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Summary: The genetic basis of a complex trait often involves the function of multiple genetic

factors, their interactions and the interaction between the genetic and environmental factors. Gene-

environment (G×E) interaction is considered pivotal in determining trait variations and suscepti-

bility of many genetic disorders such as neurodegenerative diseases or mental disorders. Regression-

based method assuming a linear relationship between a disease response and the genetic and

environmental factors as well as their interaction is the commonly used approach in detecting

G×E interaction. The linearity assumption, however, could be easily violated due to the nonlinear

interaction between the genetic and environment factors. In this work, we propose to relax the

linearity assumption and allow for non-linear G×E interaction under a varying coefficient model

framework. We propose to estimate the varying coefficients with regression spline technique. The

model allows one to assess the non-linear penetrance of a genetic variant under different environ-

mental stimuli, therefore could help us to gain novel insights into the etiology of a complex disease.

Various hypothesis tests are proposed toward a complete dissection of G×E interaction. A wild

bootstrap method is adopted to assess the statistical significance. Both simulation and real data

analysis demonstrate the power and utility of the proposed method. Our method provides a powerful

alternative and a testable framework for assessing non-linear G×E interaction.
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1 Introduction

The genetic basis of a complex trait often involves multiple genetic factors functioning in

a coordinated manner. The extent on how our genetic blueprint expresses also depends

on the interactions between genetic and environmental factors. Increasing evidences have

shown that gene-environment (G×E) interactions play pivotal roles in determining the risk

of diseases, for instance, the psychiatric diseases (reviewed in Caspi and Moffitt, 2006), the

neurodegenerative and cardiovascular diseases (Costa and Eaton, 2006), and cancer (Ulrich

et al. 1999). Due to the complex nature of the form and mechanism of G×E interaction in

different living organisms, hunting down the molecular machinery of G×E interaction has

been a daunting task in the post genomic era. There is a pressing need in developing efficient

and powerful statistical methods for a rigorous investigation of G×E interaction.

G×E interaction refers to how genotypes influence phenotypes differently in different

environments (Falconer, 1952). In a typical G×E interaction study design, environment is

often defined as different conditions coded as a discrete variable in a statistical model. For

example, in a study of G×E interaction related to lung cancer, smoking status can be defined

as an environment condition coded as 1 (smoking) or 0 (no smoking). In many other studies,

the environment condition is defined as a continuous measure. For one example, studies show

that about 80% of type II diabetes and 70% of cardiovascular disease are related to obesity

(defined by body mass index (BMI)). To track down genetic factors responsible for diabetes or

cardiovascular disease, obesity can be defined as an environment factor which may induce or

reduce the expression of particular genes to affect the disease status. The contribution of the

same gene to a disease status may be largely different under different BMI levels. As another

example, the peak bone mineral density (BMD) in adulthood varies a lot across different age

groups. The amount of nutrition intake (e.g., Vitamin D) is also an important environment

factor influencing the variation of BMD (Peacock et al. 2002). Individuals carrying the same
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gene may respond differently to the rate of density decrease as they get older. Also the peak

BMD measure may vary a lot across groups with different nutrition intake, potentially due

to the interaction of specific genes with the amount of nutrition intake (e.g., Vitamin D).

In the above mentioned examples, one is interested in understanding how genes respond

differently across different environment conditions in determining the variation of a trait

or the risk of a disease. We focus our attention to environment conditions measured on

a continuous scale. From a statistical point of view, “interaction” is typically modeled as

a product term. A simple model to detect interaction would be a simple linear regression

model with the form

Y = α0 + α1X + β1G+ β2XG+ ε, (1)

where Y is the phenotypic response; α0 is the overall mean; α1 and β1 are the effects of the

environment (X) and genetic (G) variables, respectively; β2 is the effect for G×E interaction;

and ε is the error term with mean 0 and variance σ2. A simple rearrangement of model (1 )

leads to

Y = α0 + α1X + (β1 + β2X)G+ ε. (2)

With this representation, it is clear that the contribution of a gene to the variation of a

phenotype Y is restricted to a linear function in X. From a biological point of view, G×E

interaction can be better viewed as the genetic responses to environment changes or stresses

(McClintock, 1984; Hoffmann and Parsons,1991). The form and pattern of the responses are

typically unknown and may not follow a linear relationship as described in model (1).

Statistical methods in testing G×E interaction can be broadly categorized into two areas:

the model-based method, parametrically, non-parametrically or semi-parametrically (e.g.,

Guo 2000; Kraft et al. 2007; Maity et al. 2009; Chatterjee and Carroll 2005), and the model-

free method such as the multifactor dimensionality reduction method (Hahn et al. 2003). In a
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model-based regression framework, methods typically assume linear interactions as given in

model (1). This assumption, however, could be easily violated due to the underlying nonlinear

machinery between the genetic and environment factors. In addressing the limitation of

the linear model assumption in dissecting the role of a gene under different environment

conditions, one can relax the linearity assumption of G×E interaction and allow for a

nonlinear interaction by replacing the linear G×E interaction coefficient β1 + β2X in model

(2) by a smooth non-linear function β(X) and apply a varying coefficient (VC) model to

detect non-linear G×E interaction. A VC model has the form

Y = α (X) + β (X)G+ σ (X) ε, (3)

for given covariates (X,G)T and the response Y with E (ε |X,G) = 0 and Var (ε |X,G) = 1.

β (X) is a smoothing function in X and σ2 (X) = Var (Y |X,G) is the conditional variance

function. VC models have gained considerable attention in recent years, see for example, the

work of Hastie and Tibshirani (1993), Hoover et al. (1998), Fan and Zhang (1999), Cai, Fan

and Li (2000), Fan and Zhang (2000), Huang, Wu and Zhou (2004) among others. Under the

VC modeling framework, the effect of a gene is allowed to vary as a function of environmental

factors, either linearly or non-linearly, captured by the model itself. Thus, the VC model has

the potential to dissect the non-linear penetrance of genetic variants.

