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Abstract

Cancer is a leading cause of mortality in the US. Detecting changes in trend of cancer inci-

dence rates is an important task for analysis and subsequent intervention for the improvement

of public health. The National Cancer Institute has developed several joinpoint models to track

changes in these incidence rates based on the entire US population. It is known that cancer

incidence rates are heterogeneous across geographical regions. The aim of this paper is to sup-

plement the existing tools for analyzing cancer rates from the Surveillance, Epidemiology, and

End Results database that are able to find the change points locally. Subsequently, the model

can cluster the geographical subregions based on the magnitude and direction of changes of the

disease risk. The proposed model to find change-points over time and cluster spatial locations

is based on Dirichlet process priors where we consider temporal functions as the random quan-

tities arising from the Dirichlet process prior. Through the analysis of age adjusted lung cancer

mortality rates from 1969 to 2006, the proposed model nicely characterized local data features,

namely, the local change points, the rate of changes, and clusters of states that exhibited similar

trends of cancer incidence rates. This is also an innovative application of Dirichlet process priors

on functional spaces.

Keywords: Joinpoint analysis; Disease mapping; Bayesian nonparametrics; Dirichlet process

priors.

1 Introduction

Statistical methods for analyzing disease incidence or mortality data over geographical regions and

time have gained considerable interest in recent years due to increasing concerns of public health,

health disparity and legitimate resource allocations. Cancer is a major threat to public health in

the United States and in the world. Cancer accounts for nearly one-quarter of deaths in the United

States, exceeded only by heart disease. The American Cancer Society (ACS, www.cancer.org)

∗Authors’ names are in alphabetical order.
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tracks cancer occurrences, including the number of deaths, cases, and survival times after diagnosis.

According to the ACS report Cancer Facts and Figures 2010, the expected number of new cancer

cases in 2010 is 1,529,560, and about 569,490 individuals are expected to die from cancer in the

United States (US) in 2010. In 2008, 7.6 million death from cancer was estimated and by 2030,

the global burden is expected to grow to 17.5 million cancer deaths per year. Among many things,

the ACS publishes time trends of age-adjusted cancer death rates for different cancer types, and

for different sub-populations defined by geographic and socio-demographic characteristics.

Even though several surveillance studies have been undertaken to control cancer, it is a fact

that there was an increased number of cancer deaths in 2007 as a result of aging and growth of the

US population (ACS 2010). Moreover, the impact of cancer surveillance is not uniformly effective

over geographical regions; see, for example, Figure 1 which displays cancer trends for four different

US states and the overall trend for the nation. One of the scientific objectives of monitoring cancer

rates is to detect changes in the trend over time and identify clusters of sub-populations (generally

a set of geographical sub-regions) that are affected by changes (increase or decrease) in risk. A

carefully developed procedure that addresses this issue can help administrators find key information

for the prevention of cancer.

Several joinpoint models that identify time points associated with a significant change in disease

trend have been developed by several authors (See, Carlin et al. (1992), Kim et al. (2000, 2004),

Tiwari et al. (2005) and Ghosh et al. (2009)). The models developed by Kim et al. (2000, 2004),

for example, are used in cancer statistics review and implemented in the software of the National

Cancer Institute (NCI) (Ries et al. 2002). These models focus on detecting joinpoints over time in

one time series of disease rates. Ghosh et al. (2009) applied their model to incidence rates of colon

and rectum cancer in the US from 1973 to 1999 and incidence rates of prostate cancer among white

males in the US from 1975 to 2003. They perform the joinpoint analysis for a single time series.

Subsequently, by aggregating over all states in the US, they discovered one set of joinpoints (based

on a single time series) for the entire nation.

One important question here is whether the rates of cancer incidence before and after the

joinpoint is significantly different (statistically speaking) from each other. In other words, we wish

to determine if there is a significant change point in the cancer incidence rates before and after

the joinpoint. Another important concern not addressed by joinpoint modeling is whether there

are groups (or, clusters) of states exhibiting similar change-points of cancer incidence rates but

with significant variations between and within groups. It is well known that the cancer rates in

the US vary widely by geographical area. According to ACS report 2010, lung cancer mortality

rates are 3-fold higher in Kentucky, the state with highest rates, than in Utah which has the lowest

rates. Geographic variations also reflect differences in environmental exposure and socio-economic

factors in population demographics. Figure 1 gives one such illustration based on age-adjusted lung

cancer mortality rates for four states: Florida, Arizona, Missouri and Indiana. It is evident that

Florida and Arizona share the same change-point and rates of change in each time segment while

Missouri and Indiana exhibit different levels of these attributes. Figure 1 also demonstrates that
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Florida and Arizona have different levels of variability around its mean value over time. When

we are interested in grouping states by the rates of change, variability is nuisance with respect

to the clustering criteria. However, the omission of such variability from the model may result

in inefficient estimation. The presence of heterogeneity among states can also give a misleading

impression for the rates of change corresponding to the overall US. Figure 1 panel (e) for the entire

nation does not reveal the two distinct types of change-points exhibited in the first four panels by

the four different states. This indicates that a more efficient estimation procedure is possible by

taking into account local geographical effects.

To address the above scientific question, we developed a change-point model to analyze age-

adjusted cancer mortality rates. In essence, our change-point model is supplemental to the existing

joinpoint models because while the latter detect changes based on a single time series, the proposed

model detects changes in multiple time series in presence of heterogeneity. A distinct difference,

however, is that our proposed model does not assume connectedness at the joinpoint but is able

to perform the analysis more locally at this expense. The proposed model is also able to cluster

geographical regions which have similar rates. Additional model flexibility for grouping is obtained

by including model parameters that represent local data characteristics (for example, variability

around the mean trend in Figure 1), which are allowed to vary from site to site. We also incorporate

the unknown number of change-points into the estimation scheme, to be inferred from the posterior

probabilities. Previous work assumed a fixed number of change-points; for example, Ghosh et al.

(2009) estimated the number of change-points first and then carried out the subsequent analysis

by fixing the number of change-points at its estimated value.

Our approach is to make use of the Dirichlet Process (DP) methodology in an innovative way

to cluster spatio-temporal data. The DP was introduced by Ferguson (1973,1974) to provide a

random distribution of observables on Rp free from parametric assumptions. Since then, DPs have

been extensively studied in the statistics literature, most importantly as the Bayesian equivalent

of providing non-parametric inference in a variety of settings. Model fitting in this framework

are carried out through MCMC routines and have become standard statistical practice; see, for

example, Escobar and West (1998) and MacEachern (1998). Recently, the DP framework has been

extended to dependent DPs (DDPs), developed by MacEachern (2000), to describe a stochastic

process of random distributions. Subsequently, Gelfand et al. (2005) used a special form of DDPs

to model dependent data in the spatial context. Model fitting, once again, is carried out via MCMC

with the computations becoming slightly more demanding but are straightforward extensions of the

existing routines. We note that Ghosh et al. (2009) used DP to perform a non-parametric Bayesian

analysis of joinpoints where the baseline distribution G0 is a distribution on R for the errors; this

is not for the purpose of clustering but to robustify the analysis with respect to non-normality.

