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Abstract

Much of the natural variation for a complex trait can be explained by the structural varia-

tion in DNA sequences. As part of the sequence variation, gene-gene interaction or epistasis

has been ubiquitously observed in nature where its role in shaping the development of an

organism has been broadly recognized. The identification of genetic epistasis has been pro-

gressively pursued via statistical or machine learning approaches. A large body of currently

adopted methods, either parametrically or non-parametrically, are predominantly focused

on pairwise single marker interaction analysis. As genes are the heredity units in living or-

ganisms, analysis by focusing on a gene as a system could potentially yield more biologically

meaningful results. In this work, we conceptually propose a gene-centric gene-gene interac-

tion framework for genome-wide epistasis detection. We treat each gene as a testing unit and

derive a model-based kernel machine method for a two-dimensional genome-wide scanning

of gene-gene interactions. In addition to the biological advantage, our method is statistically

appealing by reducing the number of hypothesis testing in a genome-wide scan. Extensive

simulation studies are conducted to evaluate the performance of the method. The utility of

the method is further demonstrated with applications to two real data sets. Our gene-centric

gene-gene interaction analysis provides a conceptual framework for epistasis identification.
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1 Introduction

Accumulative evidences have shown that much of the genetic variation for a complex trait

can be explained by the joint function of multiple genetic factors, as well as environmental

contributions. Searching for these contributing genetic factors and further characterizing

their effects size, is one of the primary goals and challenges for modern genetics study. The

recent rapid breakthrough in high-throughput genotyping technologies and the completion

of the International Haplotype Mapping (HapMap) project provide unprecedented oppor-

tunities to characterize the genetic machinary of an living organism. Genetic association

analyses focusing on single nucleotide polymorphisms (SNPs) or haplotypes have led to the

identification of many novel genetic determinants of complex traits. However, despite enor-

mous success in genome-wide association analysis, single SNP or haplotype based studies

still suffer from low replication rates because of the infeasibility of dealing with the complex

patterns of association, e.g. genetic heterogeneity, epistasis and gene-environment interac-

tion, leaving much of the genetic components of many traits remaining unaccounted for and

only a small proportion of the heritability being explained.

It has been broadly recognized that most common human diseases are likely to have

complex etiologies (Thornton-Wells et al. 2004). In a recent report, Neale and Sham (2004)

discussed the choice of the basic genetic components to be considered for association with

a complex trait. They argued that a gene-based approach, in which all variants within a

putative gene are considered jointly, have relative advantages over single SNP or haplotype

analysis. There are multiple reasons for this. First, it is well known that genes are the

functional units of the human genome. Variants in genes have high probability of being

functionally important than those that occur outside of genes (Jorgenson and Witte, 2006).

Because of this characteristic, gene-based association analysis would provide more biolog-

ically interpretable results than the single-SNP or haplotype based analysis. Second, the
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position, sequence and function of genes are highly consistent across diverse human popu-

lations, which makes the gene-based studies more powerful in terms of replication (Neale

and Sham, 2004). Third, when there are multiple variants within a gene that function in

a complicated manner, the gene-based association test can gain additional power compared

to a single SNP analysis by capturing the joint function of multiple variants simultaneously

(Cui et al., 2008; Buil et al., 2009). Finally, a gene-based analysis is statistically appealing.

By considering multiple SNP markers within a gene as a testing unit, the number of tests

would decrease dramatically, hence simplify the multiple testing problem and improve the

power of association test.

We all know that genes do not function alone, rather they constantly interact with each

other. It has been widely recognized that gene-gene interaction, or epistasis, is an important

category that contributes to the unexplained heritability of complex traits (Thornton-Wells

et al., 2004; Maher, 2008; Moore and Williams, 2009; Eichler et al., 2010). Methods for

detecting gene-gene interaction have been historically pursued on a single locus level, either

parametrically such as the regression-based tests of interaction (Piegorsch et al., 1994) and

the Bayesian epistasis mapping (Zhang and Liu, 2007), or non-parametrically such as the

entropy-based approaches (Kang et al., 2008), and some data mining methods such as the

multifactor dimensionality reduction (MDR) (Ritchie et al., 2001) and its extensions (e.g.,

Lou et al. 2007) and random forests (Breiman, 2001). Methods based on interaction of

haplotypes have also been developed (e.g., Li et al. 2010). However, due to the phase-

ambiguity problem, the haplotype-based methods are limited to only small size haplotypes.

Extensions to interaction of large size haplotypes are challenged by computational cost. For

a comprehensive review of statistical methods developed for detecting gene-gene interactions,

readers are referred to Cordell (2009).

Given the relative merits of the gene-based association analysis, the identification of

genetic interactions by focusing on genes as functional units should carry the same benefits
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and gains as it does with single gene analysis. Thus we propose to jointly model the genetic

variation of SNPs within a gene, then pairwise gene-gene interactions can be carried out in a

genome-wide search. The idea of Gene-centric Gene-Gene (denoted as 3G) interaction would

conceptually change the way we model epistasis and meantime bring statistical challenges.

Through the modeling of the joint variation of a gene pair, we argue that a gene-centric

epistasis analysis is biologically attractive. In addition, by focusing on genes as testing

units, the number of pairwise interaction tests can be dramatically reduced compared to

a single SNP-based pairwise interaction analysis. Thus a 3G interaction analysis is also

statistically appealing.

In this work, we propose a model-based kernel machine method for the purpose of iden-

tifying significant gene-gene interactions under the proposed 3G analysis framework. Kernel

based methods have been proposed to evaluate association of genetic variants with complex

traits in the past decades (e.g., Tzeng et al., 2003; Schaid 2005; Wessel et al., 2006; Schaid,

2010a, 2010b). A general kernel machine method can account for complex nonlinear SNP

effects within a genetic feature (e.g. a gene or a pathway) by using an appropriately se-

lected kernel function. Generally speaking, a kernel function captures the pairwise genomic

similarity between individuals for variants within an appropriately defined feature (Schaid,

2010a). The application of kernel-based method in genetic association analysis has been

reported in the literature (e.g., Schaid 2005; Kwee et al., 2008; Wu et al., 2010). However,

none of these considers interaction of genes. In this work, we propose a general 3G interac-

tion framework by applying the smoothing-spline ANOVA model (Wahba, 1990) to model

gene-gene interaction. The proposed method, termed Gene-centric Gene-Gene interaction

with Smoothing-sPline ANOVA Model (3G-SPAM), is implemented through a two-step

procedure: (1) an exhaustive two-dimensional genome-wide search for pairwise gene-gene

interactions; and (2) significance assessment of pairwise interactions.

The rest of the paper is organized as follows. In section 2, we describe the detailed model
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derivation of our method. We proposed two score statistics for testing the overall genetic

effect and the interaction effect based on the 3G-SPAM. To evaluate the performance of

the proposed method, Monte Carlo simulations are performed in section 3. The utility of

the method are demonstrated by analyzing two real data sets in section 4 followed by a

discussion in section 5.