Methods for the estimation of VC models have flourished in the literature, see Fan and

Zhang (1999), Xia and Li (1999) and Cai, Fan and Li (2000) for kernel type estimators;

Hoover, Rice, Wu and Yang (1998), Chiang, Rice and Wu (2001) and Huang, Wu and Zhou

(2004) for spline estimators; and Zhou and You (2004) for wavelet estimators. In this work,

we propose to use the B-spline function to estimate the coefficient function β(·) for two major

reasons. Firstly, it is computationally expedient, which is much necessary for analyzing high-

dimensional genetic data with hundreds of thousands of markers. Secondly, it is theoretically

reliable guarded by the asymptotic consistency and normality property of the spline estimator
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β̂ (·), see Huang, Wu and Zhou (2004). Our another goal is to draw inferences about the

coefficient function of β (X) in Model (3), to test whether it is significantly different from

zero or a constant. Because of the distribution free nature of nonparametric models, we

adopt the wild bootstrapping approach as in Härdle and Mammen (1993) for its simplicity

and reliability. See the examples in Härdle and Mammen (1993) for the great performances

of wild bootstrap over other bootstrap approaches.

The paper is organized as follows. In Section 2, we introduce the methodology of applying

varying coefficient models to genetic data to detect G×E interaction. We introduce the B-

spline fitting technique and its necessary notations. We introduce the test statistics for the

hypothesis testing evaluated by the wild bootstrap strategy. In Section 3, we study the finite

sample properties of the proposed procedure using the simulated example. Furthermore, the

utility of the method is illustrated through the analysis of a real data set detailed in Section

4, followed by the discussion in Section 5.

2 Statistical Methods

2.1 A two-parameter varying coefficient model

In model (3), we only consider the additive effect of a genetic variant. In real life, we do not

know the true gene action mode, hence a more flexible model is to consider both additive

and dominance penetrance effects. We assume a continuous response variable Y which is a

function of an environment variable X and the additive and dominance scales G1 and G2 of a

genetic factor. Each genetic factor has three possible genotype categories represented by AA,

Aa and aa. The three genotype categories can be coded as 1, 0, and −1 for the additive scale

G1, and as −1/2, 1/2, and −1/2 for the dominance scale G2, corresponding to genotypes

AA, Aa and aa, respectively. We assume allele A is the minor allele with its frequency

represented by pA. We model the coefficients of G1 ∈ (1, 0,−1) and G2 ∈ (−1/2, 1/2,−1/2)
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for each genetic factor as smooth functions of the environment variable X. Since our major

interests are the estimation and inference about the coefficient functions for G1 and G2, for

simplicity we impose a linear structure on the intercept function α (X) defined in model (3)

by letting α (X) = α0+α1X, although a non-parametric smooth function can also be fitted.

Thus, the redefined VC model is given as

Y = α0 + α1X + β1 (X)G1 + β2 (X)G2 + σ (X) ε, (4)

for given covariates (X,G1, G2), with E (ε |X,G1, G2 ) = 0, Var (ε |X,G1, G2 ) = 1 and the

conditional mean function of Y given onX,G1, andG2 is E (Y |X,G1, G2 ) = m (X,G1, G2) =

α0 + α1 (X) + β1 (X)G1 + β2 (X)G2. The same model is fitted separately for each marker,

followed by multiple testing corrections. The two-parameter model given in (4) is not only

biologically more meaningful than the one-parameter model given in (3), but also is statis-

tically attractive since it is invariant to allele coding (i.e., whether code AA as 1 or code aa

as 1 for variable G1).

Remark: By assuming specific expressions for β1 (·) and β2 (·), model (4) would become

a parametric model. For example, by letting β1 (X) = β1 + β3X, and β2 (X) = β2 + β4X,

where β1, β2, β3, and β4 are constants, model (4) can be written as

Y = α0 + α1X + β1G1 + β2G2 + β3XG1 + β4XG2 + σ(X)ε, (5)

which is a linear regression model with both main effects of X and (G1, G2) as well as

their interaction effects (denoted hereafter as LM-I). If we assume a homogeneous residual

variance, this is the commonly applied linear regression model for testing G×E interaction

which reduces to model (1) if only additive effect is considered. If we impose a constant

structure on β1(X) and β2(X), i.e., β1(X) = β1 and β2(X) = β2, then model (4) is reduced

to

Y = α0 + α1X + β1G1 + β2G2 + σ(X)ε, (6)
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which is a linear regression model without the interaction terms (denoted hereafter as LM).

Therefore, the traditional linear regression model for testing G×E interaction is a special

case of model (4).

Although, their properties are very well established, the conventional parametric ap-

proaches are infeasible in this case, since the functional forms of β1 (·) and β2 (·) are unknown

to us due to the complexity of the underlying interaction mechanism. Any mis-specification

of the model would lead to uncertainty estimates and low power (see simulation). By relaxing

the linear assumption for the coefficients β1(X) and β2(X), model (4) has much flexibility to

capture the non-linear penetrance of a genetic variant under different environmental stimuli,

thus ensures the power of the proposed VC model in detecting non-linear G×E interactions.

In this paper, we apply the B-spline smoothing technique to estimate β1 (·) and β2(·), which

solves only one least squares problem to get the estimators. The great advantages of B-spline

estimation are simple implementation and fast computation.

As in most works on nonparametric smoothing, estimation of the functional coefficients

β1 (·) and β2(·) is conducted on a compact interval [a, b]. In this paper, we denote the space

of p-th order smooth function on [a, b] as C(p) [a, b] =
{
g
∣∣g(p) ∈ C [a, b]

}
, and C [a, b] is the

space of continuous functions on [a, b].

We make the following assumptions on the functional coefficient model.

(A1) The marginal density f (·) of Xi is bounded away from zero and twice continuously

differentiable on [a, b].