Our innovative way of using the DP is to consider realizations from G0 that are in more general

object spaces; in this case, it is the space of all functions over time that represent change points

in cancer trends. The advantage of extending DPs in this manner is two-fold: First, the change-

points are included as unknown model parameters with a prior distribution governed by G0. This
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Figure 1: Age-adjusted incidence rates of lung cancer from 1969 to 2006 for four states and the

entire US: Florida (a), Arizona (b), Missouri (c), Indiana (d) and entire US (e).
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entails that the uncertainty involved in their estimation is taken into account in the inference, and

therefore, represents an improvement over the methodology of Ghosh et al. (2009) and previous

approaches by others. Second, even for more general object spaces, the intrinsic property of DPs

that assign unit mass to all discrete probability distributions can be utilized to enable clustering

of sites with respect to similar cancer trends. A number of research articles have utilized this

discreteness property of the DP for clustering observables into homogeneous groups according to

some pre-specified criteria; see, for example, Gelfand et al. (2005), Escobar and West (1998) and

MacEachern (1998). Clustering enables information on different observables be pooled together

to obtain smaller estimates of variability and shorter lengths for confidence intervals, in a spirit

similar to procedures in small area estimation. Here, of course, the clustering mechanism needs

to be flexible enough to capture a variety of clustering characteristics without being forced to

concentrate on incorrect specifications, which is achieved by incorporating site specific parameters

as mentioned earlier. Extensions of DPs to function spaces, or functional DP methodology, has

been carried out in a number of recent research articles; for example, Gelfand et. al. (2005),

Duan et al. (2007), Petrone et al. (2009) and Rodriguez et al. (2009). The above research

articles utilize the DP prior on the space of functions over a spatial domain with inference based

on n independent and identically distributed (iid) realizations of functions from this domain. Our

application driven methodology of functional DPs is slightly different: For each site on the spatial

domain, we have (only one) change-point function. DP-based clustering is obtained for the sites

on the spatial domain based on similar change-point functions. Incorporating other aspects of

variability via parameters to enhance model flexibility without affecting the DP-based clustering is

also an important contribution of this paper.

A primary inferential objective in the analysis of disease data is the summarization and expla-

nation of spatial and spatio-temporal patterns of disease (i.e., disease mapping); see, for example,

Elliot et al. (2000), Banerjee et al. (2004) and Lawson (2009) for details and further references.

Also of interest is the spatial smoothing, temporal prediction of disease risk and the detection of

extremes. Models for inference in this area have been mostly limited by parametric elicitation of

dependence structures for pooling spatial information. On the other hand, the proposed DP-based

methodology is free of parametric constraints, and its capability of pooling information via data

driven clustering can greatly enhance the analysis of spatial and spatio-temporal patterns. As an

illustration, we infer the cluster of US states which correspond to the highest drop in cancer trends

in Section 4. We are also able to demonstrate statistical significance of the highest drop compared

to other clusters of US states. These types of inference can potentially help policy makers identify

factors in the top states that contributed to the highest drop, and subsequently, be implemented

as policy or programs in the other states.

The rest of the paper is organized as follows. Section 2 gives the details of the data and

application while Section 3 presents the proposed change point model and associated Bayesian

inference. Section 4 gives two specific model formulations for the cancer data and demonstrates the

superiority of incorporating site specific variability. Section 5 gives some validation results. Section
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6 gives discussion and future directions for research.

2 A Change Point Model for Cancer Incidence Rates

Cancer incidence rates are obtained from the Surveillance, Epidemiology, and End Results (SEER)

program (seer.cancer.gov) of the National Institute of Cancer (NCI). The SEER program is an

authoritative source of information on cancer incidence and survival in the US. The SEER program

currently collects and publishes cancer mortality and survival data from population-based cancer

registries covering approximately 26 percent of the population. An age-adjusted incidence/mortality

rate is a primary measure for monitoring cancer trends over time and over geographical locations

since cancer is a disease where age is a determining factor. An age-adjusted rate is a weighted

average of the age-specific (crude) rates, where the weights are the proportions of persons in the

corresponding age groups of a standard population. The potential confounding effect of age is re-

duced when comparing age-adjusted rates computed using the same standard population. Several

sets of standard population data are available in SEER which include the 2000 US standard popu-

lation as well as the standard US populations for the years 1940, 1950, 1960, 1970, 1980, and 1990.

The age-adjusted rate using age groups A through B is calculated using the following formula:

aarateA−B =
B∑

i=A

[(
counti
popi

)
× 100, 000 ×

(
stdmili∑B

i=A stdmili

)]
, (1)

where counti, popi and stdmili are, respectively, the number of incidence/mortality due to a cancer,

the population and the choice of a standard population in the age group i. Nineteen age groups

and the 2000 US standard population are considered in this study.

We consider lung cancer age-adjusted mortality rates from 1969 to 2006 for the 48 contiguous

states in continental United States (excluding Alaska and Hawaii) and Washington D.C. Thus,

observations are the age-adjusted lung cancer mortality rates for t = 1969, 1970, · · · , 2006 and

s = 1, 2, · · · , 49. Four states and overall USA plots were given in Figure 1 as an example. It is

clear from the panels in Figure 1 that there is at least one change-point in the rate of change (i.e.,

slope) of lung cancer mortality rates for the four states. There are several specific aims of this

paper: We would like to determine (i) all possible change-points of slopes of lung cancer mortality

rates corresponding to each state, (ii) determine simultaneously if the slopes exhibit some clustering

over the states (i.e., different states have identical slope values), and (iii) identify clusters with the

highest changes in slope over time, and (iv) whether this highest change is significant compared to

the other remaining clusters. To model exponential growth or decay of the age-adjusted rates, we

model the logarithm of the age-adjusted rates as a linear function of time as is done in Ghosh et

al. (2010), Clegg et al. (2009) and Ghosh et al. (2009). Slopes over the different time segments

capture the essential growth rate (positive or negative) pattern of cancer incidence/mortality rates.

The change-point model we develop subsequently is in terms of these slopes and the variability of

the observations around the log mean trend.
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2.1 Change Point Likelihood Based on Observables

The subsequent discussion applies to both cancer incidence and mortality rates, and therefore, we

refer to them as just rates. Let Wst denote the logarithm of the observed cancer rate at site s and

time t for the collection of sites s = 1, 2, · · · , N and time points t = U0, U0 + 1, U0 + 2, · · · , U1.