2 Methods

2.1 Smoothing Spline-ANOVA Model

Given n unrelated individuals sampled from a population, each of which possessing a mea-

surement for certain quantitative trait of interest. The quantitative measurements of all the

n individuals are denoted as y = (y1, y2, · · · , yn)′. In searching for gene-gene interactions,

traditional approaches such as MDR or regression type analysis start with a two-dimensional

pairwise SNP interaction analysis. In this work, we focus our attention to pairwise gene-gene

interactions by considering each gene as a unit. Considering two genes denoted as G1 and

G2, the number of SNP markers within each gene is denoted as L1 and L2, respectively. Let

xi = (xi,1, · · · , xi,L)
T denote an L × 1 vector of all SNP genotypes for the two genes for

subject i. Here L = L1+L2 is the total number of SNP markers in the two genes considered.

Considering xi as an L dimensional vector of random variables, a natural model for studying

the relationship between the SNPs (xi) and the phenotype yi is by a regression model

yi = m(xi) + ϵi, i = 1, 2, · · · , n (1)

where m is an unknown function of SNPs xi = (x1i, · · · , xLi)
T , and ϵi ∼ (0, σ2) is a random

subject-specific error term which is generally assumed to be normally distributed with mean

0 and variance σ2 and be independent of xi.

To explore the relationship of the genetic contributions of each gene and their interaction

to the total variation of a trait, we decompose the function m into main effects mj and
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interaction mjk between the two genes, following the functional analysis of variance frame-

work (Wahba 1990; Wahba et al. 1995; Gu and Wahba 1993). To do so, we partition xi as

xi = [x
(1)
i ,x

(2)
i ], where x

(j)
i represents the Lj SNP predictors for gene j (j=1, 2). Then the

function m(·) in model (1) can be represented by

m(xi) = µ+m1(x
(1)
i ) +m2(x

(2)
i ) +m12(x

(1)
i ,x

(2)
i ) (2)

where µ is the intercept, functions m1 and m2 represent the main effects of the two genes,

and m12 describe the interaction between the two genes. We assume that m is a member of

some “smooth” class of functions of x, and estimate then as the minimizer of some objective

function in an appropriate function space, for example, minimizing a penalized sum of squares

L(y,m) =
n∑

i=1

(yi −m(xi))
2 + λJ(m) (3)

where J is a roughness penalty.

2.2 Gene-gene Interaction in the Reproducing Kernel Hilbert Space

A smoothing spline ANOVA (SS-ANOVA) model (Wahba et. al. 1995; Gu and Wahba, 1993)

provides a unique ANOVA-like decomposition of m of the form as in model (2). Base on the

decomposition, an Reproducing Kernel Hilbert Space (RKHS) H of functions on F could be

constructed, in the sense that the components of the SS-ANOVA decomposition represent an

orthogonal decomposition of m in H. Here F is a measurable space, [x(1),x(2)] = x ∈ F =

F (1)⊗F (2), where ⊗ refers to the direct product. Then RKHS methods can be used to impose

smoothness penalties on each component with the form λ1J1(m1) + λ2J2(m2) + λ3J3(m12)

(Wahba et al. 1995).

Let H(j) be an RKHS of functions on F (j), j = 1, 2 with
∫
F(j) mj(x

(j))dµj = 0, for

mj(x
(j)) ∈ H(j), and let [1(j)] be the space of constant functions on F (j). Following Wahba
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et al. (1995), construct H as

H =
2∏

j=1

([1(j)]⊕H(j))

= [1]⊕H(1) ⊕H(2) ⊕ (H(1) ⊗H(2))

= [1]⊕H1 ⊕H2 ⊕H3

where ⊕ refers to the direct sum.

As an element of the RKHS, function m can be estimated as the function in H which

minimizes the following objective function

L(y,m) =
n∑

i=1

(yi −m(xi))
2 +

1

2

3∑
l=1

λl ∥ P lm(.) ∥2H (4)

where P l is the orthogonal projector in H onto Hl, λl are the tuning parameters which

balance the goodness of fit and complexity of the model. The minimizer of (4) is known to

have a representation (Wahba, 1990, Chapter 10) in terms of a constant and the reproducing

kernels {kl(s, t)} for the Hl. Letting Qθ(s, t) =
∑3

l=1 θlkl(s, t), then

mθ(x) = µ1+
n∑

i=1

ciQθ(xi,x)

= µ1+
n∑

i=1

ci

3∑
l=1

θlkl(xi,x)

= µ1+
3∑

l=1

KT
l (x)Cl

(5)

where KT
l (x) = (kl(x1,x), · · · , kl(xn,x)), Cl = (c1, · · · , cn)θl. Details on the choice of the

reproducing kernel functions corresponding to the three subspaces will be discussed in later

sections.
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Substituting the representation of m(·) into equation (4), we get:

L(y,m) =
n∑

i=1

(yi −m(xi))
2 +

1

2

3∑
l=1

λl ∥ P lm(.) ∥2H

= (y −m(X))T (y −m(X)) +
1

2

3∑
l=1

λlC
T
l KlCl

= (y − µ1−
3∑

l=1

KlCl)
T (y − µ1−

3∑
l=1

KlCl) +
1

2

3∑
l=1

λlC
T
l KlCl

(6)

where

Kl =


KT

l (x1)
KT

l (x2)
...

KT
l (xn)


The gradients of L with respect to the coefficients (µ, Cl : l = 1, 2, 3) are

∂L
∂µ

= 1T (y − µ1−
3∑

l=1

KlCl) = 0 (7)

and

∂L
∂Cl

= KT
l (y − µ1−

3∑
l=1

KlCl) + λlKlCl = 0 (8)

The first order condition is satisfied by the system
n 1TK1 1TK2 1TK3

KT
1 1 KT

1K1 − λ1K1 KT
1K2 KT

1K3

KT
2 1 KT

2K1 KT
2K2 − λ2K2 KT

2K3

KT
3 1 KT

3K1 KT
3K2 KT

3K3 − λ3K3




µ
C1

C2

C3

 =


1T

KT
1

KT
2

KT
3

 y

Simple calculation shows that the above system is equivalent to
n 1T 1T 1T

1 I− λ1K
−1
1 I I

1 I I− λ2K
−1
2 I

1 I I I− λ3K
−1
3




µ
m1

m2

m12

 =


1T

I
I
I

 y

where ml = KlCl, l = 1, 2 and m12 = K3C3.

Let τ 2l = σ2/λl, l = 1, 2, 3, the system is exactly the Henderson’s normal equation of the

following linear mixed model

y = µ1+m1 +m2 +m12 + ϵ (9)
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where m1,m2,m12 are independent n× 1 vector of random effects; m1 ∼ N(0, τ 21K1), m2 ∼

N(0, τ 22K2), m12 ∼ N(0, τ 23K3), and ϵ ∼ N(0, σ2I) is independent of m1,m2 and m12.

This dual representation of linear mixed model for the ANOVA model makes it feasible to

do inferences about the main and interaction components under the mixed effects model

framework. Estimation of the parameters can be done by using maximum likelihood method

or the restricted maximum likelihood (REML) method. Since REML method gives unbias

estimates for the variance components, we adopt the REML estimation in this work.