(A2) σ2 (·) = Var (Yi |Xi = x,G) is bounded away from 0 and ∞.

(A3) E[exp (tε)] is bounded for |t| small enough.

(A4) βk (x) ∈ C(p) [a, b], for p > 1, k = 1, 2.

Assumptions (A1)-(A3) are identical with (A1), (A4) and (A5) in Härdle and Mammen
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(1993), while Assumption (A4) is the same as (A1) in Wang and Yang (2009). All are typical

assumptions for nonparametric regression.

2.2 Parameter estimation

Given a random sample {(Xi, Gi, Yi)}ni=1 from model (4), the polynomial spline modeling

will be adopted to estimate β (·). Let Fn be the space of polynomial splines of order p > 1.

We introduce a knot sequence with Nn interior knots

k−(p−1) = ... = k−1 = k0 = a < k1 < ... < kN < b = kN+1 = ... = kN+p,

where N ≡ Nn increases when sample size n increases, and the precise order is given in

Assumption (A5). Then Fn consists of functions ϖ satisfying (i) ϖ is a polynomial of degree

p− 1 on each of the subintervals Is = [ks, ks+1), s = 0, ..., Nn − 1, INn = [kNn , b]; and (ii) for

p > 2, ϖ is p− 2 time continuously differentiable on [a, b]. Let Jn = Nn + p, where Nn is the

number of interior knots and p is the spline order. We define the normalized B-spline basis

as {Bs : 1 6 s 6 Jn}T as given in Wang and Yang (2009). Equally-spaced knots are used in

this article for simplicity. The distance between neighboring interior or boundary knots is

h = hn = (b− a) (Nn + 1)−1. For positive numbers an and bn and for n > 1, let an ∼ bn

mean that limn→∞ an/bn = c, where c is some nonzero constant. The number of interior

knots satisfy Assumption (A5) below.

(A5) The number of interior knots N = Nn ∼ n1/(2p+1), i.e., cNn
1/(2p+1) 6 N 6 CNn

1/(2p+1)

for some positive constants cN and CN .

For each marker, and k = 1, 2, the coefficients βk (x) is estimated by β̂k (x) ≡
∑Jn

s=1 λ̂s,kBs (x)

where the coefficients

{(
α̂0, α̂1, λ̂s,1, λ̂s,2

)
16s6Jn

}T

are solutions of the following least squares

problem

argmin
{(α0,α1,λs,1,λs,2)16s6Jn}∈R2Jn+2

n∑
i=1

{
Yi − α0 − α1Xi −

2∑
k=1

Jn∑
s=1

λs,kBs (Xi)Gki

}2

. (7)
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2.3 Number of knots N and spline order p selection

One of the challenging issues in the proposed semi-parametric modeling is to select appro-

priate knots and spline order to avoid over- and under-smoothing. For simplicity, we assume

the same spline basis {Bs : 1 6 s 6 Jn}T to approximate the coefficient functions β1 (x) and

β2 (x), even though the spline order and knots can be different for the two functions. We use

the BIC criteria to select the ‘optimal’ N , denoted by N̂ opt, from
[
max

([
0.5n1/(2p+1)

]
, 1
)
,[

1.5n1/(2p+1)
]]
, where [a] is an integer part of a, and the ‘optimal’ order p for the spline

basis, denoted by p̂opt, from (3, 4), which minimize the BIC value BIC (N, p) = log
(
σ̂2
)
+

(N + p) log (n) /n, where σ̂2 =
∑n

i=1 {Yi − m̂F (Xi, G1i, G2i)}2 /n. p = 3 and 4 are the orders

for quadratic and cubic splines, respectively. A search for the combination of hypothesized

values for N and p can be done and the values of N and p corresponding to the minimum

of the BIC values are the ‘optimal’ results.

2.4 Hypothesis testing

Before we test possible G×E interaction, the first step is to assess whether a genetic marker

is associated with a phenotype. This can be done by formulating the hypotheses
H0 : β1 (·) = β2 (·) = 0

H1 : at least one functional coefficient is not zero

. (8)

If the null is rejected, then we test significance of the additive effect (G1) and the dominance

effect (G2), by formulating the hypotheses
H11

0 : β1 (·) = 0

H11
1 : β1 (·) ̸= 0

, and


H12

0 : β2 (·) = 0

H12
1 : β2 (·) ̸= 0

. (9)

When the null in (8) is rejected, we then test if the coefficient functions β1 (X) and



Varying coefficient model for G×E interaction 9

β2 (X) in model (4) are varying or not. The hypotheses for this test are formulated by
H2

0 : βk (·) = βk, for k = 1, 2

H2
1 : at least one functional coefficient is not a constant

(10)

where βk, k = 1, 2, are unknown constants, for the selected genetic markers from the first

step. Under H2
0, the reduced model can be written as Y = α0+α1X+β1G1+β2G2+σ (X) ε,

which implies that there is no G×E interaction. Thus, hypothesis (10) is essentially a test for

G×E interaction. Upon rejecting the null, one can also proceed to testH3
0: β1(X) = β1+β3X

and β2(X) = β2 + β4X. Under H3
0, the reduced models can be written as Y = α0 + α1X +

β1G1 + β2G2 + β3G1X + β4G2X + σ (X) ε, a model commonly applied for assessing linear

G×E interaction. Rejecting the null implies non-linear G×E interaction.

Note that the current model does not assume any specific distribution for the error

term ε, thus there is no likelihood function for the data. Borrowing the idea from Härdle and

Mammen (1993), we use the integrated squared deviation between the estimators denoted by

m̂F (·) and m̂R (·) of m (X,G1, G2) for the full and reduced models as the test statistic, which

would be Tn =
n∑

i=1

{m̂F (Xi, G1i, G2i)− m̂R (Xi, G1i, G2i)}2 /n , where {(Xi, G1i, G2i, Yi) ,

i = 1, . . . , n} is a random sample of (X,G1, G2, Y ). For the superiority of Tn over other

goodness-of-fit tests, see the discussion in Härdle and Mammen (1993). The critical values

are computed by the wild bootstrap method proposed in Härdle and Mammen (1993).