Assume that a site s has k change-points in terms of the slope of the log rates; thus, in Figure 1,

s may be Florida with k = 1 change points. For fixed k, let [Tl−1, Tl), l = 1, 2, · · · , k + 1 be the

time intervals where no changes in the disease trend occur (i.e., no change point). To extract the

slope and the variability of the observations around the mean trend in each segment, we consider

the following regression model on each [Tl−1, Tl):

Wst = α+ βt+ ǫt, (2)

for t = Tl−1, Tl−1+1, · · · , Tl−1 with ǫt iid N(0, σ2) for the observed data in [Tl−1, Tl); thus, in (2),

the log rates are modeled as a linear function of time with intercept and slope α and β, respectively,

and σ2 represents the unknown error variance around the mean linear trend. The dependence on

s and l is suppressed for the moment. The following results are well known in regression analysis:

(α̂, β̂)T ∼ N
(
(α, β)T , σ2(XTX)−1

)
, and (3)

RSS

σ2
∼ χ2

Tl−Tl−1−2, (4)

where α̂ and β̂ are the least squares estimators of α and β (which are also the maximum likelihood

estimates (MLEs) under the normal error model), RSS is the residual sum of squares given by

RSS =

Tl−1∑

t=Tl−1

(Wst − α̂− β̂ t)2, (5)

χ2
ν is the chi-square distribution with ν degrees of freedom, and X is (Tl − Tl−1)× 2 matrix whose

first and second columns is the vector of ones and tl ≡ (Tl−1, Tl−1 + 1, · · · , Tl − 1)T , respectively.

Also, in (3) and (4), the statistic (α̂, β̂) is independent of RSS. We emphasize here that the number

of joinpoints, k, the time intervals [Tl−1, Tl), l = 1, 2, · · · , k + 1 and σ2 are all parameters that are

unknown, to be inferred from the subsequent Bayesian analysis. The purpose of introducing these

unknown parameters here is to describe the likelihood given the unknown parameters at site s:

β̂l, RSSl |βl, k, tl, σ
2
l

ind
∼ f1l × f2l (6)

independently for l = 1, 2, · · · , k+1. In (6), f1l(β̂l |σ
2
l ) is the normal pdf with mean βl and variance

σ2
l · v where v is the (2, 2)-th entry of (XTX)−1; the explicit form of f1l is

f1l(β̂l |βl, σ
2
l ) =

1√
2π v σ2

l

exp

{
−

1

2 v σ2
l

(β̂l − βl)
2

}
. (7)
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The density f2l(RSSl |σ
2
l ) in (6) is σ2

l times the chi-square density with ml = Tl −Tl−1 − 2 degrees

of freedom whose explicit form is given by

f2l(RSSl |σ
2
l ) =

1

2(ml/2)Γ(ml/2)

(
RSSl

σ2
l

)ml
2
−1

exp

{
−
RSSl

2σ2
l

}
1

σ2
l

. (8)

Subsequently, we consider the site-wise functions

θs(t) = βsl if Tl−1 ≤ t ≤ Tl − 1 (9)

where βsl is the true but unknown slope in the interval [Tl−1, Tl) at site s. Thus, the functions

θs(t) are step-functions of t with k change points at times Tl, l = 1, 2, · · · , k. Denote the set of

all observables by Y = {Y sl, l = 1, 2, · · · , ks, s = 1, 2, · · · , N where Y sl ≡ (β̂sl, RSSsl) with β̂sl

and RSSsl as in (6) for each site s, and ks is the number of joinpoints for site s. Let β denote

the collection of all true slope parameters βsl, l = 1, 2, · · · , ks, s = 1, 2, · · · , N }. Also, denote by

K, T and σ to be the collection of parameters k, Tl, l = 1, 2, · · · , k + 1 and σ2
l for all the N sites.

Assuming independence between the N sites, the likelihood is given by

f(Y |β, K, T , σ ) =

N∏

s=1

ks∏

l=1

f
(s)
1l × f

(s)
2l (10)

where f
(s)
1l and f

(s)
2l are f1l and f2l corresponding to site s.

As mentioned in the Introduction, the change point analysis here is different from joinpoint

modeling. The latter assumes that the cancer incidence rates are continuous at the joinpoints but

with different slopes to the left and right of the joinpoint. In our case, we make no assumption on the

continuity of the regression at the time points Tl. However, at this expense, the current formulation

allows us to infer different slopes for the different sites, and therefore, enable clustering of these

slopes based on the DP-methodology. The proposed model also allows the unknown number of

change-points and clusters to be inferred concurrently with parameters based on Bayesian posterior

probabilities (details in the subsequent sections).

3 Bayesian Inference Using Functional DP Priors

3.1 Functional DP Prior

Let Θ denote the set of all step functions θs as described in the previous section. We introduce

the functional DP as a prior on space of all distributions on Θ. The DP ≡ DP (α0G0) depends on

two hyper-parameters, namely, α0 > 0 the precision parameter, and G0 the baseline (or centering)

distribution on Θ. Recall that a randomly generated distribution F from DP (α0G0) is almost

surely discrete and admits the representation

F =

∞∑

i=1

ωi δθi , (11)
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where δz denotes a point mass at z, ω1 = η1, ωi = ηi
∏i−1

k=1(1 − ηk), for i = 2, 3, · · · with θ1, θ2 · · ·

iid from G0 (Sethuraman, 1994). Traditionally, θi was assumed to be scalar or vector-valued taking

values in Rp. To model the observational process via change-points, we conceptually extend θis in

(11) to functions θi ≡ { θi(t) : t = U0, U0 + 1, · · · , U1}. The notations θ, θ(t) and θ, therefore,

will be taken to denote, respectively, a function, the value of θ evaluated at time t and a possible

realization taken by θ(t). These notations will be used throughout the paper subsequently. For an

integer k ≥ 0, θ with k change-points has the form

θ(t) = θl if Tl−1 ≤ t < Tl, (12)

for l = 1, 2, · · · , k + 1 with U0 ≡ T0 < T1 < · · ·Tk < Tk+1 ≡ U1 as seen earlier. The notation

F ∼ DP (α0G0) in this context will be taken to mean

F =
∞∑

i=1

ωi δθi
, (13)

where δz is now a point mass on the step function z, ωis are as before, and the θis are iid from a

distribution G0 on Θ. To specify G0, the baseline distribution on Θ, it is convenient to utilize a

hierarchical structure: (1) Let K ∼ Poisson(λ). (2) Fix an integer w > 0. Given K = k, let

(n1, · · · , nk+1) ∼ Multinomial

(
n0,

1

k + 1
, · · · ,

1

k + 1

)
,

where n0 = U1 − U0 − (k + 1)w = n − 1 − (k + 1)w. (3) Define Tl recursively as T0 = U0,

Tl = nl + Tl−1 + w for l = 1, 2, · · · , k + 1. Given T1, · · · , Tk, generate θ1, · · · , θk+1 iid from the

(univariate or multivariate) density π0 on Rd, and set

θ(t) = θl if Tl−1 ≤ t < Tl, (14)

for l = 1, · · · , k + 1. Note that Tk ≤ t ≤ Tk+1 for l = k + 1, K is the number of change-points, Tls

for l = 1, · · · ,K are the time points when a change is made and nl is the number of time points

in the interval [Tl−1, Tl) for l = 1, · · · ,K + 1. Note that again, for l = K + 1, the interval becomes

[TK , TK+1]. By introducing w > 0, we avoid zero-length interval since each time interval [Tl, Tl+1) is

at least w units. From the hierarchical specification above, it follows that the infinitesimal measure

is given as

G0(dθs) =

(
e−λλk

k!

