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Abstract

The National Health Care Anti-Fraud Association (www.nhcaa.org) states that in 2007
over 4 billion health insurance claims were processed in the United States and that fraud
amounted to $68 billion. The problem has been featured in a CBS “Sixty Minutes”
segment on October 25, 2006 and in a number of NBC News “Fleecing of America”
segments, most recently in January, 2010,

http://dailynightly. msnbe.msn.com/archive/2010/01/11/2170025.aspx. Additional
overpayments come from billings for unnecessary practice and procedures and errors in
billings. The recovery of overpayments by Medicare and Medicaid alone is of great
national importance.

Guidelines from the Centers for Medicare & Medicaid Services state “In most
situations, the lower limit of a one-sided 90 percent confidence interval should be used
as the amount of overpayment to be demanded for recovery from the physician or
supplier.” The Minimum Sum Method (Edwards et al (2005)) is based on inverting a
family of tests of Hypergeometric distributions to obtain a nonrandomized lower bound
for the number of billings among N that are completely in error. This paper shows how
to construct a randomized lower bound that serves to increase recovery demands while
balancing risks to predetermined levels. The method is connected to the Binomial case
by considering the limit as N goes to infinity.

Keywords: randomized confidence intervals, Hypergeometric, Binomial, Medicare
overpayment recovery




1. Introduction. Edwards et al (2005) bring attention to Medicare payment
populations where payments vary little and a claim is either proper or not, thus making
the inherent overcharge (overpayment) either 0 or the entire payment. Medicare
examples include populations of payments for motorized wheelchairs and populations
of payments for home health care services for periods of a specific length. They
propose and investigate a methodology using simple random sampling and any sample
size that produces a lower estimate for total overpayment with guaranteed minimum
confidence level. Their methodology is based on exact lower estimates for a
Hypergeometric, and it is called the minimum sum method. Specifically, let M denote
the number of population payments completely in error, and suppose a simple random
sample of size » finds x payments completelj{ in error. Let Ly, denote the lower (1 -
a)100% confidence bound for M found by inverting the Hypergeometric test for Hy: M
< M,. The ordinary minimum sum lower conﬁdence bound for the total population

overpayment is then

( Total sample} | ( Sum of the smallest )
L, '

overpayment — x unsampled payments

The methodology guarantees a confidence level of at least (1 - a)100% and does not
depend upon a large sample size. Monte Carlo simulations show the advétntage that the
minimum sum method has over methods based on the Central Limit Theorem (CLT)
when the population error rate is large, a situation not unusual when there is fraud; in
these cases, methods based on the CL'T ofien have achieved confidence level far below
the nominal (1 - a)lOO%; Gilliland and Feng (2010) show how to extend the range of

effectiveness of the minimum sum method to populations where payments vary by




partitioning payment dollars into packets of uniform size and sampling packets.
Edwards et al (2010) study the most extreme choice of packet size, proposing to audit

randomly selected pennies.

The recoupment figure set by Medicare in an audit is the lower 90% estimate for total
overcharge'. The recoupment figure is increased if the 90% lower estimate for the
Hypergeometric is increased. This paper shows how to accomplish this through
artificial randomization using the same ideas that have been previously applied to

develop randomized lower estimates for a Binomial proportion.

Let B(n, ) denote the Binomial distribution based on » trials and success probability x;

its probability mass function is given by
n
p.(x)= ( }r*(l -y, x=0,1,..,n
X

Let H(n, N, M) denote the Hypergeometric distribution based on sample size # and a

population of size N containing A successes; the probability of x successes in a simple

Y

Here, and except when necessary for a proof, we suppress the display of dependence of

random sample of size n is

.oy HL

P (X) =

Hypergeometric probabilities on » and N. Nonrandomized and so called crisp or exact

! The CMS (Centers for Medicare & Medicaid Services) prescribes the use of the & = 0.10 lower bound as
the recovery figure for overpayments by Medicare; we use & = 0.10 in our examples.




(1 —a)100% confidence interval estimates for the & in B(n, 7) or the M in H(n, N, M)
have confidence levels in excess of the nominal (1 — @)100%. Lehmann (1959, p. 81)2
considers the B(n, 7) distributions and shows how the use of artificial randomization
allows for the inversion of a family of size a tests that results in randomized interval
estimates of 7 with exact confidence level (1 — a}100%. Brown et al (2001, 2002)
survey, analyze and compare many interval estimation methods applicable in the
Binomial case. Geyer and Meeden (2005) introduce the fuzzy set approach to deal with

the problems inherent with crisp interval estimates. Also see Brown et al (2005).