2.5 Wild bootstrap to assess statistical significance

Härdle and Mammen (1993) pointed out that the standard ways of bootstrapping, including

the naive resampling method and the adjusted residual bootstrap, fail to compute critical

values of Tn, due to the reason that the bootstrapped statistic does not have the same

limiting behavior, which would lead to very conservative tests. As a result they proposed

the wild bootstrapping method, which is adopted in this paper. The coefficient functions are

estimated by B-spline estimators. For the i-th observation, recall that m̂R (Xi, G1i, G2i) and
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m̂F (Xi, G1i, G2i) are the estimators of m (Xi, G1i, G2i) for the reduced and full model respec-

tively. As discussed in Härdle and Mammen (1993), in order to mimic the i.i.d. structure of

(Xi, G1i, G2i, Yi), we need to construct the bootstrap procedure so thatE∗ (Y ∗
i |X∗, G∗

1i, G
∗
2i ) =

m̂R (X∗, G∗
1i, G

∗
2i), where {(X∗

i , G
∗
1i, G

∗
2i, Y

∗
i )}

n
i=1 is the bootstrap sample drawn from the

set {(Xi, G1i, G2i, Yi)}ni=1. For this purpose we define ε̃i = Yi − m̂F (Xi, G1i, G2i) and con-

struct ε∗i = Uiε̃i, where Ui is a two-point distributed random variable independent of

(Xi, G1i, G2i, Yi) satisfying Ui = 1/2−
√
5/2 with probability

(
1 +

√
5
)
/
(
2
√
5
)
, Ui = 1/2 +

√
5/2 with probability 1−

(
1 +

√
5
)
/
(
2
√
5
)
. By simple calculation, we obtain thatE (ε∗i |Xi, G1i, G2i ) =

0, E (ε∗2i |Xi, G1i, G2i ) = ε̃2i and E (ε∗3i |Xi, G1i, G2i ) = ε̃3i . Then we use (Xi, G1i, G2i, Y
∗
i =

m̂R (Xi, G1i, G2i) + ε∗i ) as bootstrap observations and create T ∗,W like Tn by the squared

deviation between the coefficient estimators under H0 and H1. From the Monte Carlo

approximation of L∗
(
T ∗,W
l

)
= L

(
T ∗,W |(Xi, G1i, G2i)

n
i=1

)
, then the p-value pv is obtained by

finding the (1− pv)th quantile t̂Wv which satisfies t̂Wv = Tn. Multiple testing is then adjusted

among the tests for all genetic markers.

3 Monte Carlo simulation

3.1 Simulation design

Extensive simulations were conducted to compare the performance of the varying-coefficient

and the parametric regression fits. Since a continuous environment measure (e.g., age, diet

and body mass) in a genetic study generally follows a normal distribution, to mimic the

real situation, we generated Xi from a normal distribution. Then we transformed X by

Z = Φ {(X − µX) /σX} in order to make X distributed more evenly on each subinterval Is,

where µX and σX are the mean and standard deviation of X, estimated by the sample mean

and standard deviation, and Φ (·) is the cumulative distribution function for the standard

normal. We then used the transformed Z to generate the B-spline basis. For k = 1, 2, βk (x)
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was estimated by β̂k (x) ≡
∑Jn

s=1 λ̂k,sBs [Φ {(x− µX) /σX}] =
∑Jn

s=1 λ̂k,sB
∗
s (x) where the

coefficients

{(
α̂0, α̂1, λ̂1,s, λ̂2,s

)
16s6Jn

}T

are solutions of the following least squares problem

argmin
{(α0,α1,λ1,s,λ2,s)16s6Jn}∈R2Jn+2

n∑
i=1

{
Yi − α0 − α1Xi −

2∑
k=1

Jn∑
s=1

λk,sB
∗
s (Xi)Gki

}2

.

For a given a minor allele frequency (MAF) pA and assuming Hardy-Weinberg equilibrium,

SNP genotypes (AA, Aa, and aa) were simulated from a multinomial distribution with

frequency p2A for AA, 2pA(1− pA) for Aa and (1− pA)
2 for aa. Then G1i and G2i were coded

separately for genotype AA (G1i = 1, G2i = −1/2), Aa (G1i = 0, G2i = 1/2), and aa (G1i =

−1, G2i = −1/2). The random error term εi was simulated from N (0, 1). Different sample

sizes (i.e., n = 200, 500, 1000), and different heritability levels (i.e., H2 = 0.01, 0.03, 0.05)

were assumed. For a given genetic effect and a heritability level, σ(Xi) varies for different

Xi, and detailed calculation can be found in the following sections. Data were simulated

assuming different gene action modes and were subsequently analyzed by three models, i.e.,

the proposed VC model (denoted as VC), the linear regression model without interaction

(denoted as LM), and the linear regression model with interaction (denoted as LM-I). The

hypothesis testing (8) is conducted to assess the overall power of the effect of G1 and G2 on

Y .

3.2 Responses generated from the null model

We first evaluated how well the false positives can be controlled for the models. Data were

generated from the null model, i.e., Yi = α0 + α1Xi + εi, with α0 = 3, α1 = 0.1 and

εi ∼ N(0, 1). Figure 1 shows that the type I error rates for the three models. The type I

error rate for the VC model is around 0.68 for n = 200, which is a little inflated under the

0.05 nominal level. However with the sample size n increasing, it is getting close to 0.05, and

end up at around 0.54 for n = 1000. The type I error rates for the other two models are
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also reasonably close to the nominal significant level 0.05 under different sample sizes. These

results indicate good false positive control of the VC model under large sample sizes.

[Figure 1 about here.]

