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Abstract: Consider a stationary Gaussian random field on Rd with the

spectral density f(λ) that satisfies f(λ) ∼ c |Hλ|−θ as |λ| → ∞ for some

nonsingular matrix H. The parameters c and θ control the tail behavior of

the spectral density. c is related to a microergodic parameter and θ is related

to a fractal index. For data observed on a grid, we propose estimators of

c and θ by minimizing an objective function, which can be viewed as a

weighted local Whittle likelihood and study their asymptotic properties

under fixed-domain asymptotics.
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1. Introduction

With recent advances in technology, we are facing enormous amount of data

sets. When data sets are observed on a regular grid, spectral analysis is popular
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due to fast computation using the Fast Fourier Transform. For example, pa-

rameters of the spectral density of a stationary lattice process can be estimated

using a Whittle likelihood [Whittle (1954)], which is more efficient in terms of

computation compared to the maximum likelihood method on a spatial domain.

Spatial data on a grid often can be regarded as a realization of a random field

on a lattice. That is, for a random field, Z(s) on Rd, data are observed at ϕJ

for J ∈
∏d

j=1{1, · · · ,mj}, where ϕ is a grid length. When ϕ is fixed, asymptotic

properties of parameter estimates on a spectral domain have been studied by

many authors [see, e.g., Whittle (1954), Guyon (1982, 1995), Boissy et al. (2005)

and Guo et al. (2009)]. For example, Guyon (1982) studied asymptotic properties

of estimators using a Whittle likelihood or its variants when a parametric model

is assumed for the spectral density of a stationary process on a lattice. Guo et

al. (2009) studied asymptotic properties of estimators of long-range dependence

parameters for anisotropic spatial linear process using a local Whittle likelihood

method in which a parametric form near zero frequency is only assumed. This

is an extension of Robinson (1995) for time series.

For spatial data, however, it is often natural to assume that the data are

observed on a bounded domain of interest. More observations on the bounded

domain implies that the distance between observations, ϕ, is decreasing as the

number of observations increases. This sampling scheme requires a different

asymptotic framework, called fixed-domain asymptotics [Stein (1999)] (or infill

asymptotics [Cressie (1993)]). The classical asymptotic framework when the

sampling distance is fixed (i.e. ϕ is fixed) is called increasing-domain asymptotics

to differentiate from fixed-domain asymptotics.

It has been shown that the asymptotic results under fixed-domain asymp-

totics can be different from the results under increasing-domain asymptotics [see,

e.g., Mardia and Marshall (1984), Ying (1991, 1993), Zhang (2004)]. For exam-

ple, Zhang (2004) showed not all parameters in the Matérn covariance function

of a stationary Gaussian random field on Rd are consistently estimable when d is

smaller than or equal to 3, while a reparameterized quantity of variance and scale

parameters can be estimated consistently by the maximum likelihood method.

On the other hand, the maximum likelihood estimators (MLEs) of variance and

scale parameters for a stationary Gaussian process under increasing-domain

asymptotics are consistent and asymptotically normal [Mardia and Marshall

(1984)]. Although not all parameters can be estimated consistently under fixed-

domain asymptotics, a microergodic parameter can be estimated consistently

[see, e.g., Ying (1991, 1993), Zhang (2004), Zhang and Zimmerman (2005), Du

et al. (2009), Anderes (2010)]. The microergodicity of functions of parameters
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determines the equivalence of probability measures and a microergodic parame-

ter is the quantity that affects asymptotic mean squared prediction error under

fixed-domain asymptotics. [Stein (1990a, 1990b, 1999)].

Although there have been more asymptotic results available recently under

fixed-domain asymptotics, it is still a very few in contrast with vast literature

on increasing-domain asymptotics. Also, most results are for specific models of

covariance functions. For example, Ying (1991, 1993) and Chen et al. (2000)

studied asymptotic properties of estimators for a microergodic parameter in the

exponential covariance function, while Zhang (2004), Loh (2005), Kaufman et al.