)(
Γ(n0 + 1)

∏k
i=1 Γ(ni + 1)

(
1

k + 1

)n0

)
k+1∏

l=1

π0(θl) dθl. (15)

3.2 Incorporating Site-specific Variability

The prior development thus far has been on the change point functions θs. The variance parameters

σ2
sl represent the extent of variability of the log rates around the mean trend. Note from Figures 1

(a) and (b) that although Florida and Arizona have the same cancer trends, the variability around

this common mean trend is different for the two states. This necessitates the incorporation of σ2
sl
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as site specific parameters independent of the clustering. In fact, we demonstrate in Section 4,

the exclusion of such consideration (that is, allowing σ to be common for all the sites in a cluster

but different for the different time segments) results in poor clustering of cancer trends. Thus,

for additional flexibility, the likelihood component of Y sl incorporates a site-specific variability

parameter ξs = σ2
sl for all l = 1, 2, · · · , k (that is, one common site-wise variance parameter), for

each s = 1, 2, · · · , N . For the subsequent Bayesian analysis, the parameters ξs ∈ Ξ, where Ξ is its

parameter space, are assumed to be iid from the pdf π1. Note that ξs can be different for each

s, and therefore, are not subject to site-based clustering as the change-point functions θs. The

infinitesimal measure in (15) is now extended to include the site-wise parameters ξs and is given by

G̃0(dθs, dξs) =

(
e−λλk

k!

)(
Γ(n0 + 1)

∏k
i=1 Γ(ni + 1)

(
1

k + 1

)n0

)(
k+1∏

l=1

π0(θl) dθl

)
π1(ξs) dξs. (16)

In what follows, it will be useful to make the following definition: For fixed θs, the infinitesimal

measure

δ(θs, dξs) = δθs
× π1(ξs) dξs (17)

is the product of the point mass measure on θs and the infinitesimal measure π1(ξs) dξs.

Based on the likelihood in (10), the complete hierarchical model specification can now be stated

as follows:

Y |β, K, T , σ ∼ f (18)

θs
iid
∼ F, and (19)

F ∼ DP (α0 G0). (20)

Note that the set (β, K, T , σ) is in one-to-one correspondence with (θ1,θ2, · · · ,θN , ξ) where

ξ = (ξ1, ξ2, · · · , ξN ).

3.3 Bayesian Inference Methodology

To infer θs, the standard practice in DP posterior analysis is to integrate out F from the hierarchical

specification of (18)-(20) (see, for example, Dey et al. (1998)). The likelihood corresponding to the

observables Y in (18) is given by ℓ(Y |θ1,θ2, · · · ,θN , ξ) =
∏N

s=1

∏k+1
l=1 f(Y s, l |θs, ξs) where the

subscript s on k is suppressed. The conditional posterior distribution of the pair (θs, ξs) given the

other pairs (θ−s, ξ−s ) can be derived as

(θs, ξs |θ−s, ξ−s) ∝
k+1∏

l=1

f(Y s, l | θl, ξs)


α0

G̃0(dθs, dξs)

α0 +N − 1
+

1

α0 +N − 1

∑

s′ 6=s

δ(θs′ , dξs′)


 ,

=
qs,0G̃

∗
0(dθs, dξs) +

∑
s′ 6=s qs,s′δ(θs′ , dξs′)

qs,0 +
∑

s′ 6=s qs,s′
, (21)
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where the second line is obtained from the first after normalization. The quantities qs,0 and qs,s′ in

(21) have the expressions

qs,0 = α0

∫

S

∫

Ξ

k+1∏

l=1

f(Y s, l | θl, ξs) G̃0(dθs, dξs), and (22)

qs,s′ =

∫

Ξ

k∗+1∏

l=1

f(Y s, l | θl, ξs) δ(θs′ , dξs′), (23)

where k∗ is the number of change-points in θs′ . The distribution

G̃∗
0(dθs, dξs) =

α0
∏k+1

l=1 f(Y s, l | θl, ξs) G̃0(dθs, dξs)

qs,0

is that of (θs, ξs) when a new realization of (θs, ξs) (i.e., not belonging to any of the previous

clusters) has to be generated. An alternative way of writing (21) in terms of the distinct clusters is

(θs, ξs |θ−s, ξ−s ) =
qs,0G̃

∗
0(dθs, dξs) +

∑N∗

j=1 Nj qs,j δθj

qs,0 +
∑N∗

j=1 Nj qs,j
, (24)

where θj, j = 1, 2, · · · , N∗ are the distinct change-point functions for the N∗ different clusters, Nj

is the number of sites s′ for which θs′ is equal to θj , and qs,j is qs,s′ in (23) with θs′(t) replaced by

θj(t). Note that
∑N∗

j=1Nj = N − 1 since the site s is left out.

Expression (24) explicitly demonstrates the clustering capability of DP. The current value of

θs can be selected to be one of the other θs′ with probability
∑N∗

j=1 Nj qs,j/(qs,0 +
∑N∗

j=1 Nj qs,j),

this positive probability being the reason for possible clustering of sites in terms of θs. Expression

(24) also allows for a new θ∗
s to be generated from the posterior distribution G∗

0; this is the likely

scenario if the temporal observations at site s, W s = {Wst, t = U0, U0 + 1, · · · , U1 }, strongly

support a different change-points function compared to the existing θs′ functions for s′ 6= s. We

note that the above treatment is similar to Gelfand et al. (2005) who extended θl to a realization

of a random field by replacing it with a surface function on a spatial domain. However, Gelfand et

al. (2005) do not consider joinpoint extensions as is done here; see also the related discussion in

the Introduction.

The DP prior introduces two other hyper-parameters, namely α0 and λ, into the inferential

framework. In our analysis α0 is fixed at a known value. We take the prior on λ to be π2. The

priors π0, π1 and π2 are taken to be

π0(θl) ∝ 1, π1(σ
2) = igamma(a1, b1) and π2(λ) = gamma(a2, b2), (25)

where gamma and igamma are the Gamma and inverse Gamma distributions with shape and scale

parameters (a1, b1) and (a2, b2), respectively. The above choices are conjugate to their respective

likelihoods enabling the posteriors to be obtained in closed forms. The reader is referred to the

Discussion section of this paper for the motivation of using a flat prior for θl from the conjugacy
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perspective. It turns out that using a common normal prior for θl does not allow the integrals in

qs,0 to be computed in closed form.

For a complete update of all the unknown parameters, it is convenient to append the current

parameter space with additional variables arising in the definition of G0. The N∗ clusters are

denoted by Cj, j = 1, 2, · · · , N∗. The additional variables (nested within each cluster Cj) are Ls,

Kj , T j and Rj . Ls is the cluster labels of each site with Ls ∈ {1, 2, · · · , N∗}, Kj is the number of

change-points for cluster j, T j is the set of change-points in time such that T j = (T1, T2, · · · , Tk)

when Kj = k, and Rj is the change-points levels such that Rj = (θ1, θ2, · · · , θk+1); the subscript

j is omitted from the ks, T s, and θs to avoid notational complexity when there is no confusion.