3.3 Responses generated from the VC model

In this simulation, we generated the phenotype data assuming the following model

Yi = α0 + α1Xi + β1 (Xi)G1i + β2 (Xi)G2i + σ (Xi) εi

where α0 = 3.0, α1 = 0.1 and β1 (x) and β2 (x) were generated from the B-spline ba-

sis functions such that β1 (x) =
∑4

s=1 λ1sBs (x) and β2 (x) =
∑4

s=1 λ2sBs (x), in which

λ11 = −0.53, λ12 = 0.31 λ13 = −0.44, λ14 = 0.50, λ21 = −0.87, λ22 = 0.71, λ23 =

−1.27, and λ24 = 1.15. These spline coefficients were calculated from (7) based on SNP

22265753 from a real data set (see Table 1). The variance function σ2 (x) was obtained by

solving H2 = VG/(VG + VE), where H2 is the heritability level; VG (x) =β2
1 (x) var (G1)

+β2
2 (x) var (G2) +2β1 (x) β2 (x) cov (G1, G2) is the genetic variance in which var (G1) =

2pA (1− pA), var (G2) = 1/4
{
1− (2pA − 1)4

}
, and cov (G1, G2) = 2pA (1− pA) (2pA − 1);

and VE = σ2(x). Simple algebra shows that H2 = [1 + σ2 (x) /VG (x)]
−1
, which gives σ2 (x) =

(1/H2 − 1)VG (x). Assuming different heritability levels, i.e., H2 = 0.01, 0.03, 0.05, the

phenotype Yi can be generated assuming εi ∼ N(0, 1). As can be seen that the genetic

variance is a function of the minor allele frequency, so does for the residual variance σ(X).

For a fixed minor allele frequency, the residual variance decreases as the heritability increases.

Thus we expect high power under high H2 value. However, due to the way we defined the

calculation of VG, it is no longer true that σ(X) decreases as the MAF increases for a fixed

H2 level. So the power no longer monotonically increases with the increase of the MAF as

usually assumed in human genetic association studies. Based on the estimated frequency
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(pA = 0.08) of the SNP from the real data, we fixed the allele frequency and evaluated the

power performance of the three methods under different heritability levels.

We checked the power for an association test (hypothesis (8)) with the test statistic

defined as Tn,V =
∑n

i=1 {m̂F (Xi, G1i, G2i)− m̂R (Xi, G1i, G2i)}2 /n, where m̂F and m̂R are

the estimators of the conditional mean function E (Y |X,G1, G2 ) for the full and reduced

model, respectively. Let PV be the p-value obtained from B(= 10, 000) wild bootstrap

samples. We carried out M(= 1, 000) repetitions and obtained the p-values, denoted by{
P

(m)
V ,m = 1, . . . ,M

}
, then the power of a hypothesis test at a given α (= 0.05) level was

estimated by P̂V,α = P̂ (PV < α) =
∑M

i=1 I
(
P

(m)
V < α

)
/M . The same simulated data sets

were also analyzed by the LM and LM-I model, and the significance was assessed by the

likelihood ratio test.

[Figure 2 about here.]

From Figure 2, one can see that the testing power increases as the sample size n

and heritability level H2 increase under the three models. For a fixed genetic effect, large

heritability level leads to small residual variance, and consequently leads to increased power.

In a power comparison of the three models, it is clear that the VC model outperforms the

other two models in all the cases. Since the linear model with interaction (LM-I) is closer to

the VC model in structure, it achieves higher power than the linear model without interaction

(LM). The simulation results clearly indicate the power of the VC model over the other two,

given that the nature of the G×E interaction is non-linear. When there is a strong non-linear

penetrance effect of a variant, a miss-specification of an analytical model assuming a linear

structure suffers tremendously from power loss.
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3.4 Responses generated from the linear model without interaction

In the second simulation, phenotype data were generated assuming a linear model without

interaction, i.e.,

Yi = α0 + α1Xi + β1G1i + β2G2i + σ0εi (11)

where α0 = 3, α1 = 0.1, β1 = 0.5, and β2 = 0.3. This model assumes constant coefficients,

corresponding to the null H2
0: βk(·) = βk, k = 1, 2, in hypothesis (10). The purpose of

this simulation was to assess how robust the VC model is if the true model coefficient is

not varying with X under finite sample size. Similarly as above, σ0 is obtained by solving

H2 = (1 + σ2
0/VG)

−1
, where VG = β2

1 var (G1) + β2
2 var (G2) + 2β1β2 cov (G1, G2), thus σ

2
0 =

(H−2 − 1)VG.

[Figure 3 about here.]

We used the likelihood ratio test to test: H0 : β1 = β2 = 0. The test statistic follows a 2

degrees of freedom (df) chi-square distribution. The simulation results were summarized in

Figure 3. Results with pA = 0.3 were reported. As we expected, the power increases as the

sample size and heritability increase for the three models. When the underlying true model

is linear without interaction, the results obtained with the LM model has the highest power

among the three fitted models. This is not surprising because optimal power is obtained

when the data are fitted with the true model. However, the power differences between the

VC and LM models are not as large as the ones observed above. As the heritability increases,

the difference in power between the VC and LM models vanishes, especially under a large

sample size. For example, the power for VC and LM is indistinguishable when the sample

size increases from 200 to 500 under high heritability levels (H2 = 0.03, 0.05).
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3.5 Responses generated from the linear model with interaction

In this simulation, phenotype data were generated assuming a linear model with interaction,

i.e.,

Yi = α0 + α1Xi + β1G1i + β2G2i + β3XiG1i + β4XiG2i + σ(X)εi

where α0 = 3, α1 = 0.1, β1 = 0.3, β2 = 0.3, β3 = 0.5, and β4 = 0.5. The above model can

be rearranged as

Yi = α0 + α1Xi + (β1 + β3Xi)G1i + (β2 + β4Xi)G2i + σ(X)εi

Thus, VG(x) = (β1+β3x)
2 var (G1)+(β2+β4x)

2 var (G2)+2(β1+β3x)(β2+β4x) cov (G1, G2).