(2008), Du et al. (2009) and Anderes (2010) investigated asymptotic properties

of estimators for the Matérn covariance function. Moreover, these asymptotic

results are established in the spatial domain. Asymptotic work in the spec-

tral domain are even less under fixed-domain asymptotics. Stein (1995) studied

asymptotic properties of a spatial periodogram of a filtered version of a station-

ary Gaussian random field. Lim and Stein (2008) extended results of Stein (1995)

and showed asymptotic normality of a smoothed spatial cross-periodogram un-

der fixed-domain asymptotics. Regarding the parameter estimation in the spec-

tral domain under fixed-domain asymptotics, Chan et al. (1995) proposed a

periodogram-based estimator of the fractal dimension of a stationary Gaussian

random field when d = 1.

In this paper, we propose estimators of parameters that control the tail be-

havior of the spectral density for a stationary Gaussian random field when the

data are observed on a grid within a bounded domain and study their asymptotic

properties under fixed-domain asymptotics. Let f(λ) be the spectral density of

a stationary Gaussian random field, Z(s) on Rd and we assume that

f (λ) ∼ c |Hλ|−θ
as |λ| → ∞, (1.1)

where | · | is a usual Euclidean norm, H is a nonsingular matrix and θ > d to

ensure integrability of f . That is, we assume a power law for the tail behav-

ior of the spectral density and do not assume any specific parametric form of

the spectral density. Also, this assumption allows a wide range of anisotropic

spectral densities by introducing H. The proposed estimators are obtained by

minimizing an objective function that can be viewed as a weighted local Whittle

likelihood, in which Fourier frequencies near a pre-specified non-zero frequency

are considered. This approach is similar to the local Whittle likelihood method

introduced by Robinson (1995) for estimating a long-range dependence parame-

ter in time series analysis. For a stationary lattice process, Robinson (1995) pro-

posed to estimate a long-range dependence parameter by minimizing a Whittle
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likelihood over Fourier frequencies near zero since the long-range dependence

parameter controls the behavior of the spectral density near zero. Meanwhile,

we are interested in estimating parameters that govern the spectral density of

a random field when the frequency is very large so that we need to focus on

Fourier frequencies that are away from zero.

We establish consistency and asymptotic normality of an estimator of c and

an estimator of θ, respectively, when the other parameter is known. The param-

eter c is related to a microergodic parameter. For example, consider the Matérn

spectral density given as

f(λ) =
σ2α2ν

πd/2(α2 + |λ|2)ν+d/2
. (1.2)

The Matérn spectral density has three parameters, (σ2, α, ν), where σ2 is the

variance parameter, α is the scale parameter and ν is the smoothness parameter.

Since the Matérn spectral density satisfies

f(λ) ∼ σ2α2ν

π
d
2

|λ|−(2ν+d)

as |λ| → ∞, we have c ≡ σ2α2ν/πd/2 and θ ≡ 2ν+d, and σ2α2ν is a microergodic

parameter. Thus, estimating σ2α2ν when ν is known is equivalent to estimate

c when θ is known. There are several references that investigate estimation

of σ2α2ν in the spatial domain. Zhang (2004) showed that σ2 and α can be

estimated only in the form of σ2α2ν under fixed-domain asymptotics when ν is

known and d ≤ 3. Du et al. (2009) investigated asymptotic properties of the

MLE and a tapered MLE of σ2α2ν when ν is known, α is fixed and d = 1 for a

stationary Gaussian random field. Anderes (2010) proposed an increment-based

estimator of σ2α2ν for a geometric anisotropic Matérn covariance function and

showed that α can be estimated separately when d > 4.

The parameter θ is related to the fractal index (or fractal dimension). For

example, for a stationary Gaussian random field, Z(s), s ∈ Rd, suppose that its

covariance function C(t) satisfies

C(t) ∼ C(0)− k|t|α as |t| → 0 (1.3)

for some k and 0 < α ≤ 2. In this case, α is the fractal index that governs

the roughness of sample paths of a random field and the fractal dimension D

becomes D = d + (1 − α/2). This follows from Adler (1981, Chapter 8) or

Theorem 5.1 in Xue and Xiao (2010) where more general results are proven for

anisotropic Gaussian random fields. When α = 2, it is possible that the sample
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function may be differentiable. This can be determined by the smoothness of