Ignoring the computational details for the moment, the updating steps below, at least in principle,

are incorporated into the Gibbs sampler for full posterior inference. Each updating step implicitly

assumes that all other parameters are given, and the update is performed based on the conditional

distribution of the current parameter(s) given the rest. Section 4 and Appendix give explicit

expressions for these conditional distributions as well as procedures for generating samples from

them for specific choices of the likelihood and priors. The updating steps of the Gibbs sampler are:

(1) Update (θs, ξs) (and simultaneously, Ls): The update of (θs, ξs) is carried out via (24).

First, a Bernoulli experiment, generating ‘0’ and ‘1’ with probabilities p = qs,0/(qs,0+
∑N∗

j=1 Nj qs,j

and 1 − p, respectively, is carried out. If ‘0’ results, a new pair (θ∗
s, ξ

∗
s ) is generated from G̃∗

0, N
∗

is increased to N∗ + 1 and a new label is given to Ls. If ‘1’ results, the existing cluster label j

is sampled with probability pj = Nj qs,j/
∑N∗

j=1 Nj qs,j, for j = 1, 2, · · · , N∗. Subsequently, if j∗ is

sampled, θs is set to θj∗, ξs is generated from the density

(
∏k∗+1

l=1 f(Y s, l | θ
∗
l , ξs)) δ(θj∗, dξs)

qs,j∗
,

and Ls is set to j∗; k∗ and θ∗l s are, respectively, the number of change points and mean levels

corresponding to θj∗ . N∗ remains the same unless s was in a cluster with a singleton element in

which case N∗ changes to N∗ − 1. This updating step is cycled once through all the N sites.

(2) Update Kj. Since T j and Rj are nested within each Kj specification, this update really

means updating all of (Kj ,T j,Rj). This is an update conditional on all the site-specific variability

parameters ξ = (ξ1, ξ2, · · · , ξN ). We first update Kj from the posterior marginal of Kj , and

then update T j |Kj , and finally Rj |T j, Kj from their respective conditional distributions. The

posterior marginal probability of Kj = k is proportional to

e−λ λk

k!

∑

(n1,n2,··· ,nk+1)

v(n1, n2, · · · , nk, nk+1) (26)

with

v(n1, n2, · · · , nk+1) = exp

{
k+1∑

l=1

H̃l(nl)

}
Γ(n0 + 1)

∏k+1
l=1 Γ(nl + 1)

, (27)

12



where H̃l(nl) is defined as

H̃l(nl) ≡ log



∫

Rd

∏

s∈Cj

f(Y s, l | θl, ξs )π0(θl) dθl


 ; (28)

the summation in (26) is over all non-negative integers n1, n2, · · · , nk+1 such that
∑k+1

l=1 nl = n0 ≡

U1−U0−(k+1)w. Obtaining the posterior probability of Kj = k requires evaluation of (27) for each

value of k ≥ 0. This could require significant amount of computational time and drastically reduce

the efficiency of the Gibbs chain, but this did not occur for our application. The Appendix gives

more details of these evaluation and generation steps. However, we note that depending on the

choice of the likelihood f(·), the integration in (28) may not have a closed form. Then, alternative

numerical integration methods, such as Laplace approximation, can be considered.

To update T j given Kj = k, note that this is equivalent to updating (n1, · · · , nk+1) with

probabilities p(n1, · · · , nk+1) ∝ v(n1, n2, · · · , nk+1). This is carried out by exhaustively listing of

all such combinations and numerically computing the corresponding probabilities. The update Rj

given T j and Kj is done based on the conditional distribution

(Rj | · · · ) ∝
k+1∏

l=1



∏

s∈Cj

f(Y s, l | θl, ξs )π0(θl)


 (29)

with the k + 1 components of Rj generated independently of each other from their respective

component densities (θl | · · · ) ∝
∏

s∈Cj
f(Y s, l | θl, ξs)π0(θl).

(3) Update ξ. This is carried out using the conditional distribution

(ξs | · · · ) ∝
k+1∏

l=1

f(Y s, l | θl, ξs)π1(ξs) (30)

independently for each s = 1, 2, · · · , N ; in (30), k and θls are the number of change-points and

mean levels corresponding to cluster Cj to which site s belongs. Finally,

(4) Update λ using

π(λ | · · · ) ∝




N∗∏

j=1

e−N∗

j λ λN∗

j kj

(kj !)
N∗

j


 π2(λ), (31)

where kj is the number of change-points corresponding to θj in cluster Cj, N
∗
j is the number of

sites in Cj for j = 1, 2, · · · , N∗.

3.4 Inference based on Posterior Samples

After convergence is established, we take B samples from the posterior distribution to make infer-

ence on all unknown quantities. Let X ∗
b , b = 1, 2, · · · , B be B samples of the posterior obtained

from the Gibbs sampler. Components of X ∗
b include N realizations of step functions θs and ξ (or

equivalently, β,K,T ,σ). Thus, marginal posterior inference can be carried out for each of these

13



components. For example, to infer θs(t) for a particular site s and time point t, we extract all

θs(t) components from each X ∗
b , b = 1, 2, · · · , B. The B realizations of θs(t) are then used to

compute the posterior mean, variance and confidence interval. A similar procedure also works for

N∗ where we can obtain marginal probabilities of N∗ = n∗ for all non-negative integers n∗. Results

for simulation experiments and real data are given in the subsequent sections.

A more challenging inference problem is to obtain results for the clustering tendencies, for

example, the “average” clusters. Note that the output of the Gibbs sampler at each iteration is

a clustering of the N states, and therefore, it is difficult to obtain a summary posterior measure,

such as mean and variance, for the clustering of sites. To get some idea about average clustering

tendencies reflected by the posterior distribution, the following methodology is developed: For every

pair of sites (s1, s2) in {1, 2, · · · , N}, define Db(s1, s2) = 1 if s1 and s2 belong to the same cluster in

X ∗
b , and 0, otherwise, for b = 1, 2, · · · , B. Subsequently, we construct the average distance measure

between the sites s1 and s2 using

dist(s1, s2) = 1− D̄(s1, s2)

where D̄(s1, s2) =
∑B

b=1 Db(s1, s2)/B. Based on dist, an agglomerative clustering algorithm is

performed with the maximum number of clusters threshold in the algorithm fixed at the value of

N∗ for which the posterior probability has the maximum value. The clustering outputs from this

procedure match with our expected scenario. Subsequent sections give results based on real and

validation data.