As a function of heritability described before, σ(x) can be calculated from VG(x), i.e., σ
2(x) =

(1/H2 − 1)VG. Thus, the heteroscedasticity of the residual variance is taken into account in

the simulation.

[Figure 4 about here.]

We used the likelihood ratio test to test: H0 : β1 = β2 = β3 = β4 = 0. The test statistic

follows a 4 df chi-square distribution. The simulation results were summarized in Figure 4.

Again, results for pA = 0.3 were reported. As we expected, the highest power was observed

when data were fitted with the true model assuming interaction. Low power was observed

when the heritability level was low. As the sample size and heritability increase, the power

for the three models increases and the difference between the VC model and the other two

diminishes. We also observed that the power of the VC model is closer to the LM-I model

than the LM model does. This is what we expected as the VC model is closer to the LM-I

in structure.

In summary, we conclude that: (1) When the underlying true interaction model is non-

linear, the proposed VC model has the highest power among the three. The other two

parametric linear models suffer tremendously from power loss; (2) When the underlying true
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model is linear without or with interaction, the linear model assuming interaction or no

interaction has the best power. However, as the sample size and heritability level increase,

the power difference between the VC model and the other two decreases significantly. ; and

(3) In real data analysis, the VC model can not substitute the other two models before we

know the true functional effect. We can first do a hypothesis testing to check if the coefficient

functions βk(X), k = 1, 2, are constant or linear in X, then apply the optimal model in the

analysis. The non-linear VC model would be the choice if the constant or linear function is

rejected. Otherwise, a linear model is suggested, especially when sample size is small. The

final results (with p-values) should be combined.

4 Real data analysis

To show the utility of the VC model in detecting G×E interaction, we apply the method to

a real data set. The data contain 1536 new born babies, recruited through the Department

of Obstetrics and Gynecology at Sotero del Rio Hospital in Puente Alto, Chile. Total 648

single nucleotide polymorphisms (SNPs) covering 189 unique genes were left after eliminating

SNPs with minor allele frequency less than 0.05 and those departure from Hardy-Weinberg

equilibrium. When fitting to the VC model, we found that the spline design matrix could

be exactly singular when there are extremely unbalanced genotype distributions, especially

when only two genotypes categories were present for a SNP. Thus, we eliminated additional

143 SNPs and only 505 SNPs were included in our analysis. Phenotypes were dichotomized

as small for gestational age (SGA) or large for gestational age (LGA) depending on the

babies’ birth weight and the mother’s gestational age. The initial study were designed to

identify genetic risk factors associated with SGA or LGA. We took the original birth weight

(kg) measure as the response and merged the two data sets together to form one data set

for an analysis.

It is postulated that baby’s birth weight might be related to mother’s body mass index
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(MBMI). When a baby resides inside of its mother’s womb, the environmental conditions are

defined through its mother, for instance, mother’s age and obesity condition (measured by

MBMI). Under different environmental stimuli (e.g., MBMI), fetus carrying the same genes

might trigger different responses, which consequently leads to different birth weights. This is

due to the complex interaction between a mother’s obesity condition and fetus’ genes. With

the combined data, we were interested in identifying genetic factors that can explain the

normal variation of birth weight, and if any, influenced by MBMI.

To explore the non-linear relationship between birth weight (BW) and genetic factors,

we let the coefficients of G1 and G2 evolve with MBMI. We applied model (3) to the data set

by fitting each SNP as (G1, G2) and letting MBMI and BW be X and Y respectively, and

then estimate βk (·) by B-spline estimators β̂k (·), k = 1, 2. Extreme observations in both X

and Y (with the 3× inter-quartile range criterion) were removed. Using the BIC criterion

described in Section 3, we found N̂ opt = 1 and p̂opt = 3 (order for quadratic splines) and they

were used to fit all SNPs. Defining the vector R ={Rj}T16i6n =
{
(Yi − m̂ (Xi, Gi))

2}T

16i6n
,

the estimator of σ2(x) can be obtained by σ̂2(x) =
∑Jn

s=1 λ̂sB
∗
s (x), where the coefficients

{λ̂1, ..., λ̂Jn}T are solutions of the least squares problem:

{λ̂1, ..., λ̂Jn}T = argmin
{λ̂1,...,λ̂Jn}∈RJn

∑n

i=1

{
Rj −

∑Jn

s=1
λsB

∗
s (Xij)

}2

.

Following the procedure described in Section 2.4, we first tested the null hypothesis H0 :

β1 (·) = β2 (·) = 0, and obtained p-values for the 648 SNP markers. To obtain the p-values,

the Monte Carlo approximation to L∗ (T ∗,W )
was performed by B = 10, 000 repetitions

using the wild bootstrap algorithm. Data were also analyzed by fitting a linear model without

interaction (LM) and with interaction (LM-I). The results were tabulated in Table 1.

[Table 1 about here.]

The first three columns list the SNP ID, the gene and location each SNP belongs to.

When we applied the false discovery rate (FDR) control method (Benjamini and Hochberg,
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1995), only two SNP showed statistical significance (indicated by * in Table 1). To illustrate

the method, we also listed SNPs with p-values that are less than 0.005. The p-values

for the overall genetic effect tests, i.e., H0: β1 (·) = β2 (·) = 0, are given in the column

denoted by P VC, P LM and P LMi when fitting the data with the VC, LM and LM-

I models, respectively. The upper panel shows the results with the VC model. Testing

constant coefficients (H2
0) indicates that the function of these SNPs does vary across MBMI

(P const<0.05). Further tests (H3
0) for linear relationship show that the function of these

SNPs do not follow a linear structure either. Therefore, it is not surprising that the p-values

obtained with the VC model are all smaller than the ones obtained by fitting the LM and

LM-I models.