C(t) or in terms of the spectral measure of Z(s) (see, e.g., Adler and Taylor

(2007) or Xue and Xiao (2010) for further information). By an Abelian type

theorem, (1.3) holds if the corresponding spectral density satisfies

f(λ) ∼ k′|λ|−(α+d) as |λ| → ∞

so that θ ≡ α+d in our settings. There is a number of references that construct

estimators based on fractal properties of processes. For example, Constantine

and Hall (1994) estimated effective fractal dimension using variogram for a

non-Gaussian stationary process on R. Chan and Wood (2004) introduced an

increment-based estimator for the fractal dimension of a stationary Gaussian

random field on Rd with d = 1 or 2. Compared to these works in the spatial

domain, the work by Chan et al. (1995) to estimate the fractal dimension is

done in the spectral domain.

In Section 2, we explain our settings and assumptions, and in Section 3 intro-

duce our estimators and state the main theorems for the asymptotic properties of

the proposed estimators. Section 4 discusses some issues related to our approach

and possible extension of the current work. All proofs are given in Appendices.

2. Preliminaries

In this paper, we consider a stationary Gaussian random field, Z(s) on Rd with

the spectral density f(λ) that satisfies (1.1). Define a lattice process Yϕ(J) by

Yϕ(J) ≡ Z(ϕJ), where J ∈ Zd, the set of d-dimensional integer-valued vectors.

The corresponding spectral density of Yϕ(J) is

f̄ϕ(λ) = ϕ−d
∑
Q∈Zd

f

(
λ+ 2πQ

ϕ

)
,

for λ ∈ (−π, π ]d. f̄ϕ(λ) has a peak near the origin which is getting higher

as ϕ → 0. This causes a problem to estimate the spectral density using the

periodogram [Stein (1995)]. To alleviate the problem, we consider a discrete

Laplacian operator to difference the data, which is proposed by Stein (1995).

The Laplacian operator is defined by

∆ϕZ(s) =
d∑

j=1

{Z(s+ ϕ ej)− 2Z(s) + Z(s− ϕ ej)} ,

where ej is the unit vector whose jth entry is 1. Depending on the behavior of

the spectral density at high frequencies, we need to apply the Laplacian operator
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iteratively to control the peak near the origin. Define Y τ
ϕ (J) ≡ (∆ϕ)

τ
Z(s) as

the lattice process obtained by applying the Laplacian operator τ times. Then

its corresponding spectral density becomes

f̄ τ
ϕ (λ) =


d∑

j=1

4 sin2(λj/2)


2τ

f̄ϕ(λ). (2.1)

The limit of f̄τ
ϕ (λ) as ϕ → 0 after scaling by ϕd−θ is

ϕd−θf̄τ
ϕ (λ) → c


d∑

j=1

4 sin2(λj/2)


2τ ∑

Q∈Zd

|H(λ+ 2πQ)|−θ

for λ ̸= 0. Define for λ ∈ (−π, π]d,

gc,θ (λ) = c


d∑

j=1

4 sin2
(
λj

2

)
2τ

(2.2)

×
∑

Q∈Zd

|H(λ+ 2πQ)|−θ I
(λ̸=0)

,

where IA = 1 if A is true and zero, otherwise. The limit function, gc,θ (λ) is

integrable by choosing τ such that 4τ−θ > −d. When d = 1, simple differencing

is preferred as discussed in Stein (1995). Then, 4τ will be replaced with 2τ in

our results in Section 3.

Now suppose that Z(s) is observed on the lattice ϕJ . More specifically, we

assume that we observe Y τ
ϕ (J) at J ∈ Tm = {1, ...,m}d after differencing Z(s)

using the Laplacian operator τ times. We further assume that ϕ = m−1 so that

the number of observations increases within a fixed observation domain. The

spectral density of Y τ
ϕ (J) can be estimated by a periodogram which is defined

using a discrete Fourier transform of the data. That is, periodogram is defined

by

Iτm(λ) = (2πm)−d |D(λ)|2 ,

where D(λ), the discrete Fourier transform of the data, is given as

D(λ) =
∑

J∈Tm

Y τ
ϕ (J) exp{−iλTJ}.