In this paper, we consider the Hypergeometric model and give a construction for a
randomized lower estimate of M that enjoys exact confidence level (1 — a)100%. The
approach is equivalent to inverting the family of size « uniformly most powerful (UMP)
tests. The test functions are the nonmembership functions in the fuzzy set interpretation

developed in Geyer and Meeden (2005).

We consider lower estimates of M, called lower bounds for M, with confidence level (1

—a)100% and 0 <a < 1. In Section 2, we review the construction of a nonrandomized

lower bound for M. In Section 3, as an example we construct the randomized lower
bound for M for the example with a = 0.10, n =5, N=20. Section 4 gives the
construction for the general case, an expression for its expectation and the connection to
the Binomial case as N — o0, Section 5 contains some applications to illustrate the

practical significance of the Hypergeometric case in Medicare payment audits.

? Lehmann and Romano (2005, pp. 166-167) discuss randomized confidence intervals but do not provide
the detail available in Lehmann (1959, p. 81).




Calculations reported in this paper were done with Microsoft Office Excel 2010 or R

{(www.R-project.org).

2. Nonrandomized Confidence Bounds. We fix the population size N and the sample
size n with 1 <n <N and refer to the Hypergeometric probability distributions as Py, M
=0, 1, ..., N. Xdenotes a random variable with this distribution. This family of

distributions indexed by M has a nondecreasing likelihood ratio in x. Consider the tail
proba{bizities F,,and Fy defined by

Fax) =P (X=<x),x=0,1,..;,M=0,1,....N (O

Fu(x)=P,(X2x),x=0,1,..; M=0,1,...,N. )
Consider the integer-valued function

L(x) = min{m e{0,1,.. . N} Fu(x)>a}, x=0,1,....n 3)

=min{me {0,L,... . N} F (x-D<l-a}, x=0,1,...,n (4)

The level a nonrandomized UMP test of Hy: M = My v. Hi: M> M, rejects Hy if the p-

value F,, (x,,)<a and “accepts” (vetains) Hy if F,, (x,,,) > & , where x,p; denotes the

obs
observed value of X. (See Lehmann (1959, Theorem 2, p. 68.)) By the stochastic
ordering of the family H{n, N, M), if My is rejected then so are all smaller values of M,
and, if M, is accepted, then so are all larger values of M. The inversion of the family of
tests leads to the fact that {m | L(X) <m < N} isa (1 — a)100% confidence set estimate
of M. The lower endpoint L = L{X) is a statistic called the nonrandomized (1 — a)100%

confidence lower bound for the parameter M. The coverage probability satisfies

Co (L)=P ((X)SM)z1-q forall M=0, 1, ..., N. (5)




(The statistic U= U(X):= N — L(n— X)is the nonrandomized (1 — a)100% confidence

upper bound for the parameter M.)
Consider the lower bound L for the number M of successes in the population. From
definition (3), it is seen to be defined on {0, 1, ..., n} taking values in {0, 1, ..., N}. Its

elementary properties include: L(0) =0, L{(n- 1) <N,and L(x) > x,x =0, 1,..., n.

Remark 1. L(x) is a strictly increasing function.

Proof. In this proof we denote the Hypergeometric probability distribution by Py y ar
and use the fact that P, yyr= Pasnn Think of drawing a simple random sample of size
M from the N by first drawing a simple random sample of size M — 1 and then drawing
an additional element from the remaining N - M + 1. Letting / denote the indicator that

this last draw is a success, it follows that
Frinn(x+1) = Farana(x+1) + Py nn(X=x) Prob(I= 1)

= Friann(x) = PoannX =) + PrrivnX =5)Prob(I=1) < Frana(x).
Thus, ﬁn,N,M (x+h< .IEn,N,M—l(X). Using (3), L(x) =m implies that I?H,N,m-x (X<

from which }_;'n,N,m (x+1) £a which implies that L(x + )2 m+1. [

Later we will have occasion to compare the lower bound L(X)/N for the population rate
of success 7 = M/N with the nonrandomized (1 — «)100% lower bound for Binomial
probability z based on X distributed B(n, 7). From Stapleton (2009, p. 369), the (1 —

a)100% lower bound for Binomial probability z it is




Lbinom (x) = [1 /(1 + (Vl /VZ )F;——a,vl,vl )] (6)

where F

l-ay,v, denotes the 1 —a quantile of the F-distribution with v, :=2(n~x+1) and
v, = 2x degrees of freedom. Ifx = 0, the lower estimate is taken to be 0.