SNPs with p-values less than 0.005 when fitting the LM model are listed in the middle

panel of the table. Testing constant coefficient indicates that the functional coefficients for

these three SNPs do not vary across MBMI (P const> 0.05). Thus, we observed the smallest

p-values for the three SNPs when they were fitted with the LM model. The bottom panel

in the table lists nine SNPs with p-values less than 0.005 when fitting the LM-I model

(P LMi< 0.005). Testing constant coefficient indicates that the functional coefficients for

these nice SNPs do vary across MBMI (P const< 0.05). Further tests (H3
0) show that the

functional coefficients for the nine SNPs follow a linear structure (P linear>0.05). Thus the p-

values (P LMi) fitted with the LM-I model are the smallest among the three models. Testing

linear interaction indicates that the nine SNPs do have strong interaction effects (P i<0.05).

In summary, the real data analysis results are consistent with the simulation results in which

optimal p-value is always obtained by fitting the data with the “true” model. If we only fit the

data with a regular linear model with or without interaction, we could potentially miss the

ones detected by the VC model, especially those with large p-values tested with the LM and

LM-I models. In checking the function of the SNPs, some of those are growth factors which
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are directly related to fetal growth, for example, platelet-derived growth factor B (PDGFB)

and fibroblast growth factor 4 (FGF4). FGF4 is essential for mammalian embryogenesis and

fetal growth (Lamb and Rizzino, 1998). SNP 634043245 in Exon 3 located in FGF4 was also

identified by a different model showing a strong dominance effect on small for gestational age

along with maternal body weight when searching for genetic conflict effect (Li et al. 2009).

To further demonstrate the performance of the VC model, we picked SNP 11575857

located in gene PDGFB as an example. Figure 5A plots the fitted baby’s birth weight (in

kg) against mother’s body mass index (MBMI) for individuals carrying different genotypes.

The three curves correspond to the fitted BW for three different genotypes. The sample mean

is indicated by the dashed straight line. The minor allele for this SNP is T and the estimated

MAF is 0.1. From the fitted plot, we can see the non-linear interaction effect between this

SNP and MBMI on infant’s birth weight. When MBMI is low, infants carrying genotype

CC have low birth weight, but not for those carrying the other two types of genotype. As

MBMI increases, mother’s body size has a positive effect on infant’s birth weight, so we

saw a slightly increasing trend for infant birth weight. However, infants carrying different

genotypes show a clearly different response pattern on birth weight corresponding to the

increase of MBMI. For example, infants carrying genotype TT show a sharp increase in their

body weight compared to other two genotypes as MBMI passing 25. So mother’s obesity

condition triggers a stronger effect on TT genotypes than the other two genotypes.

[Figure 5 about here.]

Figure 5B plots the heritability estimation under different mother’s BMI conditions. The

plot also shows the non-linear penetrance of the variant under different MBMI conditions.

Strong penetrance effects (corresponding to large H2 values) are observed when MBMI is

between 25-30. The genetic effect (penetrance) tends to stabilize when MBMI reaches 35. This

result fits to our intuition as we do not expect a fetus grow unlimited when mother’s body
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size increases. If the phenotype of interest is a disease status measurement, prevention efforts

should be geared toward those environment conditions corresponding to large heritability

estimate.

The spline estimators β̂k (·) of the coefficient functions βk (·), k = 1, 2 are plotted in

Figure 5C and 5D. It is clearly seen that β̂k (x), k = 1, 2, does vary across MBMI. The

additive effect β1(X) shows a quadratic pattern and levels off as MBMI passes 33. This

implies that the additive effect of this SNP variant approaches a limit for obese mothers

(MBMI> 33), so does for the dominance effect but with a more varying pattern of effect under

low MBMI. Due to the non-linear penetrance effect of this SNP under different environment

stimuli (measured by mother’s obese condition), this SNP could be missed if we fitted the

data with the traditional linear interaction model. This example demonstrates the advantage

of the VC model in the identification of important genetic variants with non-linear penetrance

under different environment stimuli.

5 Discussion

The natural variation of a quantitative phenotype is not only determined by the inherited

genetic factors, but also can be explained by how sensitive a genetic factor responds to

environmental stimuli. Gene environment interaction, the genetic control of sensitivity to

environment, plays a pivotal role in determining trait variations. In humans, most diseases

results from a complex interaction between an individual’s genetic blueprint and the associ-

ated environmental condition. For example, type II diabetes and cardiovascular disease are

often due to the complex interaction between an individual’s genes and obesity condition.

The more we learn about how genes interact with environment in determining trait variations

and disease risks, the more we can achieve in prevention and treatment of illnesses.

The importance of G×E interaction in human disease has been historically recognized

(e.g., Costa and Eaton, 2006). Many statistical methods have been proposed to target
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G×E interaction. In this work, we relaxed the linear G×E interaction assumption, and

proposed a new method considering non-linear G×E interaction. We focused our attention

on environment with continuous measurement (e.g., dietary intake, obesity condition and the

amount of addictive substances). We adopted the well-known varying coefficient model into

a genetic mapping framework and proposed to estimate the functional coefficient by the non-

parametric B-spline technique. The asymptotic property of the non-parametric estimator has

been established. The superior performance of the VC model in detecting non-linear G×E

interaction has been demonstrated with extensive Monte Carlo simulations. When the genetic

contribution to the variation of a phenotype varies largely across environmental conditions,

the proposed VC model achieves the optimal power compared to models assuming constant

or linear coefficient.

Although in theory, the B-spline estimator converges to the true underlying function,

depending on various factors, the VC model may not achieve the optimal power when

the true function is constant or linear. The effect of sample size and heritability level on

testing power was shown by simulations. In real data analysis, often the heritability level is

unknown before we fit a model. Thus, it is necessary to conduct a hypothesis test to assess

the true underlying functional coefficient. If the underlying coefficient is constant or linear,

we recommend investigators to fit a constant coefficient or linear interaction model as the

VC model suffers from power loss, especially under low heritability level. Results obtained

by fitting different models can then be combined followed by multiple testing corrections.