We consider the periodogram only at Fourier frequencies, 2πm−1J for J ∈ Tm ≡
{−⌊(m− 1)/2⌋, · · · ,m− ⌊m/2⌋}d, where ⌊x ⌋ is the largest integer not greater
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than x. A smoothed periodogram at Fourier frequencies is defined by

Îτm

(
2πJ

m

)
=
∑

K∈Tm

Wh(K)Iτm

(
2π(J +K)

m

)
,

with weights Wh(K) given by

Wh(K) =
Λh (2πK/m)∑

L∈Tm
Λh (2πL/m)

, (2.3)

where

Λh(s) =
1

h
Λ
(s
h

)
I{||s ||≤h}

for a symmetric continuous function Λ on Rd that satisfies Λ(s) ≥ 0 and Λ(0) >

0 and IA is the indicator function of the set A. The norm || · || is defined by

|| s || = max{|s1|, |s2|, ..., |sd|}.
For positive functions a and b, a(λ) ≍ b(λ) for λ ∈ A means that there

exist constants C1 and C2 such that 0 < C1 ≤ a(λ)/b(λ) ≤ C2 < ∞ for all

possible λ ∈ A. For asymptotic results in this paper, we consider the following

assumption on the spectral density f (λ).

Assumption 1. For a stationary Gaussian random field Z(s) on Rd, the spec-

tral density f(λ) satisfies

(A) f (λ) ∼ c |Hλ|−θ
as |λ| → ∞, for some c > 0, θ > d and a

nonsingular matrix H,

(B) f (λ) is twice differentiable and there exists a positive constant C such

that for |λ| > C,

f(λ) ≍ (1 + |λ|)−θ
,

∣∣∣∣ ∂λj
f(λ)

∣∣∣∣ ≍ (1 + |λ|)−(θ+1) and (2.4)∣∣∣∣ ∂2

λjλk
f(λ)

∣∣∣∣ ≍ (1 + |λ|)−(θ+2)

for j, k = 1, ..., d.

3. Main Results

Asymptotic properties of a spatial periodogram and a smoothed spatial peri-

odogram under fixed-domain asymptotics were investigated by Stein (1995) and

Lim and Stein (2008). They assume that the spectral density f is twice dif-

ferentiable and satisfies (2.4) for all λ ∈ Rd, which implies that the spectral
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density f(λ) behaves like (1 + |λ|)−θ for all λ. This is much stronger con-

dition than Assumption 1. This stronger condition allows to find asymptotic

bounds for the expectation, variance and covariance of a spatial periodogram

at Fourier frequency 2πJ/m by m and J for ∥J∥ ̸= 0. Consistency and asymp-

totic normality of a smoothed spatial periodogram at Fourier frequency 2πJ/m,

however, are only available when lim 2πJ/m = µ ̸= 0, that is, J should not

be close to zero asymptotically. Since we make use of asymptotic properties of

a smoothed spatial periodogram at such Fourier frequency, we extend those re-

sults in Stein (1995) and Lim and Stein (2008) under Assumption 1. We focus

on only a smoothed spatial periodogram in the following theorem, but results

for a smoothed spatial cross-periodogram can be shown similarly. Throughout

the paper, let
p−→ denote the convergence in probability and

d−→ denote the

convergence in distribution.

Theorem 3.1. Suppose that the spectral density f of a stationary Gaussian

random field Z(s) on Rd satisfies Assumption 1. Also suppose that 4τ > θ − 1

and h = Cm−γ for some C > 0 where γ satisfies max{(d − 2)/d, 0} < γ < 1.

Further, assume that limm→∞ 2πJ/m = µ and 0 < ∥µ∥ < π. Let η = d(1−γ)/2.

Then, we have

Îτm (2πJ/m)

f̄ τ
ϕ (2πJ/m)

p−→ 1 (3.1)

and

mη
(
m−(d−θ)Îτm (2πJ/m)− gc,θ(µ)

)
(3.2)

d−→ N

(
0,

Λ2

Λ2
1

(
2π

C

)d

g2c,θ(µ)

)
,

where Λr =
∫
[−1,1]d

Λr(s)ds.