4 Analysis of Cancer Incidence Rates Revisited

We consider two specific choices of models. The site-specific variability model is given by Model

1 below. In Model 2, we assume that σ2 is cluster-dependent (not site-specific), that is, σ2 is

same over all states in the same cluster (but different for the different clusters). Based on previous

discussion, we can write these two models as follows:

Model 1: Y sl = (β̂l, RSSl)
T , θl = βl, ξs = σ2

Model 2: Y sl = (β̂l, RSSl)
T , θl = (βl, σ

2
l ),

suppressing the subscript s on β̂l and RSSl.

Note that Model 2 is not a subset of Model 1 or vice versa. In Model 2, σ2
l is common to all sites

within a cluster but can vary for the different time intervals [Tl−1, Tl). In Model 1, one common σ2
s

is assumed for each site which does not change within each time segment.

The Appendix gives the model specific expressions used for the Bayesian inference. We run three

Gibbs chains for 10,000 iterations. The convergence is established after 5,000 iterations and we take

2,000 samples from each chain after convergence so that total 6,000 samples are used for further

posterior analysis. Specific values of hyper-parameters are set to a1 = b1 = 1 for π1, a2 = b2 = 1 for

π2. α0 is set to 1/100. The number of clusters of states based on the highest posterior probability

14



Number of clusters 4 5 6 7 8

Posterior Prob 0.0688 0.5153 0.3820 0.0335 0.0003

Table 1:

Posterior probabilities of number of clusters for Model 1

Change-Points Arizona Florida Indiana Missouri

No Change-Points 0.0293 0.0042 0 0

T1 = 1994 0 0 0 0.0010

T1 = 1993 0.0010 0.0002 0.0002 0.0002

T1 = 1992 0.0147 0.0355 0.0355 0.0005

T1 = 1991 0.0657 0.1723 0.1723 0.0028

T1 = 1990 0.0768 0.1533 0.1533 0.0172

T1 = 1989 0.5807 0.6033 0.3892 0.0200

T1 = 1988 0.0662 0.0258 0.3382 0.0975

T1 = 1987 0.0432 0.0007 0.0048 0.7212

T1 = 1986 0.0042 0 0 0.1285

T1 = 1985 0.0010 0 0 0.0032

Two Change-Points 0.1033 0 0.0113 0.0025

Three Change-Points 0.0118 0.0045 0.0172 0.0055

Table 2:

Posterior probabilities of a change-point for Model 1

is found to be N∗ = 5; see Table 1 for posterior probabilities. Using the posterior estimate of N∗,

we use the clustering methodology explained in section 3.4 to cluster states into 5 groups.

As mentioned in Introduction, we expect Florida and Arizona to belong to the same cluster while

Indiana and Missouri to belong in another. This is what is revealed from the analysis. Marginal

posterior analysis on the number of change-points for each state revealed that one change-point

corresponds to the highest probability. Further, the posterior probabilities of the time intervals

corresponding to no change-point and a single change-point are given in Table 2 for each of the

four states. The entries in Table 2 is the marginal posterior probabilities corresponding to the most

significant partitions of the interval [1969, 2006] based on output of the Gibbs sampler. Note that

both Arizona and Florida showed one change-point, T1 = 1989 while for Missouri and Indiana, the

change-point was T1 = 1987. Corresponding to these change-points, the mean posterior estimates

of σs (site-wise) and βl (cluster-wise) is given in Table 3.

Next, we demonstrate the superiority of Model 1 over Model 2 based on predictive analysis.

A new realization of Wst, W
∗
st, is obtained by sampling from the normal distribution with mean

αl + βl t and variance σ2
s where βl and σ2

s are posterior realizations from the Gibbs chain and αl is

given from the data for the corresponding time interval and site. The B values of W ∗
st are then used
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State σs Change-Point(s) (β1, β2)

Arizona 0.0416 T1 = 1989 (0.0209,−0.0107)

Florida 0.0182 T1 = 1989 (0.0196,−0.0118)

Indiana 0.0297 T1 = 1987 (0.0297, 0.00008)

Missouri 0.0292 T1 = 1987 (0.0295, 0.00006)

Table 3:

Posterior outputs for Model 1
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Figure 2: Examples of states belonging to different clusters from the implementation of the change-

point methodology. The bands around the observed values (age-adjusted cancer rates) are the 95%

predictive credible intervals based on Model 1.
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Figure 3: The bands around the observed values (age-adjusted cancer rates) are the 95% predictive

credible intervals based on Model 2.

to construct the 95% credible predictive interval. The confidence bands generated are shown in

Figure 2 in the original scale. A similar procedure is repeated for Model 2 to obtain the confidence

bands shown in Figure 3. The better model will be the one that detects at least one change-point

and that gives narrower confidence bands. Note that change-points are not detected and the width

of the predictive confidence bands are too large for Model 2. These results indicate that there is

significant evidence from the data to suggest heterogeneous (i.e., site-specific) variability around

the mean within clusters.

Next, the cluster with the highest drop in cancer incidence rate is identified. The difference

β2−β1 in Table 4 is computed using posterior samples for each of the 5 clusters based on Model 1.

Table 4 also gives the corresponding 95% credible intervals of the 5 clusters for β2 − β1. Note that

the top cluster has a drop in rates that is significantly different from clusters 2, 4 and 5. States in

this cluster consists of Colorado, Georgia, Oregon and Virginia. One subsequent investigation may,

therefore, be to identify the underlying reasons for the highest drop in cancer rates, and to identity

and implement effective policies or programs in these states to the other states in the nation.
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Cluster Posterior Mean of β2 − β1 95% Credible Interval

1 −0.0370 (−0.0397,−0.0336)

2 −0.0318 (−0.0341,−0.0298)

3 −0.0316 (−0.0385,−0.0294)

4 −0.0314 (−0.0337,−0.0298)

5 −0.0307 (−0.0329,−0.0291)

Table 4:

Clusters (from the agglomerative procedure) with the highest drop in cancer incidence rates

measured in terms of β2 − β1.

5 Validation Results

To validate our data analysis, a simulation experiment is carried out with a total of N = 100 sites

on a 10 × 10 lattice, L = { (r, c) : 1 ≤ r, c ≤ 10, r, c integers}. The lattice is partitioned into

4 sub-regions, that is, L = ∪4
j=1Lj, where Lj , for j = 1, 2, 3 and 4 represent the true clusters.

The sub-regions {Lj }
4
j=1 are given as follows: L1 = { (r, c) : 1 ≤ r ≤ 7 and 1 ≤ c ≤ 7 },

L2 = { (r, c) : 1 ≤ r ≤ 7 and 8 ≤ c ≤ 10 }, L3 = { (r, c) : 8 ≤ r ≤ 10 and 1 ≤ c ≤ 7 } and

L4 = { (r, c) : 8 ≤ r ≤ 10 and 8 ≤ c ≤ 10 }. It follows that the sub-regions are rectangular with

49, 21, 21 and 9 sites, respectively, corresponding to j = 1, 2, 3 and 4. The number of time points

taken is 20 with U0 = 1 and U1 = 20. The functional form of θs for s ∈ Lj is taken to be a step

function

θs(t) = θj l

for the l-th time subinterval, l = 1, 2, · · · ,Kj+1; recall that Kj denotes the total number of change-

points (corresponding to Kj +1 change-point time intervals) in Lj. The following choices are made

corresponding to each Lj. For L1, K1 = 2, θ1,1 = 20, θ2,1 = 15 and θ3,1 = 10. The corresponding

change-points are T1 = 6, T2 = 14. For L2, K2 = 2, θ1,2 = 10.03, θ2,2 = 20.02 and θ3,2 = 30.05.

