y)| = op(1). (A.18)

Next, we shall show

sup
0≤y≤y0

|W̃n(y) −Wn(y)| = op(1). (A.19)

First observe that, Wn(y) − W̃n(y) = D1n(y) + D2n(y) + D3n(y) + D4n(y), where

D1n(y) =

∫ y

0

gT (x)C−1
x

{∫ ∞

x

g(z) dUn(z)
}

[dGn(x) − dG(x)],

D2n(y) =

∫ y

0

[
ĝT (x)

(
Ĉ−1

x − C−1
x

){ ∫ ∞

x

ĝ(z) dUn(z)
}]

dGn(x),

D3n(y) =

∫ y

0

[
ĝT (x)C−1

x

{∫ ∞

x

(
ĝ(z) − g(z)

)
dUn(z)

}]
dGn(x),

D4n(y) =

∫ y

0

[(
ĝT (x) − gT (x)

)
C−1

x

{∫ ∞

x

g(z) dUn(z)
}]

dGn(x).

Note that because g0 and ε1 − 1 are square integrable, uniformly in y ≥ 0,
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∫ ∞

y

g(z)dUn(z) =
1√
n

n∑

i=1

gi−1(εi − 1)I(Yi−1 ≥ y)

=
1√
n

n∑

i=1

gi−1(εi − 1) − 1√
n

n∑

i=1

gi−1(εi − 1)I(Yi−1 ≤ y) + op(1).

By the martingale CLT, the first term is bounded in probability. Lemma 1 together

with (C1), (C2), (C3)(a), (7) and the continuous mapping theorem, imply that the

second term is Op(1), uniformly over y ≥ 0. Hence,

sup
y≥0

‖
∫ ∞

y

gdUn‖ = Op(1). (A.20)

By (C8) and (C7), sup0≤y≤y0
‖g(y)T C−1

y ‖ < ∞. These facts together with Lemma 4

yield sup0≤y≤y0
‖D1n(y)‖ = op(1).

We shall next prove that sup0≤y≤y0
|Djn(y)| = op(1) for j = 2, 3, 4. Towards this

end we make use of the following fact.

sup
y≥0

∥∥∥n−1/2

n∑

i=1

(
ĝi−1 − gi−1

)
(εi − 1)µi(y)

∥∥∥ = op(1). (A.21)

The proofs of this fact will be given shortly.

Arguing as in the proof of (A.11), by (C5), (C10) and ET, we obtain that n−1
∑n

i=1

‖ĝi−1−gi−1‖ = op(1) and n−1
∑n

i=1 ‖gi−1‖ = Op(1). Since, for each 0 ≤ y ≤ y0, Cy−Cy0

is positive semi-definite, we also have sup0≤y≤y0
‖C−1

y ‖ < ∞. Hence, (A.17), (A.20),

(A.21) and a routine argument yield supy∈[0,y0] |D2n(y)| = op(1). Similarly, by (A.21),

it follows that supy∈[0,y0] |D3n(y)| = op(1), and by (A.20), it yields supy∈[0,y0] |D4n(y)| =

op(1). This completes the proof of sup0≤y≤y0
|Djn(y)| = op(1) for j = 2, 3, 4, and hence

of (A.19).

Consequently, in view of (A.18), we obtain

sup
0≤y≤y0

|Ŵn(y) −Wn(y)| = op(1). (A.22)
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This fact, together with consistency of σ̂ for σ > 0 and Lemma 3 completes the proof

of Theorem 1.

We shall now prove (A.21). Again, for the sake of brevity, write ξi−1 = (ĝi−1 −

gi−1 − ġi−1(θ̂n − θ)). Observe that the left hand side of (A.21) is bounded above by

sup
y≥0

∥∥∥n−1/2

n∑

i=1

ξi−1(εi − 1)µi(y)
∥∥∥ + sup

y≥0

∥∥∥n−1

n∑

i=1

ġi−1(εi − 1)µi(y)
∥∥∥ ‖∆n‖. (A.23)

The following argument is similar to that in the proof of (4.19) of Koul and Stute

(1999). Condition (C5) implies that, on the set {‖θ̂n−θ‖ ≤ η}, where η is as in (C5),

sup
y≥0

∥∥∥n−1/2

n∑

i=1

ξi−1(εi − 1)µi(y)
∥∥∥ ≤ δ∆nn

−1

n∑

i=1

h(Yi−1)|εi − 1| = Op(δ).