Remark 3.1. gc,θ is integrable under 4τ > θ−d which is satisfied by the condi-

tion 4τ > θ−1. 4τ > θ−1 is necessary to show E
(
Îτm (2πJ/m) /f̄ τ

ϕ (2πJ/m)
)

→ 1

and the condition max{(d− 2)/d, 0} < γ < 1 is needed to show

V ar
(
Îτm (2πJ/m) /f̄ τ

ϕ (2πJ/m)
)

→ 0 so that (3.1) can be shown.

To estimate parameters, c and θ, we consider the following objective function

to be minimized.

L(c, θ) =
∑

K∈Tm

Wh(K)

{
log
(
md−θgc,θ (2π(J +K)/m)

)
(3.3)

+
1

md−θ

Iτm(2π(J +K)/m)

gc,θ(2π(J +K)/m)

}
,
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where Wh(K) is given in (2.3). In L(c, θ), 2πJ/m is any given Fourier frequency

that satisfies ∥J∥ ≍ m so that 2πJ/m is away from 0.

L(c, θ) can be viewed as a weighted local Whittle likelihood. If Λ is a nonzero

constant function, Wh(K) ≡ 1/|K| for K ∈ K, where K = {K ∈ Tm :

||2πK/m|| ≤ h} and |K| is the number of elements in the set K. Then, L(c, θ)

is the form of a local Whittle likelihood for the lattice data {Y τ
δ (J),J ∈ Tm} in

which the true spectral density is replaced with md−θgc,θ. Note that gc,θ(λ) is

the limit of the spectral density of Y τ
δ (J) after scaling by m−(d−θ) for non-zero

λ when ϕ = m−1. The summation in L(c, θ) is over the Fourier frequencies near

2πJ/m by letting h → 0 as m → ∞. While a local Whittle likelihood method

to estimate a long-range dependence parameter for time series considers Fourier

frequencies near zero, we consider Fourier frequencies near a pre-specified non-

zero frequency. For example, by choosing J such that ⌊2πJ/m⌋ = (π/2)1d,

where 1d is the d-dimensional vector of ones, L(c, θ) considers frequencies only

near (π/2)1d.

For the estimation of c, we minimize L(c, θ) with a known θ. Thus, the pro-

posed estimator of c when θ is known as θ0 is given by

ĉ = argmin
c∈C

L(c, θ0),

where C is the parameter space of c. ĉ has the explicit expression obtained by

∂L(c, θ0)/∂c = 0 :

ĉ =
∑

K∈Tm

Wh(K)
1

md−θ0

Iτm(2π(J +K)/m)

g0(2π(J +K)/m)
, (3.4)

where g0 ≡ g1,θ0 . The following theorem establishes the consistency and asymp-

totic normality of the estimator ĉ.

Theorem 3.2. Suppose that the spectral density f of a stationary Gaussian

random field Z(s) on Rd satisfies Assumption 1. Also suppose that 4τ > θ0 − 1

for a known θ0 and h = Cm−γ for some C > 0 where γ satisfies d/(d+2) < γ <

1. Further, assume that J satisfies ⌊2πJ/m⌋ = (π/2)1d and the true parameter

c is in the interior of the parameter space C which is a closed interval. Let

η = d(1− γ)/2. Then, for ĉ given in (3.4), we have

ĉ
p−→ c, (3.5)

and

mη(ĉ− c)
d−→ N

(
0 , c2

Λ2

Λ2
1

(
2π

C

)d
)
, (3.6)

where Λr =
∫
[−1,1]d

Λr(s)ds.
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Remark 3.2. We can prove Theorem 3.2 for J such that limm→∞ 2πJ/m = µ

and 0 < ∥µ∥ < π instead of the specific choice of ⌊2πJ/m⌋ = (π/2)1d, which

we have chosen for simplicity of the proof.

Remark 3.3. Without much difficulty, Theorem 3.2 can be also proved when

we replace θ0 with a consistent estimator θ̂ as long as the estimator θ̂ satisfies

θ̂ − θ0 = op((log(m))−1) which implies mθ̂−θ0
p−→ 1.

When we choose Λ as a constant function and C = (1/2)π2, we have

mη(ĉ− c)
d−→ N

(
0 , 2dc2π−d

)
.