2.3 Choice of the Kernel Function for Genetic Similarity

The choice of reproducing kernel is not arbitrary in the sense that the kernel function must

be positive-definite. By theorem 1.1.1 (Wahba 1990, p2), given a positive-definite function

k on F × F , we can construct a unique RKHS of real-valued functions on F with k as its

reproducing kernel. In a genetic association study, a kernel function captures the pairwise

genomic similarities across multiple SNPs in a gene. It projects the genotype data from the

original space, which can be high dimensional and nonlinear, to a one-dimensional linear

space. The Allele Matching (AM) kernel is one of the most popularly used kernels for

measuring genotype similarity. This type of kernel measure has been used in linkage analysis

(Weeks and Lange, 1988) and in association studies (Tzeng et al, 2003; Schaid, et al., 2005;

Wessel and Schork, 2006; Kwee, et al., 2008 and Mukhopadhyay et al., 2010). For a review

of genomic similarity and kernel methods, readers are referred to Schaid (2010a, b). With

the notable strength that it does not require knowledge of the risk allele for each SNP, AM

kernel is chosen as the kernel function in this study. This similarity kernel counts the number

of matches among the four comparisons between two genotypes gi,s (with two alleles A and

B) and gj,s (with two alleles C and D) of two individuals i and j at locus s, and can be

expressed as

AM(gi,s = A/B, gj,s = C/D) = I(A ≡ C) + I(A ≡ D) + I(B ≡ C) + I(B ≡ D) (10)
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where I is the indicator function and “≡” means the two alleles are in identical-by-state

(IBS). The kernel function based on AM similarity measure then takes the form

f(gi, gj) =

∑S
s=1 AM(gi,s, gj,s)

4S
(11)

where S is the number of SNPs considered for each kernel function.

To incorporate valuable SNP-specific information into analysis to potentially improve

performance, a weighted-AM kernel can be applied which has the form

f(gi, gj) =

∑S
s=1 wsAM(gi,s, gj,s)

4
∑S

s=1 ws

(12)

where ws is the weighting function which can incorporate information about minor allele

frequency or p-values depends on the underlying study purpose to gain extra power. For

example, when a study is trying to identify the function of rare variants, the weight function

can be taken as the inverse of the minor allele frequency to boost the signal for rare variants

(Schaid, 2010b).

This AM kernel can be used as the reproducing kernel for the two subspaces H(1) and

H(2) corresponding to the main effect of the two genes. Utilizing the fact that the reproduc-

ing kernel for a tensor product of two reproducing kernel spaces is the product of the two

reproducing kernels (Aronszajn, 1950), the reproducing kernel for subspace H(3) correspond-

ing to the interaction effect of the two genes can be taken as the product of the reproducing

kernels of the two main subspaces.

2.4 Hypothesis Testing

2.4.1 Testing overall genetic effect

In a gene-based genetic association study, one is interested in whether a gene as a system

is associated with a disease trait. In the proposed 3G interaction study, we are interested

in the association of each gene with a quantitative trait as well as the interaction between
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genes if any. The analysis starts with a two-dimensional pairwise G×G interaction search.

Testing the overall contribution of a gene pair to a phenotypic trait is equivalent to test

H0 : m1(x
(1)) = m2(x

(2)) = m12(x
(1),x(2)) = 0. Similarly testing for interaction effect can

be formulated as H0 : m12(x
(1),x(2)) = 0. With the linear mixed model representation,

parameters τ 21 , τ
2
2 , τ

2
3 , σ

2 are treated as the variance components in model (9). Correspond-

ingly, the aforementioned two tests for the overall and interaction effects can be defined as

(I) H1
0 : τ 21 = τ 22 = τ 23 = 0 and (II) H2

0 : τ 23 = 0, respectively.

A typical issue in variance component analysis is that the parameters under the null

hypotheses are on the boundary of the parameter space. Moreover, the kernel matrices

Ks’s are not block-diagonal. Thus, the asymptotic null distribution for testing H1
0 by using

the likelihood ratio test (LRT) does not follow a central chi-square distribution under the

null. The mixture chi-square distribution proposed by Self and Liang (1987) under irregular

conditions does not apply in our case either. To ease the problem, we consider a score

test based on the restricted likelihood. Consider the linear mixed model in (9) in which

y ∼ N(µ1, V (β)), the restricted log-likelihood function can be written as

ℓR ∝ −1

2
ln(|V (β)|)− 1

2
ln(|1TV −1(β)1|)− 1

2
(y − µ̂1)TV (β)−1(y − µ̂1) (13)

where β = (σ2, τ 21 , τ
2
2 , τ

2
3 ), V (β) = σ2I + τ 21K1 + τ 22K2 + τ 23K3. The first derivative of the

restricted log-likelihood function with respect to each variance component is given by

∂ℓR
∂βi

= −1

2
tr(RVi) +

1

2
(y − µ̂1)TV −1(β)ViV

−1(β)(y − µ̂1) (14)

where Vi = ∂V (β)
∂βi

, i = 1, · · · , 4, so V1 = I, V2 = K1, V3 = K2, V4 = K3 and R = V −1 −

V −11(1TV −11)−11TV −1.

The restricted score function under the null hypothesis: H1
0 : τ 21 = τ 22 = τ 23 = 0 is

∂ℓR
∂βi

|τ21=τ22=τ23=0 = − 1

2σ2
tr(P0Vi) +

1

2σ4
(y − µ̂1)TVi(y − µ̂1)
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where P0 = I− 1(1T1)−11T is the projection matrix under the null. Thus, H1
0 can be tested

by the following score statistic

S(σ2) =
1

2σ2
(y − µ̂01)

T

3∑
l=1

Kl(y − µ̂01)

where µ̂0 = (I− P0)y is the MLE of µ under the null. This leads to

S(σ2) =
1

2σ2
yTP0

3∑
l=1

KlP0y (15)

Denoting σ2
0 as the true value of σ2 under the null, then S(σ2

0) is a quadratic form in

y. Following Liu and Lin (2007), we use the satterthwaite method to approximate the

distribution of S(σ2
0) by a scaled chi-square distribution, i.e., S(σ2

0) ∼ aχ2
g, where the scale

parameter a and the degrees of freedom g can be estimated by the method of moments

(MOM). By equating the mean and variance of the test statistic S(σ2
0) with those of aχ2

g,

we have {
δ = E[S(σ2

0)] = tr(P0

∑3
i=1 Ki)/2 = E[aχ2

g] = ag

ν = V ar[S(σ2
0)] = tr(

∑3
i=1(P0Ki)

∑3
i=1(P0Ki))/2 = V ar[aχ2

g] = 2a2g
(16)

Solving for the two equations leads to â = ν/2δ and ĝ = 2δ2/ν.

In practice, we do not know the true value σ2
0 and we usually estimate it by its MLE

under the null model, denoted as σ̂2
0. The asymptotic distribution of S(σ̂0

2) can still be

approximated by the scaled chi-square distribution because the MLE is
√
n consistent. To

account for the fact that σ2
0 is estimated by MLEs, we estimate a and g by replacing ν with

ν̃ based on the efficient information. The Fisher’s information matrix of τ = (τ 21 , τ
2
2 , τ

2
3 ) is

given by

Iττ =
1

2

 tr(P0K1P0K1) tr(P0K1P0K2) tr(P0K1P0K3)
tr(P0K2P0K2) tr(P0K2P0K2) tr(P0K2P0K3)
tr(P0K3P0K1) tr(P0K3P0K2) tr(P0K3P0K3)



Iτσ2 =
1

2

(
tr(P0K1) tr(P0K2) tr(P0K3)

)T
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and Iσ2σ2 = 1
2
tr(P0P0). Then the efficient information Ĩττ = Iττ − ITτσ2I

−1
σ2σ2Iτσ2 and

ν̃ = V ar[S(σ̂2)] ≈ SUM [Ĩττ ] (17)

where operator “SUM” indicates the sum of every elements of the matrix.