Example 1. Suppose that o= 0.1000, n =5 and N = 20. Table 1 provides the
nonrandomized lower bound L for M, confidence level 90%. The nonrandomized lower

bound for # = M/N based on X distributed B(», ) is included for comparison.

Table 1. The Nonrandomized 90% Lower Bound L (o= 0.1000, n =5, N = 20).

x 0 1 2 3 4 5
L(x) 0 1 3 6 10 14
L)20 | 0 05 | 15 | 30 | 50 | .70

Lomom®@) | 0] 0.021 | 0.112 | 0.247 | 0.416 | 0.631

Figure 1 is a plot of the coverage probability Cy(L). Figure 2 is a plot of the expected

value of the nonrandomized lower estimate Z(X), which we denote as Fuy(L).
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Figure 1. Coverage Probability of the Nonrandomized 90% Lower Bound L(X).
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Figure 2. Expected Value of the Nonrandomized 90% Lower Bound L(X).

If » is small compared to N, then the lower estimates for 7 = M/N based on the
Hypergeometric and the Binomial will be close. Table 2 contains results for several

combinations of », N and x.

Table 2. The Nonrandomized 90% Lower Bounds for # = M/N when n = 10.

X

N 0 1 2 3 4 5 6 7 8 9 10
20 | L(x)/N | 0| 0.050 | 0.100 | 0.150 | 0.250 | 0.350 | 0.450 | 0.550 | 0.650 | 0.750 | 0.850

50 | L(x)/N |0 0.020 | 0.080 | 0.140 | 0.220 | 0.300 | 0.380 | 0.480 | 0.550 | 0.700 | 0.820
100 | L(x)/N | 0| 0:020 | 0.060 | 0.130 | 0.200 | 0.280 | 0.370 | 0.460 | 0.570 | 0.680 | 0.810
500 | L(x)N | 0] 0.012 | 0.056 | 0.118 | 0.190 | 0270 | 0358 | 0.452 | 0.554 | 0.666 | 0.798
1000 | L(x)/N | 0 | 0.011 | 0.055 | 0.117 | 0.189 | 0.269 | 0.356 | 0.450 | 0.552 | 0.665 | 0.796

0 | Lomom (¥) | 0 | 0.010 | 0.055 | 0.116 | 0.188 | 0.267 | 0.354 | 0.448 | 0.550 | 0.663 | 0.794

3. Improvement through Randomization — an Example. The construction of an

improved lower bound Lr for M through the introduction of artificial randomization is




illustrated below. The construction is done in an iterative manner over steps indexed by
x=0,1, ..., n; we use the name Ly for the result of each iteration. The final Lp is the

- same result that comes from inverting a family of UMP size a tests’. It has coverage
probability C,,(L;) = P,:NM (Ly < M) that satisfies

C,(Lp)y=1-a forallM=0,1,...,N-1. (7}
For any lower estimate taking valuesin {0, 1, 2, ..., N}, C,,(L,) =1. The randomized

version Lg that we construct produces lower bounds no less than those coming from the

nonrandomized version L.

Below is a continuation of Example 1 to illustrate the construction of Lz. The
constructions for x = 0 and 1 are given. The constructions for x =2, 3, 4 and 5 follow

the same pattern. Section 4 treats the general case.

One constructs a randomized version g through inéreasing the lower estimate by
sacrificing the coverage probability that is in excess of 0.90 through artificial
randomization. The construction begins at x = 0 and proceeds throughx =1, ..., 5. It
may be useful to think of starting with L thought of as a randomized lower estimate Ly
with degenerate randomization distributions. That is, at x = 0, the randomization
distribution is degenerate at L(0) = 0; at x = 1, the randomization distribution is
degenerate at L(1) = 1; at x = 2, the randomization distribution is degenerate at L(2) = 3;

at x = 3, the randomization distribution is degenerate at L(3) = 6; at x = 4, the

* An alternative way to construct the randomized bounds is through the inversion of tests based on the
convolution ¥ =X + U where U is a Uniform (0, 1) random variable, independent of X. This idea is found
in Lehmann {1959, p. 81). It is implemented in an R- program available from Professor Edwards.




randomization distribution is degenerate at L(4) = 10; at x = 5, the randomization

distribution is degenerate at L{5) = 14.