For the Matérn spectral density given in (1.2) with d = 1, Du et al. (2009)

showed that for any fixed α1 with known ν, the MLE of σ2 satisfies

n1/2(σ̂2α2ν
1 − σ2

0α
2ν
0 )

d−→ N
(
0 , 2(σ2

0α
2ν
0 )2

)
, (3.7)

where n is the sample size, and σ2
0 and α0 are true parameters. Note that m is

the sample size of Y τ
ϕ which is the τ times differenced lattice process of Z(s)

so that m = n− 2τ for the simple differencing and m = n− 4τ for the Laplace

differencing. Since π1/2c = σ2α2ν for d = 1, we have the same asymptotic

variance as in (3.7). However, our approach has a slower convergence rate since

η < 1/3 when d = 1 as we used partial information. This is also the case for a

local Whittle likelihood method in Robinson (1995).

To estimate θ, we assume that c is known as c0. The proposed estimator of

θ is then given by

θ̂ = argmin
θ∈Θ

L(c0, θ), (3.8)

where Θ is the parameter space of θ. The consistency and the convergence rate

of the proposed estimator θ̂ are given in the following Theorem.

Theorem 3.3. Suppose that the spectral density f of a stationary Gaussian

random field Z(s) on Rd satisfies Assumption 1. Also suppose that 4τ > θ − 1

and h = Cm−γ for some C > 0 where γ satisfies d/(d + 2) < γ < 1. Further,

assume that J satisfies ⌊2πJ/m⌋ = (π/2)1d and the true parameter θ is in the

interior of the parameter space Θ which is a closed interval. Then, for θ̂ given

in (3.8), we have

θ̂
p−→ θ. (3.9)

In addition,

θ̂ − θ = op((logm)−1). (3.10)
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Remark 3.4. The consistency of θ̂ is not enough to prove the asymptotic dis-

tribution of θ̂ since we have θ in the exponent of m in the expression of L(c, θ).

For the proof of the asymptotic distribution, we need the rate of convergence

given in (3.10).

From Theorem 3.3, we can now show the following Theorem for the asymp-

totic distribution of θ̂.

Theorem 3.4. Under the conditions of Theorem 3.3, we have

log(m)mη(θ̂ − θ)
d−→ N

(
0,

Λ2

Λ2
1

(
2π

C

)d
)
,

where η = d(1− γ)/2.

Remark 3.5. Note that we have a different convergence rate for θ̂ compared to

the convergence rate for ĉ given in Theorem 3.2. The additional term log(m) is

from the fact that θ is in the exponent of m in the expression of L(c, θ).

4. Discussion

We proposed estimators of c and θ that govern the tail behavior of the spectral

density of a stationary Gaussian random field on Rd. The proposed estimators

are obtained by minimizing the objective function given in (3.3). As mentioned

in Section 3, this objective function is similar to the one used in the local Whittle

likelihood method when a kernel function Λ in Wh(K) is constant. When we

replacemd−θgc,θ with f̄τ
ϕ (λ) and removeWh(K) in the expression given in (3.3),

it can be thought of a Whittle approximation to the likelihood of Y τ
ϕ(J). This

approximation, however, has not been verified under fixed-domain asymptotics.

One might think that we can apply a similar technique to prove the validity of a

Whittle approximation to the likelihood under increasing-domain asymptotics

since Y τ
ϕ(J) is a lattice process. However, the spectral density f̄τ

ϕ (λ) of Y
τ
ϕ(J)

converges to zero as ϕ → 0, which requires a different approach and further

investigation is needed.

The weights in (3.3) is controlled by h, a bandwidth, which can be interpreted

as a proportion of Fourier frequencies to be considered in the objective function.

In our theorems, we assume h = Cm−γ for some constant C. In proofs, we make

use of the properties of a smoothed spatial periodogram Îτm. Thus, we could find

the optimal bandwidth that minimizes the mean squared error of Îτm. However,

finding the mean squared error of Îτm needs explicit first order asymptotic ex-

pressions of the bias and variance of Îτm(λ), which are not yet available. It will
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be more useful when we can estimate c and θ together or estimate θ when c is

unknown. Due to the form of gc,θ, proving their asymptotic properties under

fixed-domain asymptotics is challenging but worthwhile investigating further.