The corresponding change-points are T1 = 6, T2 = 14. For L3, K3 = 1, θ1,3 = 10.02, θ2,3 = 25.04

and the corresponding change-point is T1 = 8. Finally, for L4, K4 = 1, θ1,4 = 10, θ2,4 = 25 and

the corresponding change-point is T1 = 8. The site-wise variance parameter is common for all the

sites in L and taken to be σ2 = 22. In each site s and time t, we generate a data from N (θs(t), σ
2)

independently. With this rather artificial specification of θs(t) and σ2, we expect that L3 and L4

are merged into one cluster.

Specific values of hyper-parameters for π2 are set to a2 = b2 = 1 and α0 is set to 1/100. Three

Gibbs chains are started from initial estimates of clusters that represent over-dispersion. Our choice

of the monitoring statistic is θs(t) of some fixed sites and time. θs(t) retains the same interpretation

across different realizations of kj and θj l. The assessment of convergence is carried out based on

the methodology of Gelman and Rubin and convergence is achieved after 2, 000 iterations. On a

computer with Intel Core i7 CPU with 2.93GHz with 4GB RAM, each 1, 000 iterations of the Gibbs
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site time mean standard error 95% Credible interval

4 20.0079 0.1068 (19.8091, 20.2170)

(1,1) 10 15.0418 0.0632 (14.9206, 15.1638)

18 10.0893 0.0703 (9.9523, 10.2241)

4 9.9038 0.1845 (9.5570, 10.2166)

(9,2) 10 24.9587 0.0792 (24.8198, 25.1135)

18 24.9587 0.0792 (24.8198, 25.1135)

4 9.9038 0.1845 (9.5570, 10.2166)

(8,8) 10 24.9587 0.0792 (24.8198, 25.1135)

18 24.9587 0.0792 (24.8198, 25.1135)

Table 5:

Posterior estimates of θs(t) for the simulated data

chain took about 73 minutes.

Table 5 gives posterior means, posterior standard errors (square root of posterior variance) and

95% credible intervals for three example sites (1, 1), (9, 2) and (8, 8) and the time points t = 4, 10

and 18 to demonstrate the methodology. Initially, (1, 1) is in L1, (9,2) is in L3 and (8,8) is in L4.

Note that all true values lie inside their respective credible intervals and θs(t) values for site (9,2)

and (8,8) are same since they became in the same cluster.

6 Discussion

In this paper, we propose change-point models for spatio-temporal data that can detect change-

points over time and group spatial sites into several clusters with respect to their change-point

functions. Clustering is achieved by using a Dirichlet process prior on the space of step functions

over time. The model was developed to analyze state-wise age adjusted rates to find local change-

points and clusters that have similar changes.

Our analysis based on predictive distribution demonstrate that Model 1 is superior to Model

2. Thus, model flexibility is achieved far more by incorporating site specific parameters which

are nuisance to the clustering compared to adding extra parameters for clustering. The latter

action may in fact distort true underlying trends as evidenced by Figure 3. Model 2 was our

initial extension since all the expressions for qs,0, qs,j, H̃l(nl) and Hl(nl) (see Appendix) could be

obtained in closed form based on conjugate prior specifications. This was not the case for Model 1

and thus, two separate conditional steps (namely, (29) and (30)) had to be introduced for Model 1.

It was fortunate that in the case of a singleton cluster, namely, site s (again due to conjugate prior

specification), the integration with respect to θls and ξs was obtainable in closed form. Generating a

new realization from qs,0 necessitated the marginal distribution of ξs be obtained even if numerically.

The use of the flat prior for θl (or, βls) in (25) was motivated from this perspective. In the case
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Figure 4: Age-adjusted lung cancer mortality rates and Tobacco consumption (billion pieces) in the

US from 1969 to 2006. Tobacco consumption data is from Tobacco Yearbook, The US Department

of Agriculture.

of non-conjugacy, we expect the Bayesian computations to be more involved and time consuming.

The Laplace approximation of the integration is a possible alternative to avoiding time consuming

sampling approaches such as the (multidimensional) griddy grid. However, we expect the Laplace

approximation to work well when the j-th cluster Cj consists of a moderate to large number of sites,

but not for singleton clusters. To investigate this issue for more general non-conjugate likelihood

and priors is one avenue for future research.

For the real application, we find that state-level and national level age-adjusted lung cancer

mortality rates show a clear change-point around late 1980s to early 1990s. Some states like

Florida and Arizona follow similar patterns as national level rates while some states like Missouri

and Indiana show different patterns from the national level rates (see Figure 1). In particular,

Missouri and Indiana have smaller rate of changes after the change-point compared to Florida and

Arizona as well as national level (see Table 3). Indeed, we can argue that lung cancer mortality rates

have not changed much after 1990s for these states, while the national level seems to significantly

decrease. This further indicates that we need different attention on each individual state. Another

avenue for future research is to incorporate covariate information into the clustering mechanism.

For example, tobacco consumption is related to lung cancer mortality rates with a certain (possibly

heterogeneous) time lag. Tobacco consumption has decreased starting the early 1980s while age-

adjusted lung cancer mortality rates have decreased starting from the early 1990s (see Figure 4).

We intend to develop models to determine if this national level comparison still holds at the state

or cluster levels. The analysis may reveal different relationships between tobacco consumption

and lung cancer mortality rates in different sub-groups, or it may provide overall proof of the

tobacco-cancer relationship at the national level.
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Appendix A: Calculations for Model 1

We first consider the update of (θs, ξs | · · · ) according to (24). The expression for qs,0 in (24) and

(22) can be obtained as

qs,0 = α0

∞∑

k=0

∑

(n1,··· ,nk+1)

(
k+1∏

l=1

exp {Hl(nl)}

)
n0!

n1! · · · nk+1!