Example 1 (cont). Construction of randomization distribution at x=0. Here L=0
with probability (wp) 1. Change the (conditional given x = 0) distribution to be L =0
wp 0.9000 and L =1 wp 0.1000. The change from a degenerate on the value 0 to this
distribution has this effect: the new coverage probability function Cy{Lg) takes the
value 0.9000 at M = 0 and is seen to satisfy Cp(Lg) = CidL) = 0.9000, M =1, 2, ..., 20.
Note that #¢(0): = 0.1000 is the rejection probability on the boundary x = 0 of the UMP

level 0 =0.1000 test of Hy: M=0 v. Hyi: M> 0.

Example 1 (cont). Construction of randomization distribution at x = 1. Since
Ci(Lry= Ci(L) = F,(1) =1> 0.9000, we change the (conditional given x = 1)
distribution on L from degenerate at L =1 to 1 wp (1 - (1)) and 2 wp ri(1) where #1(1)
is chosen so that the new C1(Zg) = 0.9000. Solving F,(0) + (1 —r,(1))p, (1) =
0.9000 or the equivalent F, (2) + 1, (1)p,(1) = 0.1000 leads to

) 0.1000 — F,(2) 0.4000
T = = . .
! p:(1)

The change from a degenerate on the value 1 to the distribution [ wp 0.6000 and 2 wp
0.4000 does not affect Co(Lg) = 0.9000, produces C1(Lg) = 0.9000, and retains Cp,{Lg) =
Cw(L)=0.9000, m=2, 3, ..., 20. Note that (1) = 0.4000 is the rejection probability
on the boundary x = 1 of the UMP level . =0.1000 test of Hyp: M= 1 v. Hp: M> 1.
The probability #1(1) = 0.4000 on the lower bound 7 = 2 will now be split between the

lower bounds L =2 and L = 3. No split will change C,,(Lg) = Co(L), m =3, 4, ..., 20;

10




yet one split will produce C2(Lz) = 0.9000. The split is (0.4000 — #,(1)) on L =2 and

r2(1) on L = 3 where #5(1) is the solution to

F,(0) + (0.6000 + 0.4000 — r,(1))p, (1) = 0.9000 which is equivalent to F,(2) +

r2{1)p; (1) = 0.1000. The solution is #2(1) = 0.1200. Thus, the conditional

distribution for the lower estimate given x = 1 is 1 wp 0.6000, 2 wp 0.2800 and 3 wp

0.1200 and it results in Co(Lg) = 0.9000, C1(Lg) = 0.9000, Co(Zx) = 0.9000; C(Lz) =

Ca(L)>0.9000, m =3, 4, ..., 20. Note that r»(1) = 0.1200 is the rejection probability

on the boundary x = 1 of the UMP level a. = 0.1000 test of Hy: M=2 v. H;: M > 2.

Table 3 gives the values determined for the randomizations in Ly at each x. The rows

give the conditional on x randomization probabilities for choosing the value of the

lower estimate. For example, if x = 3 is observed, the lower estimate is taken to be 6 wp

0.2668, 7 wp 0.3396, 8 wp 0.2165, @ wp 0.1687 and 10 wp 0.0083. (Due to rounding,

the conditional probabilities may not sum to 1 across a row.)

Table 3. The Randomizations for the 90% Lower Bound for M (n = 5, N = 20).

Observed | [ Lr

x

0 0 |Owp Lwp
0.3000 0.1000

1 1 | 1wp Zwp 3wp
0.6000 0.2800 0.1200

2 3 | 3wp 4 wp Swp 6 wp
0.3067 0.3795 0.2205 0.0933

3 6 | owp T wp Swp 9 wp 10 wp
0.2668 0.3396 0.2165 0.1687 0.0083

4 10 | 10wp 11 wp 12 wp 13 wp 14 wp
0.3817 0.2518 0.174% 0.1389 0.0526

5 14 | 14wp 15 wp 16 wp 17 wp 18 wp 19 wp 20 wp
0.2256 0.2581 0.1613 0.1044 0.0696 0.0476 0.1333

11




Remark 2. The Geyer and Meeden (2005, (1.1b)) membership function values for their

one-sided fuzzy interval estimate ¢ are the partial sums across the rows of Table 3. For
x =2, these are ¢ (2, 0.1000, M)=0Tfor M=10, 1, 2; ¢(2, 0.1000, 3) = 0.3067; ¢ (2,
0.1000, 4) = 0.3067 + 0.3795 = 0.6862; ¢ (2, 0.1000, 5) = 0.3067 + 0.3795 + 0.2205 =

0.9067; ¢(2,0.1000, M)=1for M=6,7, ..., 20.