2.4.2 Testing G×G interaction

For testing the significance of the interaction term, i.e., testing H2
0 : τ 23 = 0, we also apply a

score test. Denote Σ = σ2I + τ 21K1+ τ 22K2. The score function (14) under the null becomes:

∂ℓR
∂τ 23

|τ23=0 = −1

2
[tr(PK3)− (y − µ̂1)TΣ−1K3Σ

−1(y − µ̂1)]

= −1

2
(tr(P01K3)− yTP01K3Py)

(18)

where P01 = Σ−1 − Σ−11(1TΣ−11)−11TΣ−1 is the projection matrix under the null, then

SI =
1

2
yTP01K3P01y (19)

Similarly, Satterthwaite approximation can be used to approximate the distribution of

SI by aIχ
2
gI
. Parameters aI and gI are estimated by MOM. Specifically, âI = νI/2δI and

ĝI = 2δ2I/νI , where δI = 1
2
tr(P01K3) and νI = 1

2
tr(01PK3P01K3) − 1

2
ΦT∆−1Φ, where Φ =

[tr(P 2
01K3), tr(P01K3P01K1), tr(P01K3P01K2)]

T and

∆ =

 tr(P 2
01) tr(P 2

01K1) tr(P 2
01K1)

tr(P 2
01K1) tr(P01K1P01K1) tr(P01K1P01K2)

tr(P 2
01K2) tr(P01K2P01K1) tr(P01K2P01K2)



3 Simulation Study

3.1 Simulation Design

Monte Carlo simulations were conducted to evaluate the performance of the proposed ap-

proach for detecting genetic effects as well as gene-gene interaction in an association study.

The genotype data were simulated using two approaches introduced in Cui et al. (2008). In
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the following, we described the details of the two genotype generating methods: MS program

and LD-based simulation.

MS program: The MS program developed by Hudson (2002) generates haplotype samples

by using the standard coalescent approach in which the random genealogy of a sample is

first generated and the mutations are randomly placed on the Genealogy. We first simulated

two independent samples of haplotypes by using MS program. Parameters of the coalescent

model were set as following: (1) The diploid population size N0 = 10, 000; (2) The mutation

parameter θ = 4N0µ = 5.610 × 10−4/bp; and (3) The cross-over rate parameters are ρ =

4N0r = 4.0×10−3/bp and ρ = 8×10−3/bp for the two samples. In each sample, 100 haplotypes

were simulated for a locus with 10kb long and the number of SNP sequences were set to

be 100. Two haplotypes were then randomly drawn within each simulated haplotype pool

and paired to form the genotype on the locus for an individual. For each individual, we

randomly selected 10 adjacent SNPs with minor allele frequency (MAF) greater than 5% to

form a gene. This was done separately for each simulated haplotype pool and finally we had

genotypes for n individuals for two separate genes with 10 SNPs each, and the two genes

were independent.

LD-based simulation: Under this scenario, SNP genotypes were simulated by controlling

pairwise LD values. Let pA be the MAF for SNP1. Assuming Hardy-Weinberg equilibrium

(HWE), the first SNP marker can be simulated according to a multinomial distribution with

frequencies p2A, 2pA(1− pA) and (1− pA)
2 for genotype AA, Aa and aa, respectively. Let the

MAF of the next simulated marker (SNP2) as pB and the LD between SNP1 and SNP2 be

D. Assuming HWE, the four haplotype frequencies can be calculated as pAB = pApB +D,

pAb = pA(1− pB)−D, paB = (1− pA)pB −D and pab = (1− pA)(1− pB) +D for haplotype

AB, Ab, aB and ab, respectively. The conditional genotype distribution of SNP2 given on
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SNP1 can be derived as

P (BB|AA) = P (AABB)

P (AA)
=

p2AB

p2A
=

(pApB +D)2

p2A
(20)

Similarly we can get the other 8 conditional genotype distributions (see Table 1 in Cui. et al

(2008) for more details). Two genes with 10 SNPs each were simulated by applying the LD-

based simulation method. For gene 1, we assume MAF=0.3 and pairwise SNP correlation

r2 = 0.5 (r2 = D2

pApB(1−pA)(1−pB)
). For gene 2, we assume MAF=0.2, and r2=0.8.

Phenotype simulation: Four simulation scenarios were considered in simulating the phe-

notype (Table 1). In Scenario I, the three genetic effects were set as zero, with which we can

assess the false positive control of different methods. In Scenario II, we considered the main

effects for the two genes, but set the interaction effect as zero. In Scenarios III and IV, both

main effects and interaction effect were considered. The difference between the scenario III

and IV is that the interaction effect in Scenario III is smaller than the main effect, while in

Scenario IV it is larger than both main effects. Quantitative trait of interest were simulated

from a multivariate normal distribution with mean µ1n×1 and variance-covariance matrix

V = σ2I+ τ 21K1+ τ 22K2+ τ 23K3, where τ
2
1 , τ

2
2 , τ

2
3 took different values under different scenar-

ios; Ki, i = 1, 2, 3 are the kernel matrices using the allele matching method described before.

Different sample sizes (n = 200 and 500) and different heritability (H2=0.1, 0.2, 0.4) were

assumed. Let σ2
G = τ 21 + τ 22 + τ 23 , then the heritability is defined as H2 = σ2

G/(σ
2
G + σ2). For

a given value of residual variance σ2, the main effects of the two genes were set equal. When

the interaction effect was considered, it was set as either half of the main effect (Scenario III)

or double the main effect (Scenario IV). Thus for a given heritability level, the parameter

values were different under different scenarios. Specific values for σ2, τ 21 , τ
2
2 , τ

2
3 were given in

the first column of Table 1.
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3.2 Model Comparison

We mainly compared our simulation results with two other methods described in the follows.

Wang et al. (2010) proposed an interaction method using a partial least square approach

which is developed specifically for binary disease traits. The method cannot be applied for

quantitative traits. However, in Wang et al.’s paper they compared their method with a

regression-based principle component analysis method. Specifically, assuming an additive

model for each marker in which genotypes AA, Aa and aa are coded as 2,1,0, respectively,

the singular value decomposition (SVD) can be applied to both gene matrices. Let Gj be an

n×Lj SNP matrix for gene j (= 1, 2) . The SVD for Gj can be expressed as Gj = UjDjV
T
j ,

where Dj is a diagonal matrix of singular values, and the elements of the column vector Uj

are the principal components U1
j , U

2
j , · · · , U

mj

j (mj ≤ Lj is the rank for Gj). An interaction

model can be expressed as

y = µ+

L1∑
l1=1

βl1xl1 +

L2∑
l2=1

βl2xl2 + γU1
1U

2
1 (21)

where γ represents the interaction effect between the first pair of PCs corresponding to the

largest eigenvalues in the two genes. The main effect of the each gene is modeled through

the sum of all single marker effects. For simplicity, only one interaction effect between the

first PC corresponding to the largest eigenvalues in each gene was considered in Wang et al.