We applied the method to a real data set to identify genetic factors interacting with

mother’s MBI to explain the normal variation of baby’s birth weight. We adopted a two-

parameter model which is biologically more attractive than a one-parameter model. We found

a few SNPs showing non-linear penetrance across different environmental stimuli (different

MBMI levels) (see Table 1). Even though only two SNPs showed statistical significance
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after multiple testing adjustments following the FDR procedure (Benjamini and Hochberg,

1995), we still found a few others with relatively strong signals (p-value<0.005). Based on

the results from simulation and real data analysis, we conclude that the VC model cannot

completely substitute the linear parametric model in G×E analysis. In real data analysis,

our recommendation is to do a hypothesis test first to assess the functional form of the

coefficient, then fit the appropriate model. The final results should be combined.

In this study, we focused on continuous quantitative phenotype. Extension to other

type of phenotype such as a binary disease phenotype or phenotype measured as count is

straightforward. A generalized linear model framework can be adopted and a link function can

be chosen depending on the underlying phenotypic distribution. In human genetic studies,

often a binary disease phenotype is collected such as in a case-control study. When a binary

phenotype is considered, the estimation and inference procedure developed in this work

can not be directly applied. Such investigation will be considered in our future work. The

computational code written in R for implementing the work is available upon request.
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Figure 1. The type I error plot under different sample sizes for the three methods. Data
were generated under the null model of no genetic effect and were analyzed with the varying-
coefficient model (VC), the linear model without interaction (LM) and the linear model with
interaction (LM-I).
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Figure 2. The power plot under different sample sizes and heritability levels for the three
methods. Data were generated with the VC model and were analyzed with the VC model,
the linear model without interaction (LM) and the linear model with interaction (LM-I).
MAF is assumed to be 0.1.
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Figure 3. The power plot under different sample sizes and heritability levels for the three
methods (VC, LM and LM-I), where data were generated with the LM model. MAF is
assumed to be 0.3.
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Figure 4. The power plot under different sample sizes and heritability levels for the three
methods (VC, LM and LM-I), where data were generated with the LM-I model. MAF is
assumed to be 0.3.
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Ĥ
2

15 20 25 30 35 40

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05 C

X(MBMI)

β̂
1
(X

)

15 20 25 30 35 40

−0.2

−0.1

0

0.1

0.2

0.3
D

X(MBMI)

β̂
2
(X

)

Figure 5. The plot shows: (A) the fitted birth weight (kg) for the three genotype categories;
(B) the estimated heritability value Ĥ2 (C) the VC function β̂1(X); and (D) the VC
function β̂2(X), against mother’s body mass index (MBMI) for SNP 11575857 located in
gene PDGFB. The horizontal dashed line in (A) denotes the sample mean.
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Table 1
The lists of SNPs with p-values less than 0.005 when fitting the data with three different models (VC, LM and LM-I).

SNP ID GeneName Location P VC P const P linear P LM P LMi P i

fitted with VC model
22265753* PLAT intron 6a 1E-05 <1E-05 3E-05 0.8827 0.0823 0.0182
11575857 PDGFB intron 2 0.0008 0.0034 0.0056 0.0655 0.0471 0.1237
1465147 ANG exon 1 0.0013 0.0041 0.0156 0.0930 0.0477 0.0883
632238221 F12 intron 10 0.0018 0.0071 0.0074 0.0234 0.0070 0.0369
634043245 FGF4 exon 3 0.0019 0.0046 0.0016 0.0808 0.1452 0.4070
634085602 HLA-G exon 3 0.0020 0.0120 0.0239 0.0089 0.0029 0.0360
28138476 COL1A2 intron 28 0.0024 0.0103 0.0038 0.0182 0.0222 0.1811
22185434 FLT4 intron 13 0.0027 0.0017 0.0452 0.4106 0.0090 0.0028
633878892 IL12RB1 intron 15 0.0027 0.0011 9E-05 0.8376 0.5946 0.2968
28139054 COL1A2 intron 19 0.0038 0.0254 0.0381 0.0148 0.0066 0.0544
4476882 TLR9 promoter 0.0048 0.0243 0.1250 0.0061 0.0053 0.1040

fitted with LM model
619221153 IL1B exon 5 0.0053 0.1818 - 0.0006 - -
632272004 IL1A intron 6 0.0213 0.629 - 0.0007 - -
8949486 CETP intron 1 0.0056 0.2073 - 0.0020 - -

fitted with LM-I model
3557434* IL9 intron 4 0.0024 0.0477 0.4773 0.0009 4.9E-05 0.0039
629158954 IL1B promoter 0.0011 0.0019 0.2477 0.0899 0.0005 0.0005
639694765 MMP8 exon 6 0.0014 0.0009 0.1249 0.4743 0.0009 0.0002
632336450 F5 exon 13 0.0038 0.0237 0.0965 0.0178 0.0032 0.0201
639707157 IL1RN intron 2 0.0314 0.0136 0.4848 0.9035 0.0041 0.0005
614103201 COL4A2 intron 37 0.0154 0.013 0.1005 0.2072 0.0044 0.0025

P VC is the p-value for testing hypothesis (8); P const is the p-value for testing hypothesis (10); P linear is the

p-value for testing linear coefficient (H3
0); P LM is the p-value for testing H0: β1 = β2 = 0 for fitting a linear model

without interaction (model (11)), a 2 df likelihood ratio test; P LMi is the p-value for testing a genetic effect when

fitting a linear model with interaction (model (5)), i.e., H0: β1 = β2 = β3 = β4 = 0, a 4 df likelihood ratio test; P i

is the p-value for testing H0: β3 = β4 = 0 with model (5), a 2 df likelihood ratio test. SNPs shown significance after

the false discovery rate (FDR) control method (Benjamini and Hochberg, 1995) are indicated by *.