Since δ > 0 is arbitrarily chosen, this implies that the first term in (A.23) is op(1). On

the other hand, as εi is independent of {Yi−1, Yi−2, · · · , Y0}, E(ε1) = 1 and E‖ġ0‖ <

∞, we have Eġ0(ε1−1)µ0(y) = 0. Hence, by (C10), a Glivenko-Cantelli type argument

and ET, the second term in the bound (A.23) is op(1). ¥

Proof of Theorem 2. It suffices to show that n−1/2|Ŵn(y)| = Op(1), for some 0 <

y < ∞ satisfying (12). Fix such a y. Under Ha, εi = Yi/v(Yi−1). Write vi :=

v(Yi), Ψi := Ψ(Yi, θ), and Ψ̂i := Ψ(Yi, θ̂n). Then, with θ as in (C11),

n−1/2Ûn(y) = n−1

n∑

i=1

εivi−1

[
Ψ̂−1

i−1 − Ψ−1
i−1

]
I(Yi−1 ≤ y)

+ n−1

n∑

i=1

{
εi

(
vi−1/Ψi−1

)
− 1

}
I(Yi−1 ≤ y). (A.24)

By (C11)(d), for d and t(·, θ) as in (C11), on the set ‖θ̂n−θ‖ ≤ d, the first term on the

right hand side of (A.24) is bounded from the above by κ2n−1
∑n

i=1 εivi−1t(Yi−1, θ)‖θ̂n

−θ‖ = op(1), by ET, and because θ̂n →p θ. Hence, by an extended Glivenko-Cantelli

type argument,

n−1/2Ûn(y) = E
(
[v(Y0)/Ψ(Y0, θ) − 1]I(Y0 ≤ y)

)
+ op(1), under Ha. (A.25)



32

Recall under (C11), E(v(Y0)/Ψ(Y0, θ)) 6= 1.

Next, let L̂n(y) denote the second term in Ŵn(y) and

K̂n(x) := n−1/2

∫

z≥x

ĝ(z)dÛn(z), Kn(x) := n−1/2

∫

z≥x

g(z)dUn(z).

Recall ĝ(z) = g(z, θ̂), g(z) = g(z, θ) and µi(x) = I(Yi−1 ≥ x). Also, observe that

Kn(x) = n−1
∑n

i=1[εi(vi−1/Ψi−1) − 1]gi−1µi(x), and EKn(x) = E
(
[v(Y0)/Ψ(Y0, θ) −

1]g(Y0, θ)I(Y0 ≥ x)
)

= D(x, θ). Hence, an adaptation of the Glivenko-Cantelli argu-

ment yields

sup
x

‖Kn(x) − D(x, θ)‖ = op(1). (A.26)

Moreover,

K̂n(x) − Kn(x) = n−1

n∑

i=1

εivi−1

[ 1

Ψ̂i−1

− 1

Ψi−1

]
[ĝi−1 − gi−1]µi(x)

+ n−1

n∑

i=1

εivi−1

[ 1

Ψ̂i−1

− 1

Ψi−1

]
gi−1µi(x) + n−1

n∑

i=1

εi
vi−1

Ψi−1

[
ĝi−1 − gi−1

]
µi(x).

Then using arguments as above we see that under the assumed conditions,

sup
x∈[0,∞]

‖K̂n(x) − Kn(x)‖ = op(1), under Ha. (A.27)

Now,

n−1/2L̂n(y) =

∫ y

0

ĝT (x)
(
Ĉ−1

x − C−1
x

)
K̂n(x) dGn(x)

+

∫ y

0

ĝT (x)C−1
x

(
K̂n(x) − Kn(x)

)
dGn(x) +

∫ y

0

ĝT (x)C−1
x Kn(x)dGn(x)

= S1(y) + S2(y) + S3(y), say.