Note that L differs from L by distributing an otherwise degenerate probability on L(x)
across the points L{x), L(x) + 1, ..., L(x + 1). Of course, Lz > L wp 1. Figure 3 plots

the expected values of Ly and L for Example 1.
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Figure 3. Expected Values of the Nonrandomized and Randomized 90% Lower Bounds.

4. Direct Construction of Lg in the General Case. To deploy Ly one takes the

observation X = x and computes the conditional probability distribution across lower

12




estimates L(x), L{x) + 1, ..., L(x + 1) coming from the inversion of the UMP tests. (L(n)
= Nifand only if /N> | — a. In this case if x = n is observed, no inversion is required.)
Recall from Remark 1 that L{x) is a strictly increasing function of x taking values in {0,

1, ..., N}. Letting L{n + 1):= N, we define the sets of consecutive integers

RGy={L(x), Lx)+ 1, ... Lix+ 1)}, x=0,1,...,n 8)
If L(n) = N, the last set is the singleton set {N}. Note that

o< FL(x) (s E(x)ﬂ (xs..5 FL(mH (x)

€)

ll_?L(x)(x + 1) < F:L(x)ﬂ (x+1) <..< _L(JcH)—] (x+'1) <.

Thus, for each m = L{x), L(x) + 1, ..., L{x + 1} — 1, the UMP testof Hy: M=m v. H: M
>mis

g (X)=[XzZx+1]+r, ()X = x] (10)
where square brackets denote indicator functions and the boundary randomization
rejection probability r,(x) is given by

efn(xtl) o g (11

(%) ==

We point out that the sequence 7,,(x) is nonincreasing in m. Suppose that 7, ;(x) >

rm(x). Then ¢ . > ¢, with positive probability under the Hypergeometric distribution

P+ 1 leads to the contradiction

a=FE

m+1Fm+l >

Em+]¢m = Em¢m =a (12)

13




where E,, + 1 denotes expectation with respect to Py, + 1 and £, denotes expectation with

respect to P, In (12), the second inequality foliows from the fact that ¢, is a

nondecreasing function and Lehmann (1959, Lemma 2, p.74). Thus, #,u(x) > rp1(X).

Repeated application of the same argument shows that the rejection probabilities satisty

(13)

rL(x)(x) b r.’.(x)+l(x) 2 2y (x)=0.

(Thus, the Geyer and Meeden (2005, (1.1b)} membership function for the fuzzy

confidence set is nondecreasing.) The randomization probabilities placed on L(x), L(x)

+1, ..., L(x + 1) are shown in bottom row of Table 4.

Table 4. Randomizations for Lower Estimate Lz given X' =x.

L L(x) Lix)+1 Lx+1)-1 Lix+1)
Conditional rr(x) P+ (x) Free+1)-1(X)
Reject Probs
Conditional 1 — Fr(x) L) - Freeny2(X) — | Fraen)a(x)
Prob Dist of L rL(x}+1(x) I"L(xﬂ}_l(x)

Example 2. Suppose that « = 0.1000, » = 20, N =200 and x = 14. Calculations yield

L(14) =109, L(15) = 119, and the randomization probabilities found in Table 5.

Table 5. Randomizations for 90% Lower Estimate given X = 14 (n = 20, N = 200).

. L 109 110 111 112 113 114 115 116 117 118 119
Reject Probs* 8747 7559 | 6450 | 5427 | 4454 | 3545 | 2693 | .1881 | .1104 | .0363
Conditional
Prob Dist of Lg | .1253 1188 | (1109 | 1023 | 0973 | .0909 | .0852 | .0812 | 0778 | .0740 } .0363
given X =14

*Reminder: The Reject Probs are the boundary artificial randomization rejection probabilities of the

UMP tests of 109 v, > 109, 110 v, > 110, etc,

The conditional expectation of Lg given X = x is given by

14




L{x+1)-2
m=L(x)+]

E(Ly | X =x)= (1= ryy () L(x) + 2, (7 (%) = 7p1 (X)) - L(m)