(2010). We followed Wang et al. (2010) and compared the performance of our model with

this model.

In principle, one can select PCs for each gene based on the proportion of variation

explained (say > 85%). Then, pairwise interactions can be considered for all selected PCs in

model (21). Thus, we replaced the main effect of each gene in model (21) with PCs rather

than single SNPs to reduce the model degrees of freedom, model (21) then becomes

y = µ+

K1∑
k1=1

βk1Uk1 +

K2∑
k2=1

βk2Uk2 +

K1∑
k1=1

K2∑
k2=1

γk1k2U
1
k1
U2
k2

(22)
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where Ukj , j = 1, 2 represents the PCs for gene j, and Kj, j = 1, 2 is chosen based on the

proportion of variation explained by the number of PCs in gene j. With this regression

model, we considered all possible pairwise PC interactions between the two genes and G×G

interaction was done by testing H0 : γk1k2 = 0, for all k1 and k2. This model was applied by

He et al. (2010) in their gene-based interaction analysis.

In addition to the above two models, we also compared our gene-centric approach to a

pairwise SNP interaction model. Details of the comparison is given in the following section.

For a given simulation scenario, 1000 simulation runs were conducted. Type I error rates

and power were examined at the nominal level α = 0.05.

3.3 Simulation Results

Table 1 summarizes the comparison results between our kernel method and model (21) and

(22). The power of an association test was denoted by P .
1, P

.
2 and P .

3 which correspond

to the power by using the proposed gene-centric interaction method, model (21) and (22),

respectively. The superscript letters o and i denote the power for testing the significance of

the overall genetic effects and the interaction effect, respectively. Noted that the power for

the interaction test was calculated only when the overall test showed significance. Thus, the

power and the false positive rate for the interaction test are smaller than the ones obtained

without this constraint.

3.3.1 Comparisons of the proposed method with the two PCA-based methods

The results for Scenario I indicate that our method has reasonable type I error rate control

for the overall genetic effect tests under the two genotype simulation scenarios (see Scenario

I in Table 1). The two PCA-based interaction models produced a little conservative results

when the genotypes were simulated with the MS program. For example, the type I error

rates were 0.033 and 0.023 for the two methods when sample size is 500.
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Table 1: List of empirical type I error and power based on 1000 simulation runs.

Parameter values LD-based MS program
(σ2, τ21 , τ

2
2 , τ

2
3 ) H2 n Po∗

1 Pi∗
1 Po∗

2 Pi∗
2 Po∗

3 Pi∗
3 Po∗

1 Pi∗
1 Po∗

2 Pi∗
2 Po∗

3 Pi∗
3

Scenario I
(1,0,0,0) 0 200 0.049 0.004 0.045 0.016 0.095 0.025 0.070 0.002 0.048 0.025 0.034 0.011

500 0.061 0.002 0.044 0.021 0.055 0.012 0.052 0.001 0.033 0.019 0.023 0.008
Scenario II
(0.8, 0.044, 0.044,0) 0.1 200 0.285 0.019 0.212 0.032 0.209 0.042 0.255 0.016 0.186 0.057 0.115 0.019

500 0.531 0.026 0.420 0.052 0.374 0.043 0.525 0.036 0.339 0.045 0.254 0.030

(0.8, 0.1, 0.1,0) 0.2 200 0.459 0.029 0.386 0.058 0.387 0.055 0.485 0.044 0.324 0.058 0.253 0.041
500 0.776 0.048 0.636 0.045 0.686 0.042 0.755 0.041 0.615 0.071 0.594 0.050

(0.8, 0.267, 0.267,0) 0.4 200 0.734 0.072 0.661 0.058 0.684 0.072 0.758 0.080 0.611 0.066 0.604 0.052
500 0.927 0.065 0.862 0.069 0.939 0.071 0.946 0.066 0.842 0.066 0.917 0.048

Scenario III
(0.8, 0.036, 0.036, 0.018) 0.1 200 0.289 0.025 0.234 0.051 0.238 0.037 0.299 0.019 0.164 0.041 0.126 0.027

500 0.565 0.054 0.415 0.059 0.414 0.062 0.548 0.030 0.399 0.069 0.298 0.034

(0.8, 0.08, 0.08, 0.04) 0.2 200 0.486 0.053 0.389 0.065 0.389 0.046 0.491 0.069 0.346 0.056 0.279 0.046
500 0.806 0.086 0.686 0.085 0.746 0.074 0.752 0.061 0.640 0.089 0.632 0.045

(0.8, 0.21, 0.21, 0.11) 0.4 200 0.765 0.109 0.654 0.087 0.740 0.107 0.766 0.100 0.629 0.091 0.616 0.069
500 0.946 0.163 0.881 0.131 0.956 0.140 0.941 0.131 0.872 0.128 0.914 0.097

Scenario IV
(0.8, 0.022, 0.022, 0.044) 0.1 200 0.318 0.047 0.245 0.048 0.253 0.051 0.280 0.027 0.189 0.051 0.136 0.032

500 0.571 0.064 0.466 0.090 0.432 0.062 0.571 0.038 0.449 0.089 0.325 0.045

(0.8, 0.05, 0.05, 0.1) 0.2 200 0.500 0.074 0.409 0.076 0.443 0.087 0.514 0.053 0.377 0.062 0.291 0.043
500 0.805 0.141 0.720 0.117 0.755 0.119 0.787 0.111 0.669 0.119 0.667 0.105

(0.8, 0.133, 0.133, 0.266) 0.4 200 0.771 0.172 0.694 0.115 0.750 0.136 0.779 0.153 0.619 0.103 0.680 0.092
500 0.938 0.304 0.881 0.230 0.961 0.244 0.963 0.256 0.874 0.211 0.955 0.194

* P.o and P.i refer to the power for testing the overall genetic effects (i.e., H0 : τ21 = τ22 = τ23 = 0) and for testing interaction

effect (i.e., H0 : τ23 = 0), respectively. P.
1, P.

2 and P.
3 refer to powers by using the proposed gene-centric method, the full

PCA-based interaction with model (22) and the partial PCA-based interaction analysis with model (21), respectively.

In Scenarios II-IV, we fixed the residual variance σ2 to 0.8, and varied the three genetic

effects to get different heritability levels. As we expected, the testing power increases as the

heritability level and sample size increase. For example, under the LD-based simulation, the

overall power increases from 0.565 to 0.946 when H2 increases from 0.1 to 0.4 with fixed

sample size 500 in Scenario III. Under the same Scenario, the overall power increases from

0.486 to 0.806 when sample size increases from 200 to 500 under fixed H2. We observed a

similar trend for genotypes simulated with the MS program (Table 1).

Relatively small interaction power were observed for the three methods (partly due to

the way we calculated the interaction power). As sample size or heritability increase, the
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interaction power also increases. Larger interaction effect (Scenario IV) results in larger

interaction power compared to the one obtained with smaller interaction effect (Scenario III).