Let Hn(z) :=
∫ z

0
‖ĝ(x)‖dGn(x). Arguing as above, we see that uniformly in z ∈

[0,∞], Hn(z) = E‖g(Y0)‖I(Y0 ≤ z) + op(1). Hence, by (A.17), (A.27) and (A.26),

it follows that |S1(y)| ≤ supx≤y ‖Ĉ−1
x − C−1

x ‖ supx ‖K̂n(x)‖Hn(y) = op(1). Similarly,
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|S2(y)| = op(1), while S3(y) = B(y) + op(1). These facts combined with (A.25) yield

n−1/2Ŵn(y) = n−1/2Ûn(y) − n−1/2L̂n(y)

= E
(
[

v(Y0)

Ψ(Y0, θ)
− 1]I(Y0 ≤ y)

)
− B(y, θ) + op(1), under Ha.

In view of (12), this completes the proof of Theorem 2. ¥

Proof of Theorem 3. Many details of the proof are similar to that of Theorem 1,

so we shall be brief at times. Fix a y0 > 0. We shall shortly show that under the

assumptions of Theorem 3, (A.22) continues to hold. Consequently, by the consistency

of σ̂ for σ > 0 under Hnγ, the weak limit of σ̂−1Ŵn(y) is as same as that of σ−1Wn(y).

Let Un(y) := n−1/2
∑n

i=1(εi − 1)I(Yi−1 ≤ y) and

Wn(y) := Un(y) −
∫ y

0

gT (x)C−1(x)
[ ∫ ∞

x

g(z) dUn(y)
]

dG(x), y ≥ 0.

Then Wn(y) = Wn(y) + Mn(y), y ≥ 0, where

Mn(y) := n−1

n∑

i=1

γ(Yi−1)

Ψ(Yi−1, θ)
εiµi(y)

−
∫ y

0

gT (x)C−1(x)
[
n−1

n∑

i=1

gi−1γ(Yi−1)

Ψ(Yi−1, θ)
εiµi(x)

]
dG(x).

Proceeding as in the proof of Lemma 3 we obtain that, σ−1Wn(y) =⇒ W ◦ G(y)

in D[0,∞) and uniform metric. By ET and an extended Glivenko-Cantelli type

argument, supy≥0 |Mn(y) − M(y)| = op(1), where M is as in Theorem 3. Now, these

facts, together with consistency of σ̂ for σ > 0, Slutsky’s theorem and the continuous

mapping theorem completes the proof of Theorem 3.

We shall now prove (A.22) holds under the conditions of Theorem 3. For brevity,

write Ψ∗
i−1 := Ψ(Yi−1, θ

∗
n), Ψ̇∗

i−1 := Ψ̇(Yi−1, θ
∗
n), and g∗

i−1 := g(Yi−1, θ
∗
n). Arguing as

for (A.7), we obtain

Ûn(y) − Un(y) = −∆T
nn−1

n∑

i=1

εi{Ψi−1Ψ̇
∗
i−1/Ψ

∗2
i−1}I(Yi−1 ≤ y) + ∆T

n R̃n(y),
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where {θ∗n} ∈ Θ satisfies ‖θ∗n − θ‖ ≤ ‖θ̂n − θ‖, and

R̃n(y) := −n−1

n∑

i=1

εin
−1/2{γ(Yi−1)Ψ̇

∗
i−1/Ψ

∗2
i−1}I(Yi−1 ≤ y).