(
1

k + 1

)n0

P (K = k), (32)

where Hl(nl) is given by

Hl(nl) = log

{∫ ∞

0

∫ ∞

−∞

f(Y sl |βl, σ
2
s)π0(βl)π1(σ

2
s) dβl dσ

2
s

}
. (33)

Under Model 1 and prior choices given in Section 4, Hl(nl) has a closed form expression, namely,

Hl(nl) =
(ml

2
− 1
)
logRSSsl + log Γ

(ml

2
+ a1

)
−
(ml

2
+ a1

)
log

(
RSSsl

2
+ b−1

1

)

−
ml

2
log 2− log Γ

(ml

2

)
− log Γ (a1)− a1 log b1,
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where RSSsl is the site-specific residual sum of squares on the time interval [Tl−1, Tl) and ml =

Tl −Tl−1 − 2. The outer two sums in (32) are numerically evaluated based on an exhaustive listing

of (n1, n2, · · · , nk+1) given k, and then summed over k ≥ 0. For a new realization from the first

component in (24), the generation procedure is according to equations (26-30) but with two distinct

differences: First, cluster Cj is taken to be the singleton site {s} and second, ξs is also integrated

out in the expression of H̃l(nl) in (28); thus, H̃l(nl) is replaced by Hl(nl) above. The number of

change points k is generated from (26) based on exhaustive numerical tabulation and summation

over different combinations of (n1, n2, · · · , nk). Given k, (n1, n2, · · · , nk) is generated from (27)

based on the stored values of v(n1, n2, · · · , nk). To generate (β1, β2, · · · , βk+1, σ
2
s), based on (29)

and (30), we note that two separate conditional updates are unnecessary. The marginal of σ2
s can

be explicitly determined by integrating out (β1, · · · , βk+1) giving π(σ2
s) ∼ igamma(a0, b0), where

a0 =
∑k+1

l=1
ml

2 + a1 and b0 =
(∑

l
RSSsl

2 + b−1
)−1

. Thus, we generate σ2
s from igamma(a0, b0)

distribution first, and then given σ2
s , generate βl ∼ N(β̂l, vlσ

2
s) independently for l = 1, 2, · · · , k+1.

This simplification is not available for a non-singleton cluster of sites Cj and in this case, the two

separate conditional updates are needed.

In case one of the other qs,j components in (24) is selected, the site s is included into the

jth cluster and we generate the site-specific variability parameter σ2
s from the density π(σ2

s) ∝(∏k+1
l=1 f(Y sl |βl, σ

2
s)
)
π1(σ

2
s) (for fixed βls) which can be seen to be the igamma(a0, b0) distribu-

tion with a0 =
∑

l
ml+1

2 + a1 and b0 =
(∑k+1

l=1
1
2vl

(β̂l − βl)
2 +

∑
l
RSSsl

2 + b−1
1

)−1
. The analytic

expression of qs,j for the jth cluster is

log qs,j =
k∗+1∑

l=1

((ml

2
− 1
)
logRSSs,l −

1

2
log(2π)−

1

2
log vl −

ml

2
log 2− log Γ

(ml

2

))

+ log Γ

(
∑

l

ml + 1

2
+ a1

)
−

(
∑

l

ml + 1

2
+ a1

)
log

(
∑

l

RSSs,l

2
+

1

2

∑

l

(β̂l − βl)
2

vl
+ b−1

1

)

− log Γ(a1)− a1 log b1,

where k∗ is the number of change points in the jth cluster; vl, RSSs,l and β̂l are obtained from

the observations based on the site s and the time interval [Tl−1, Tl) while βl is from the jth cluster

information.

We now give the details of updating (Kj ,T j,Rj) in the jth cluster given ξ. We have the

following analytic expression for H̃l(nl) in (28):

H̃l(nl) = −
N∗

j

2
log(2πvl)−

1

2

∑

s

log σ2
s +

1

2
log 2π −

1

2
log

(
∑

s

(vlσ
2
s)

−1

)
+

1

2

(∑
s

β̂s,l

vlσ2
s

)2

∑
s(vl σ

2
s)

−1

−
1

2

∑

s

(
β̂2
s,l

vlσ2
s

)
+
∑

s

log f0(RSSs,l|σ
2
s).

The number of change points, k, and the time widths (n1, n2, · · · , nk) are generated as before
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based on exhaustive enumeration. The generation of βl is carried out independently for each

l = 1, 2, · · · , k+1 using (βl| · · · ) ∼ N(µβl
, ν2βl

), where ν2βl
=
(∑

s(vlσ
2
s)

−1
)−1

, and µβl
= ν2β1

∑
s

β̂s,l

vlσ2
s
.

Given βls, the site specific parameters σ2
s are updated independently for each s ∈ Cj based on the

conditional distribution (σ2
s | · · · ) ∝

(∏k+1
l=1 f(Y s, l |βl, σ

2
s)
)
π1(σ

2
s) which is igamma(a0, b0) with

a0 =
∑

l
ml+1

2 + a1 and b0 =
(∑k+1

l=1
1
2vl

(β̂s,l − βl)
2 +

∑
l
RSSs,l

2 + b−1
1

)−1
.

Appendix B: Calculations for Model 2

For Model 2, there are k + 1 cluster specific variability parameters σ2
l , l = 1, 2, · · · , k + 1. The

expression for qs,0 in (22) can be re-written as

qs,0 = α
∞∑

k=0

∑

(n1,··· ,nk+1)

(
k+1∏

l=1

exp {Hl(nl)}

)
n0!

n1! · · ·nk+1!

(
1

k + 1

)n0

P (K = k), (34)

where Hl(nl) is given by

Hl(nl) = log

{∫ ∞

0

∫ ∞

−∞

f(Y s, l |βl, σ
2
l )π0(βl)π1(σ

2
l ) dβl dσ

2
l

}
. (35)

Under Model 2 and previously mentioned prior choices, the integrals with respect to βl and σ2
l can

be evaluated in closed form giving

Hl(nl) =
(ml

2
− 1
)
logRSSs + log Γ

(ml

2
+ a1
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−
(ml

2
+ a1
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log

(
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2
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−
ml

2
log 2− log Γ

(ml

2

)
− log Γ (a1)− a1 log b1.

By integrating out βl, we generate σ2
l s independently from their marginal distributions: π(σ2

l ) ∼

igamma(a0, b0), where a0 = ml

2 + a1 and b0 =
(
RSSsl

2 + b−1
)−1

. After generating σ2
l , generate

βl ∼ N(β̂l, vlσ
2
l ) independently for l = 1, 2, · · · , k + 1.

The analytic expression of qs,j for the jth cluster is given by

log qs,j = −
1

2

k∗+1∑

l=1

log(2πvl)−
3

2
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l=1

log σ2
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l

where k∗ is the number of change points in the jth cluster; as before, vl, RSSs,l and β̂l are obtained

from the observations based on the site s and the jth cluster information.

For updating (Kj ,T j,Rj) in the case of Model 2, we can avoid the two separate conditional

steps since βls can be integrated out to give closed form expressions for the marginal of σ2
l , for
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l = 1, 2, · · · , k + 1. The expression for H̃l(nl) is

H̃l(nl) =
(ml

2
− 1
)∑

s

logRSSs −
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.

Each σ2
l is updated independently based on the marginal distribution (σ2

l | · · · ) ∼ igamma(a0, b0)

where a0 = N∗
j
ml+1

2 + a1 −
1
2 and b0 =

(
b−1
1 + 1

2

∑
sRSSs −

(
∑

s β̂s,l)
2
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j
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∑
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)−1

. Then, βls

are updated independently based on βl ∼ N(µβl
, ν2βl

) with µβl
= 1

N∗

j

∑
s β̂s,l and ν2βl

=
vlσ

2
l
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.
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