For example, for fixed sample size (n = 500) and fixed heritability (H2 = 0.4), the interaction

power increases from 16% to 30% under the LD-based simulation when the interaction effect

was doubled. We did additional simulation by increasing the sample size to 1000 and achieved

reasonable interaction power (data not shown). The simulation results indicate that large

sample size is needed in order to obtain reasonable power to detect the interaction effect.

3.3.2 Model performance under different interaction effect sizes

Epistasis may be caused by a variety of underlying mechanisms. Some genes might have

both significant marginal and epistatic effects, while others might only incur epistatic effects

without main effects. Simulation studies were designed to evaluate the performance of the

proposed kernel machine approach in discovering gene × gene interaction under different

epistasis effect sizes. We defined the proportion of the epistatic variance among the total

genetic variance as ρ = τ 23 /(τ
2
1 + τ 22 + τ 23 ), which gave us an indication of the strength of the

epistatic effect between two genes for a fixed total genetic variance.

Two genes each with 10 SNPs were considered as in previous simulation studies. Geno-

type data and phenotype data were generated as described in Section 3.1, but with different

values for the variance components. For a given heritability level (H2 = 0.4) and a fixed resid-

ual error variance (σ2 = 0.6), the total genetic variance is calculated as 0.4. We then assumed

the same effect size for the two main components, and varied the proportion ρ. For example,

we had (τ 21 , τ
2
2 , τ

2
3 ) = (0.16, 0.16, 0.08) when ρ = 0.2, and (τ 21 , τ

2
2 , τ

2
3 ) = (0.04, 0.04, 0.32) when

ρ = 0.8. Six values of proportion ρ = (0, 0.2, 0.4, 0.6, 0.8, 1.0) were considered, including the

two extreme cases: no epistatic effect at all (ρ = 0) and pure epistasis (ρ = 1). Comparisons

with the other two PCA-based interaction analyses were considered under two different sam-

ple sizes, 500 and 1000. Empirical powers was calculated based on testing the interaction
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effect only.
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Figure 1: Power comparison of the proposed kernel approach (solid line), the partial PCA-
based interaction model (21) (dashed line, denoted as pPCA) and the full PCA-based inter-
action model (22) (dotted line, denoted as fPCA) under different sample sizes and different
proportions (ρ) of epistasis variance. Genotypes were simulated with the MS program (A)
and the LD-based algorithm (B).

Results based on 1000 replicates were summarized in Figure 1. All the three methods can

reasonably control the type I error (ρ = 0). As we expected that the empirical interaction

power increases as the interaction effect size increases. When SNPs are correlated (Figure

1B), small number of PCs might be enough to capture the variation of each gene. So the

power is larger than MS-based simulation (Figure 1A). Among the three methods, our kernel-

based method has the highest power. Model (21) has the lowest power, which implies that

only considering one pair of PC interaction is not enough to capture the interaction effect

between two genes. The effect of sample size on the interaction power is also significant.

Larger sample size always leads to larger power. The results also confirm that detecting gene

× gene interactions generally requires relatively larger sample size than it does for detecting

main genetic effects.
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3.3.3 Comparison with the single SNP interaction model

In a regression-based analysis for interaction, the commonly used approach is the single SNP

interaction model with the form

y = β0 + β1x1 + β2x2 + β12x1x2 + ε (23)

where β0 is the intercept; β1, β2 and β12 represent the effects of SNP x1 in gene 1, SNP x2

in gene 2 and the interaction effect between the two; and ε ∼ N(0, σ2). We simulated data

according to model (23) assuming a MAF pA = 0.3. Different heritabilities and different

sample sizes were assumed. Obviously it is unfair to compare the two since the single SNP

interaction model is the true analytical model and it should have the best performance.

However, it is worth to evaluate the performance of our kernel method when there is only

one functional pair of SNPs in two genes. For simplicity, we assumed the same effect size for

the three coefficients which are calculated under specific heritability (H2 = 0.2 and 0.4) when

generating the data. We considered an extreme case in which each gene only contains one

single SNP. Data generated with model (23) are subject to both the single SNP interaction

and the proposed kernel interaction analysis. The results are summarized in Table 2.

Both models show comparable type I error control for the overall genetic test (see Po in

Table 2). The interaction test is nested within the overall genetic test. If we aggregate the

results by dividing Pi by Po, the single SNP analysis produces more inflated false positives

compared to the kernel approach when no genetic effect is involved at all. When data were

simulated assuming only main effects but no interaction (case β12 = 0), the two approaches

yield very similar false positive rate, indicating reasonable performance of the kernel approach

for false positive control.

For the power analysis, we found very minor difference between the two methods for

the overall genetic test (Po), especially under large sample size and high heritability level.

In fact, when sample size is 200 and heritability level is 0.2, the kernel method has higher
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Table 2: List of empirical type I error and power based on 1000 simulation runs (single SNP
interaction model).

Heritability Coefficients Sample size Single SNP interaction Kernel interaction
(H2) (β0, β1, β2, β12) (n) Po Pi Po Pi

200 0.055 0.019 0.059 0.003
(0.19, 0, 0, 0) 500 0.058 0.019 0.057 0.003

1000 0.052 0.017 0.059 0.003

200 0.497 0.03 0.534 0.032
0.2 (0.19, 0.19, 0.19, 0) 500 0.923 0.045 0.911 0.046

1000 0.999 0.048 0.997 0.053

200 1 0.221 1 0.183
(0.19, 0.19, 0.19, 0.19) 500 1 0.419 1 0.349

1000 1 0.714 1 0.635

200 0.053 0.022 0.053 0.003
(0.51, 0, 0, 0) 500 0.049 0.016 0.062 0.001

1000 0.054 0.024 0.057 0.008

200 1 0.051 1 0.058
0.4 (0.51, 0.51, 0.51, 0) 500 1 0.062 1 0.067

1000 1 0.054 1 0.058

200 1 0.850 1 0.648
(0.51, 0.51, 0.51, 0.51) 500 1 0.996 1 0.964

1000 1 1 1 1

* Po and Pi refer to the power for testing the overall genetic effects (i.e., H0 : τ
2
1 = τ22 = τ23 = 0 for

the kernel approach and H0 : β1 = β2 = β12 = 0 for the pairwise SNP interaction analysis) and for

testing interaction effect (i.e., H0 : τ
2
3 = 0 for the kernel approach and H0 : β12 = 0 for the pairwise

SNP interaction analysis), respectively.

power (53.4%) than the single SNP analysis (49.7%). For the interaction test (Pi), as we

expected that the power increases as sample size and heritability level increase. For example,

Pi increases from 0.183 to 0.635 for the kernel approach when sample size increases from

200 to 1000, a 2.5 fold increase in power under a fixed heritability level (H2=0.2). When

heritability level increases from 0.2 to 0.4 under a fixed sample size (say 500), we saw a

dramatic power increase from 0.349 to 0.964 for the kernel approach. Overall, the single

SNP interaction model (23) yields slightly higher power than the kernel approach. This is
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not surprising since one would expect to see large power when simulated data are analyzed

with the underlying generating model. However, the difference is diminished under large

sample and high heritability level (n > 500 and H2 = 0.4). We did additional simulations

in which more than one functional SNPs within each gene were involved to interact with

each other to affect a trait variation. Results showed that the kernel method consistently

outperformed the single SNP interaction model (data not shown).