+ (X)) - L(x +1)
L{x+1)- L

=L@+, Ta(®) (14)
In case x = n and #/N > 1 — a, the last summation in (14) is from N to N — 1 and is taken
as 0. Since L(x) = E(L| X = x), the addition to conditional expectation due to the

randomization is

L{x+1)-1

AE(Ly | X=x)=) " Sy (%) (15)

The addition to the unconditional expectation of the lower bound coming from

randomization is

L{x+1)-1

AEy (L) =D Py (D, (), M=0,1,2, .., N, (16)

Example 3. See Example 2 of Section 4. The addition (15) to the conditional
expectation of the lower estimate given X' = 14 can be calculated from Table 5 by

simply adding across its second row. The resultis AE(L, | X =14)=4.2.

Remark 3. Conditionalon XY =x withx =1, 2, ..., n— I, the randomization distribution

on {L(x)/N, (L(x) + 1)/N,...., L(x + 1)/N} converges to a probability distribution on the

interval (Lyor (X)L, (x+1) ) a8 N — oo, The limit cumulative distribution
function is
Far| X =x)=1-228:04D _, o=1+8.00 ; y<n<i, (+]) (17)
b, (x) b, (%)

15




where b_1is the probability mass function, Ex is the right-tail probability, and B_ is the

left tail probability for B(n, 7). If X =0, the limit distribution places mass 1 —a on 0. If
X = n, the limit distribution places mass a on 1. The other distributions are continuous
on their intervals of support.
Proof. Fix x in the interval (L, . (x), L. (x +1)) and let L(x), L(x) + 1, ..., L(x) + dx
= L{x + 1) be the support of the randomized lower estimate Lr based on the
Hypergeometric and given X' = x. Let Fy denote cumulative distribution of Lg/N. Take
ky < dy to be the integer for which

max{L,, (X, (L(x)+k,)/ N} <7 <min{L,, . (x+1),(L(x)+k, +1)/ N},

inom binom

N=1,2,.. (18)
The endpoints of (18) converge to # as N — co. Examination of the cumulative
distribution function Fy evaluated at (L(x) + kv)/N and at (L(x) + ky + 1)/N and noting
the collapsing sum of the probabilities in the bottom row of Table 4 shows that Fy(r) —
F (m) as N — oo follows from the convergénce of the Hypergeometric to the Binomial.
,/ i The limit distribution (17) is the distribution for the randomized lower estimate for the
Binomial x developed from the convolution approach of Lehmann (1959, Example 7, p.

81). [

Figure 4 is a graph of the limit distributions (17} in the case » = 5. The endpoints of the

mtervals are found in the bottom row of Table 1.

16
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Figure 4. Distributions for Randomized Lower Estimates for 7 of B(S, ).

5. Applications and Final Remarks. Guidelines from the Center for Medicare &
Medicaid Services (2003, p. 6) include “In most situations, the lower limit of a one-
sided 90 percent confidence interval should be used as the amount of overpayment to be
demanded for recovery from the physician or supplier.” The Edwards, et al (2005)
minimum sum method (MSM) uses the nonrandomized lower bound 7 discussed in
Section 2 and is very effective when all population payments are about equal, or when
the denial rate is very high. A way to adapt MSM to cases where payments vary is
presented in Gilliland and Feng (2010) and Edwards et al (2010). The applications
below illustrate the extent to which randomized lower bound can increase the recovery

demand by the insurer.
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In these applications, we suggest a modification of the randomized lower bound Ly
based on the reality of the sometimes contentious overpayment recovery efforts by an
insurer. We suggest that if x = 0, take the lower bound for M to be . With this
modification of Ly the coverage probability is increased to 1 if A/ = 0. In addition, the
situation of attempting a small but positive recovery (10% of the minimum payment)
when no overpayments are observed in the sample is avoided.