By the triangle inequality, n−1
∑n

i=1 εi‖Ψ̇∗
i−1/Ψ

∗2
i−1‖ ≤ Sn + n−1

∑n
i=1 εi‖gi−1/Ψi−1‖,

where Sn := n−1
∑n

i=1 εi‖{g∗
i−1/Ψ

∗
i−1} − {gi−1/Ψi−1}‖ ≤ max1≤i≤n ‖Ψi−1 − Ψ∗

i−1‖κ2
(

n−1
∑n

i=1 ‖g∗
i−1‖εi

)
+ κ

(
n−1

∑n
i=1

∥∥g∗
i−1 − gi−1

∥∥εi

)
. Proceeding as in the proof of

Theorem 1, one can obtain that max1≤i≤n ‖Ψi−1 − Ψ∗
i−1‖(n−1

∑n
i=1 ‖g∗

i−1‖εi) = op(1)

and that (n−1
∑n

i=1 ‖g∗
i−1−gi−1‖εi) = op(1), under Hnγ. Hence, Sn = op(1). Also note

that, n−1/2 max1≤i≤n |γ(Yi−1)| = op(1), and clearly n−1
∑n

i=1 εi‖gi−1/Ψi−1‖ = Op(1).

Thus, supy≥0 ‖R̃n(y)‖ ≤ n−1/2 max1≤i≤n |γ(Yi−1)|
(
Sn + n−1

∑n
i=1 εi‖gi−1/Ψi−1‖

)
=

op(1). Consequently, under Hnγ, uniformly in y ∈ [0,∞],

Ûn(y) − Un(y) = −∆T
nn−1

n∑

i=1

εi

Ψi−1Ψ̇
∗
i−1

Ψ∗2
i−1

I(Yi−1 ≤ y) + op(1).

Thus, by proceeding as for the proof of (A.12) we obtain that, under Hnγ, uniformly

in y ∈ [0,∞], Ûn(y) − Un(y) = −∆T
nn−1

∑n
i=1 gi−1I(Yi−1 ≤ y) + op(1). Then, in view

of (A.6), under Hnγ, uniformly in 0 ≤ y ≤ y0,

Ŵn(y) − W̃n(y)

= −∆T
n

1

n

n∑

i=1

gi−1I(Yi−1 ≤ y) −
∫ y

0

ĝT (x)Ĉ−1
x J̃n(x) dGn(x) + op(1),

J̃n(y) :=
1√
n

n∑

i=1

ĝi−1

( Yi

Ψ̂i−1

− 1
)
µi(y) − 1√

n

n∑

i=1

ĝi−1

( Yi

Ψi−1

− 1
)
µi(y)

=
[
− 1√

n

n∑

i=1

ĝi−1

(Ψ̂i−1 − Ψi−1

Ψ̂i−1

)
εiµi(y)

]
+ S̃n(y),

and S̃n(y) := −n−1
∑n

i=1

{
ĝi−1γ(Yi−1)(Ψ̂i−1Ψi−1)

−1(Ψ̂i−1−Ψi−1)εiµi(y)
}
. Since we as-

sume Eγ2(Yi−1) < ∞, by (C5), ET and a routine argument, n−1
∑n

i=1 ‖ĝi−1‖γ(Yi−1)εi

= Op(1). One can verify, under the assumptions of Theorem 3, that (A.15) continues

to hold true. Since Ψ is bounded below by κ−1, then it follows that supy≥0 ‖S̃n(y)‖
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≤ κ2 max1≤i≤n |Ψ̂i−1 − Ψi−1|
[
n−1

∑n
i=1 ‖ĝi−1‖γ(Yi−1)εi

]
= op(1). Consequently, uni-

formly in y ≥ 0, J̃n(y) = −n−1/2
∑n

i=1 ĝi−1

(
(Ψ̂i−1−Ψi−1)/Ψ̂i−1

)
εiµi(y) + op(1). Thus,

proceeding as in the proof of Theorem 1, we obtain that supy≥0 ‖J̃n(y) + Ĉy∆n‖ =

op(1). This fact and a routine argument yield (A.18) continues to hold under the

assumptions of Theorem 3.

Next we shall show that (A.19) also holds under the assumptions of Theorem 3.