In summary, our model performs reasonably well in different scenarios compared to the

other methods. Even when there is only one single SNP pair interacting with each other in

two genes, our analysis produces results as good as the ones analyzed with the true model,

especially under large sample size and high heritability (Table 2). For the powers obtained

under the two genotype simulation methods, the difference is not remarkable. To achieve

high power, large sample size (say n > 500) is always encouraged.

4 Applications to Real Data

4.1 Analysis of Baby Birth Weight Data

A candidate gene study was initially conducted for the purpose to study genetic effects

associated with large for gestational age (LGA) and small for gestational age (SGA). Subjects

were recruited through the Department of Obstetrics and Gynecology at Sotero del Rio

Hospital in Puente Alto, Chile, and SNPs were selected for genotyping in order to capture

at least 90% of the haplotypic diversity of each gene. Each individuals were genotyped at

797 SNP markers on 186 unique candidate genes. Missing genotypes were imputed using a

conditional probability approach as we described in the simulation section. We combined the

two data sets (LGA and SGA) and used baby’s birth weight (in kg) as the response variable

to assess if there are any genes or interaction of genes that could explain the normal variation

of new born baby’s birth weight. Individuals with birth weight 3×IQR (inter-quartile range)
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above the Q3 or below Q1 were treated as outlier and were discarded. There are total 1511

individuals left after removing outliers.

A two-dimensional pairwise G×G interaction search was conducted (total 17205 gene

pairs). The score test for testing H1
0 : τ 21 = τ 22 = τ 23 = 0 was done and p-values were

obtained for all gene pairs. Figure 2A shows a two-dimensional plot of -log10 transformed

p-values. For a two-dimensional search, it is not clear how to set up a genome-wide threshold

to correct for multiple testings. Obviously the 17205 tests are not all independent and using

Bonferroni correction may be too stringent. Thus, we used a arbitrary threshold of 0.001 as

a cutoff. The yellow hyperplane in Fig. 2A shows the 0.001 cutoff. Totally there are 23 gene

pairs were found to be significant with this cutoff. A detailed list of these gene pairs, their

effect estimates and the p-values for the overall genetic and interaction test are shown in

Table 3. Among the 23 gene pairs, five significantG×G interactions were detected at the 0.05

level. These are gene pairs ANG-EDN1, PDGFC-PTGER3, PTGS2-PGF, PTGS2-PLAU

and IL9-IGF1. A two-dimensional interaction p-value plot is shown in Fig. 2B.

A B

Figure 2: The profile plot of -log10 transformed p-values of all possible gene pairs with the
overall genetic effect test (A) and the interaction test (B). The yellow hyperplane represents
the 0.001 cutoff for figure A and the 0.05 cutoff for the interaction test for figure B.

The results indicate a strong main genetic effect for gene PDGFC (Platelet-derived
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growth factor C). This gene is a key component of the PDGFR-α signaling pathway. Stud-

ies have shown that PDGFC contributes to normal development of the heart, ear, central

nervous system (CNS), and kidney (Reigstad et al. 2005). Even though its main effect is

very strong, no strong interaction effects were found between this gene and the rest of the

genes. The only gene was found to have significant interaction effect with this gene is gene

PTGER3 (p-value=0.0434). No main effect was found for gene PTGER3.

Table 3: List of gene pairs with p-value less than 0.001 in the overall genetic effect test.
Genes with significant interactions (p-valuei <0.05) are indicated with bold font.

Gene 1 Gene 2 τ 21 τ 22 τ 23 σ2 p-value p-valuei
ANG EDN1 0.0341 2.30E-07 0.0025 0.3199 0.000656 8.07E-06

PDGFC COL5A2 0.0095 2.28E-06 0.0052 0.3232 0.000494 0.2410
F3 0.0056 7.72E-09 0.0061 0.3243 0.000781 0.0506
GP1BA 0.0119 0.0364 1.25E-06 0.3229 0.000283 0.7462
IGF1 0.0125 0.0091 9.61E-08 0.3234 0.000259 0.5133
IL1B 0.0118 0.0050 8.63E-07 0.3227 0.000554 0.6228
IL9 0.0113 1.37E-07 0.1049 0.3294 0.000066 0.3849
LPA 0.0131 0.0077 2.20E-06 0.3226 0.000294 0.5231
MMP7 0.0123 0.0052 1.08E-06 0.3236 0.000518 0.6548
OXTR 0.0006 1.43E-06 0.0124 0.3218 0.000447 0.2106
PLAUR 0.0129 0.0397 5.84E-07 0.3194 0.000536 0.5460
PTGER3 0.0057 5.47E-07 0.0051 0.3241 0.000279 0.0434
PTGS2 0.0128 0.0059 2.20E-06 0.3226 0.000514 0.7092
TIMP2 0.0075 1.68E-08 0.0044 0.3238 0.000916 0.2351
TLR4 0.0123 0.0116 1.79E-06 0.3239 0.000581 0.5606

PTGS2 ANG 0.0063 0.0183 1.11E-06 0.3218 0.000416 0.7016
EDN1 0.0055 0.0031 1.70E-07 0.3243 0.000730 0.7966
LPA 0.0056 0.0063 2.27E-06 0.3239 0.000988 0.5328
PDGFB 0.0010 1.07E-08 0.0041 0.3246 0.000782 0.2736
PGF 0.0028 4.45E-08 0.0035 0.3273 0.000850 0.0062
PLAU 0.0004 7.97E-07 0.0057 0.3231 0.000260 0.0207

IL9 GP1BA 5.89E-07 0.0082 0.0274 0.3220 0.000936 0.4592
IGF1 4.86E-08 0.0105 0.1597 0.3282 0.000540 0.0009

Among the five interacting gene pairs, the interaction between genes ANG (Angiogenin)
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and EDN1 (Endothelin 1) shows the most strongest interaction signal (p-valuei < 10−5).

Study has shown that dysregulation of angiopoietins is associated with low birth weight

(Silver et al. 2010). Nezar et al. (2009) studied the role of endothelin 1 in pre-eclampsia

and non-pre-eclampsia women, and found that EDN1 correlates with the degree of fetal

growth restriction. Although no study has reported the interaction between the two genes,

our finding suggests a potential role of interaction between the two genes in affecting fetal

growth. Further functional analysis is needed to validate this result.

Interactions were also found between gene PTGS2 (Prostaglandin-endoperoxide synthase

2) and genes PLAU (Urokinase-type plasminogen activator) and PGF (Placental growth

factor), and between gene IL9 (Interleukin 9) and IGF1 (Insulin-like growth factor 1). It

has been recognized that genes PGF and IGF1 are associated with fetal growth (Torry et

al. 2003; Osorio et al. 1996). The identification of interactions between the two genes with

other genes provides important biological hypothesis for further lab verification.