Application 1. A population of N =20 payments made by an insurer to a medical
device supplier are each for $4,000 and are either valid or not’. A simple random
sample of » = 5 payments are investigated and in x = 3 cases the claims are found to be
invalid. Suppose that the insurer seeks recovery of the overpayment at the 90%
confidence lower estimate. The nonrandomized lower estimate of the number M of
claims in the population that are invalid is L(3) = 6. Thus, use of L will result in
seeking recovery of $24,000. On the other hand, Table 4 shows that conditional on X' =
3, the expected value of the randomized lower estimate is 0.2668(6) + 0.3396(7) +
0.2165(8) + 0.1688(9) + 0.0083(10) = 7.31. Thus, use of L will result in seeking
recovery of an expected $29,240. O

Application 2. A population of N = 200 payments made by an insurer to a medical
device supplier are each for $4,000 and are either valid or not’. A simple random
sample of n = 20 payments are investigated, and in x = 14 cases the claims are found to
be invalid. Suppose that the insurer seeks recovery of the overpayment at the 90%

confidence lower estimate. The nonrandomized lower estimate of the number A of

* According to the AARP Bulletin (November 2009, p. 3) the average cost to Medicare for a motorized
wheelchair in 2007 was $4,018.

’ Populations of about this size are not rare as targets for auditing. Edwards et al (2003) gives four
payment populations ranging in size from 126 to 292.
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claims in the population that are invalid is L(14) = 109, Thus, use of L will result in
seeking recovery of $436,000. From Table 4 the conditional expected value of Lg given
X' =14 is determined to be 113.2. Thus, use of Lz will result in seeking recovery of an

expected $452,800. 11

Application 3. Actual Medicare Audit. This population is Test Population 1 in
Edwards et al (2005). An actual audit of a simple random sample of #» = 30 payments
from the population of N = 292 payments showed all sample payments completely in
error. The 90% nonrandomized lower bound for the population number of payments M
that are totally in error is L(30) =272. By (15), AE(Lg|X = 30) = 7.9. In this case, the
addition of 7.9 to the lower bound for M adds 7.9 x $4,042 = $31,932 to the recoupment

demand. O

The payment population of Application 3 is depicted in Figure 5a below. The audit of
the simple random sample of # = 30 payments spurred the development of the minimum
sum method because the nominal 90% lower confidence bound based on the CLT
(using the simple expansion estimator) produced an illegal lower confidence bound for
“total overpayment”: one greater than the total payment in the population. In practice,
this problem has often been dealt with by truncating the lower bound’s value down to
the total population payment amount. This truncation does not, however, repair the
fundamental problem of the CLT methods, that their achieved confidence level for high
error rates in populations like these can drop far below the nominal level because of

left-skew in the overpayment population. Figure 5b shows the Monte-Carlo estimated
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confidence level for this example for the two most widely used CLT methods, the
simple expansion estimator and the ratio estimator, as well as the ordinary and
randomized minimum sum methods, plotted against the actual population error rate.
We see that the CLT methods are not valid when the payment error rate exceeds 50-
60%; the ordinary minimum sum method is conservative under all error rates, while the
randomized minimum sum method gives essentially exactly a 90% lower bound for all
error rates on (0,1). Figure 5c shows the average overpayment recovery of these
methods plotted only in those regions where the method provides the nominal
confidence level. We see that the minimum sum methods’ expected recovery exceeds
or matches that of the CLT methods wherever the latter are valid; also that the
randomized minimum sum method gives a consistently higher average recovery

compared to the simple minimum sum method.
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In using Lg, it seems reasonable that the medical service provider being audited have a choice
between paying the conditional expected value of Ly and casting its lot with a supervised and

agreed upon method of executing the randomization.

In a long term relationship between health care provider and insurer, recovery of overpayments
at the 90% confidence lower estimate by itself provides no incentive to the health care provider
to avoid overpayments. For the sake of discussion, suppose that a valid, risk symmetric, 80%
confidence interval estimate of total overpayment is $500,000 £ $100,000, where $500,000 is an
unbiased estimate. Then $400,000 is a 90% confidence lower estimate of total overpayment. If
this is the recovery figure, then across independent repetitions of these audits, taken for
simplicity to produce the same interval estimate each time, the health care provider will pay back
only 80 cents on the dollar for overpayments by the insurer. With a valid study, recovery at a
lower estimate with high confidence level does not disadvantage the health care provider, no
matter how large the margin of error. On the other hand, recovery at the unbiased estimate

$500,000 will be fair in the long run.

This argues for the use of a point estimate in setting a recovery figure. Naturally, even an
unbiased point estimate is challenged when its margin of error is large because of the large risk
born by the provider and because the insurer designed the audit and is taken as responsible for
the large margin of error. If the margin of error is very large compared to the point estimate,
there may be reluctance on the part of the court or administrative law judge to order recovery at
the point estimate. On the other hand, the health care provider can hardly complain about the use

of a lower estimate where it benefits from a large margin of error.
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