First observe that Un(y) = Un(y) + n−1
∑n

i=1

{
γ(Yi−1)
Ψi−1

εiI(Yi−1 ≤ y)
}

, y ≥ 0. Let

en(y) := n−1

n∑

i=1

gi−1
γ(Yi−1)

Ψi−1

εiµi(y) , ẽn(y) := n−1

n∑

i=1

ĝi−1
γ(Yi−1)

Ψi−1

εiµi(y).

Then, under Hnγ, Wn(y) − W̃n(y) = Ln(y) + `1n(y) + `2n(y) + `3n(y) + `4n(y), where

Ln(y) =

∫ y

0

ĝT (x)Ĉ−1
x

[ ∫ ∞

x

ĝ(z) dUn(z)
]

dGn(x)

−
∫ y

0

gT (x)C−1
x

[ ∫ ∞

x

g(z) dUn(z)
]

dG(x),

`1n(y) =

∫ y

0

gT (x)C−1
x en(x) [dGn(x) − dG(x)],

`2n(y) =

∫ y

0

[
ĝT (x)

(
Ĉ−1

x − C−1
x

)
ẽn(x)

]
dGn(x),

`3n(y) =

∫ y

0

[
ĝT (x)C−1

x

(
ẽn(x) − en(x)

)]
dGn(x),

`4n(y) =

∫ y

0

[(
ĝT (x) − gT (x)

)
C−1

x en(x)
]

dGn(x).

Proceeding as in the proof of Theorem 1, one can show that under Hnγ and the

assumed conditions on M and γ, sup0≤y≤y0
|Ln(y)| = op(1) = sup0≤y≤y0

|`jn(y)|, j =

1, 2, 3, 4. ¥
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Table 1: Proportion of times H0 was rejected when the error distribution is Weibull.

n: 500 n: 1000

α DGP T Q(10) T Q(10)

0.01 M(0) 0.015 0.015 0.013 0.012

M(0.2) 0.440 0.105 0.85 0.276

M(0.4) 0.938 0.365 0.98 0.664

0.05 M(0) 0.050 0.049 0.045 0.05

M(0.2) 0.734 0.245 0.965 0.497

M(0.4) 0.974 0.529 0.989 0.826

0.1 M(0) 0.096 0.076 0.089 0.094

M(0.2) 0.848 0.322 0.986 0.612

M(0.4) 0.985 0.622 0.992 0.867

Table 2: Proportion of times H0 was rejected when the error distribution is generalized
gamma.

n: 500 n: 1000

α DGP T Q(10) T Q(10)

0.01 M(0) 0.009 0.011 0.007 0.006

M(0.2) 0.577 0.157 0.927 0.491

M(0.4) 0.981 0.594 0.998 0.925

0.05 M(0) 0.039 0.056 0.031 0.04

M(0.2) 0.811 0.353 0.985 0.742

M(0.4) 0.995 0.805 1 0.962

0.1 M(0) 0.082 0.103 0.076 0.079

M(0.2) 0.888 0.499 0.993 0.83

M(0.4) 0.996 0.869 1 0.975
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Table 3: Proportion of times H0 was rejected when the error distribution is Burr.

n: 500 n: 1000

α DGP T Q(10) T Q(10)

0.01 M(0) 0.016 0.012 0.017 0.029

M(0.2) 0.455 0.131 0.853 0.329

M(0.4) 0.955 0.535 0.995 0.837

0.05 M(0) 0.043 0.041 0.058 0.064

M(0.2) 0.719 0.291 0.965 0.596

M(0.4) 0.980 0.71 0.997 0.904

0.1 M(0) 0.090 0.076 0.099 0.11

M(0.2) 0.828 0.402 0.983 0.713

M(0.4) 0.987 0.793 0.998 0.925

Figure 1: Plot of {σ̂
√

0.995}−1|Ŵn(y)| against y. The observed value of the test
statistic Tn and the critical values cα for α = 0.22 and 0.46 are also displayed.
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