4.2 Analysis of Yeast eQTL Mapping Data

The second data set we analyzed with our model is a well studied yeast eQTL mapping data

set generated to understand the genetic architecture of gene expression (Brem and Kruglyak

2005). The data were generated from 112 meiotic recombinant progeny of two yeast strains:

BY4716 (BY: a laboratory strain) and RM11-1a (RM: a natural isolate). The data set

contains 6229 gene expression traits and 2956 SNP marker genotype profiles. As an example

to show the utility of our approach to an eQTL mapping study, we picked the expression

profile of one gene (BAT2) as the quantitative response to identify potential genes or epistasis

that regulate the expression of this gene. Noted that the parental strain RM11-1a is a LEU2

knockout strain. We expect strong segregation of this gene in the mapping population. Thus

we picked this gene which is in the downstream of Leucine Biosynthesis Pathway (see Fig.

5(a) in Sun et al. 2008) as the response. A two-dimensional pairwise interaction search was
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done. Due to strong signals, Bonferroni correction was applied to adjust multiple testings

for the 1072380 gene pairs. Overall test for pairs of gene effects was conducted followed by

the score test for interaction if the overall test is significant.
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Figure 3: The -log10 transformed p-value profile plot of all gene pairs for the overall test (A)
and the interaction test (B). The yellow hyperplane in A represents the Bonferroni cutoff.

There are total 1465 genes with some containing a single SNP marker. All the genes were

subject to the proposed kernel interaction analysis. Figure 3A shows the pairwise interaction

plot for -log10 transformed p-values associated with the overall genetic test (I). The yellow

hyperplane indicates the Bonferroni correction threshold. Data points with p-values larger

than 10−4 were masked. The plot indicates a strong genetic effect at chromosome 3 and 13,

which implies that the two locations are potential regulation hotspots. In checking the recent

literature, we found that the two positions were reported as eQTL hotspots in a number of

studies (e.g., Brem et al., 2002; Perlstein et al. 2007; Li et al. 2010).

Out of the 1072380 gene pairs, 87 pairs were found to have significant interaction with

each other at the 0.05 level. Figure 3B plots the pairwise significant interactions. Circles

corresponds to significant interaction pairs with the darkness of the color indicating the

strength of the interaction. We saw a strong interaction pattern on chromosome 13. One or

several genes at this location interact with many other genes to affect the transcription of gene
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BAT2. Another interaction “hotspot” is at chromosome 3 where genes (containing LUE2

and its neighborhood genes) interact with genes at chromosome 5, 13 and 15 to regulate

BAT2 expression. We used Cytospace (Shannon et al. 2003) to generate an interaction

network (see Fig. 4). Each node represents a gene and the thickness of the connection line

indicates the strength of the interaction effect. Genes at the same chromosome location are

clustered together in the plot. Light nodes with oval shapes indicates weak or no marginal

effects. We found strong marginal effects for genes on chromosome 3 and 13. The most

strongest interaction effect is between genes on chromosome 3 and chromosome 13. We also

highlighted (red lines) the interaction between genes on chromosome 3 and others. Among

the genes with no marginal effects (light oval nodes), URA3 is one of them and is a known

transcription factor (Roy et al. 1990). Even though it does not show any main effect, it

interacts with several genes on chromosome 3 to regulate the expression of BAT2. The

results also imply the important role of several loci on chromosome 13. Since their functions

are unknown, they can be potential candidate genes for further lab validation.

Figure 4: The network graph of interacting genes generated with Cytoscape (Shannon et al.
2003). The thickness of the connection line indicates the strength of the interaction. Nodes
with light oval shapes indicate no marginal effect.
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5 Discussion

The importance of gene-gene interaction in complex traits has stimulated enormous dis-

cussion and fundamental works in statistical methodology development have been broadly

pursued (reviewed in Cordell 2009). Previous investigations have demonstrated the impor-

tance of a gene-centric approach in genetic association studies by simultaneously considering

all markers in a gene to boost association power and reduce the number of tests (e.g., Cui

et al. 2008; Buil et al., 2009). This motivates us to develop a gene-centric approach to

understand gene-gene interaction associated with complex traits.

In this work, we have proposed a gene-centric kernel machine framework for gene-gene

interaction analysis. Our model considers all variants in a gene as a system and adopts a

kernel function to model the genomic similarity between SNP variants. The kernel machine

method was previous developed for an association test and has been shown to be powerful

in association studies (Kwee et al. 2008; Wu et al. 2010). Motivated by these work, we

propose a spline-smoothing ANOVA decomposition method to decompose the genetic effects

of two genes into separate main and interaction effects, and further model and test the

genetic effects in the reproducing kernel Hilbert space. The joint variation of SNP variants

within a gene is captured by a properly defined kernel function, which enables one to model

the interaction of two genes in a linear reproducing Hilbert space by a cross-product of two

kernel functions. Following rigorous derivations, the kernel machine method is shown to be

equivalent to a linear mixed effects model. Thus, testing main and interaction effects can

be done by testing the significance of different variance components. Extensive simulations

under various settings and the analysis of two real data sets demonstrate the advantage of

the gene-centric analysis.

He et al. (2009) previously proposed a gene-based interaction method in which each

gene is summarized by several principle components and interaction was tested through
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the modeling of the PC terms rather than single SNPs. The authors proposed a weighted

genotype scoring method using pairwise LD information to test gene-gene interaction. Their

method is similar to several other methods which jointly consider information contributed

by multiple markers (Chatterjee et al. 2007; Chapman and Clayton 2003). Our method

is fundamentally different from their approach in which we capture the joint variation of

SNP variants within and between genes by kernel functions (see Schaid 2010a for more

discussion of the advantage of the kernel methods). Our method can also be extended to

test interaction of variants by incorporating various weighting functions to define a kernel

measure. Simulation studies demonstrate the advantage of the method over the PC-based

regression analysis.

The advantage of the gene-centric gene-gene interaction analysis was previously discussed

in He et al. (2009) such as reducing the number of hypothesis tests in a genome-wide scan.

However, we should not over-emphasize the role of gene-centric analysis. Our simulation

study indicates that when the underlying truth is that interaction only occurs between

two single SNPs in two genes, single-SNP interaction analysis performs better. This result

agrees with the conclusion made by He et al. (2009). Therefore, we recommend investigators

conduct both types of analysis (single SNP and gene-centric) in real application, especially

when no prior knowledge is available on how SNPs function within a gene as well as between

genes. For a large-scale genome-wide or candidate gene study, one can also use the gene-

centric approach as a screening tool, then further target which SNPs in different genes

interact with each other.

The choice of kernel function may have potential effects on the testing power (Schaid

2010a, b). In this paper, we consider the allele matching (AM) kernel. Other kernel functions

can also be applied such as the additive kernel, linear dosage kernel and product kernel and

many others (Mukhopadhyay et al. 2010). Schaid (2010b) gave a very nice summary of

various choices of kernel functions and their applications in genetic association studies. It is
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not the purpose of this paper to compare the performance of difference kernel choices on the

power of an association test. A comparison study of different kernel functions on the power

of the interaction test will be considered in future investigation.

The proposed method considers two genes as two units to test their interaction. It is easy

to extend the idea to incorporate other genomic features such as pathways as testing units to

assess pathway-pathway interaction under the proposed framework. The mapping results can

then be visualized by some network graphical tools such as the Cytospace software (Shannon

et al. 2003) which can help investigators generate important biological hypotheses for further

lab validation. The computational code written in R (3G-SPAM) for implementing the work

is available at http://www.stt.msu.edu/∼cui.
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