The Assumption 1 (A) implies that the spectral density is regularly varying at

infinity with exponent −θ. Together with a smoothness condition (Assumption

1 (B)), it satisfies assumptions (A1) and (A2) in Stein (2002), which includes

slowly varying tail behavior. Assumptions (A1) and (A2) in Stein (2002) guaran-

tee that there is a screening effect, that is, one can get a nearly optimal predictor

at a location s based on the observations nearest to s (see Stein (2002) for fur-

ther details). Then, our result that one can estimate tail behavior using only

local information can be seen as a kind of analogue to a screening effect.

Appendix A: The properties of gc,θ(λ)

Some properties of gc,θ(λ) are discussed in this Appendix. These properties will

be used in the proofs given in Appendix B. Recall that

gc,θ(λ) = c


d∑

j=1

4 sin2(λj/2)


2τ ∑

Q∈Zd

|H(λ+ 2πQ)|−θ

for λ ̸= 0.

For a function gc,θ(λ), let ∇g denote the gradient of g with respect to λ

and let ġ and g̈ denote the first and second derivatives of gc,θ(λ) with respect

to θ, respectively. That is,∇g = (∂g/∂λ1, · · · , ∂g/∂λd), ġ = ∂gc,θ(λ)/∂θ and

g̈ = ∂2gc,θ(λ)/∂θ
2.

LetAρ = [−π, π]d \ (−ρ, ρ)d for a fixed ρ that satisfies 0 < ρ < 1. Since

we assume that the parameter space Θ is a closed interval in Section 3, let

Θ = [θL, θU ] and θL > d. Although Lemma A.1 can be shown for any fixed ρ

with 0 < ρ < 1, we further assume that ρ is small enough so that all Fourier

frequencies near (π/2)1d considered in L(c, θ) are contained in Aρ.

Lemma A.1. The following properties hold for gc,θ(λ).

(a) gc,θ(λ) is continuous on Θ×Aρ.

(b) There exist KL and KU such that for all (θ,λ) ∈ Θ×Aρ,

0 < KL ≤ gc,θ(λ) ≤ KU < ∞. (A.1)

(c) There exist KL and KU such that for all λ ∈ Aρ and all θ1, θ2 ∈ Θ,

0 < KL ≤ gc,θ1(λ)/gc,θ2(λ) ≤ KU < ∞. (A.2)
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(d) ∇g, ġ, g̈, ġ/g and ∇(ġ/g) are uniformly bounded on Θ×Aρ.

Proof. We prove the Lemma when H is an identity matrix for simplicity. The

results with a general nonsingular matrix H can be followed without much

difficulty.

To show (a), it is enough to show continuity of
∑

Q∈Zd |λ+ 2πQ|−θ
on Θ×Aρ

since
{∑d

j=1 4 sin
2(λj/2)

}2τ

is continuous on Aρ. It can be easily shown that∑
Q∈Zd,||Q||>n |λ+ 2πQ|−θ

converges to zero uniformly on Θ ×Aρ as n → ∞,

which implies the uniform convergence of
∑

Q∈Zd,||Q||≤n |λ+ 2πQ|−θ
to g1,θ(λ).

Thus, continuity of gc,θ(λ) follows from the continuity of |λ+ 2πQ|−θ
.

To prove the remaining parts, we find the upper and lower bounds of
∑

Q∈Zd |λ+ 2πQ|−θ
.

For all (θ,λ) ∈ Θ×Aρ, we have∑
Q∈Zd

|λ+ 2πQ|−θ ≥ π−θU > 0

and ∑
Q∈Zd

|λ+ 2πQ|−θ ≤
∑

Q∈Zd\{0}

|λ+ 2πQ|−θL + ϵ−θU

≤ (2π)dϵd−θL/(d− θL) + ϵ−θU ,

where the last inequality follows from∑
Q∈Zd\0

|λ+ 2πQ|−θL ≤
∫
|y|≥1

|λ+ 2πy|−θLdy

≤
∫
|z|≥ϵ

(2π)d|z|−θLdz

=

∫
x≥ ϵ

(2π)dxd−1x−θLdx

= (2π)dϵd−θL/(θL − d), (A.3)

since θL > d. Thus, we have

0 < kL ≤
∑
Q∈Zd

|λ+ 2πQ|−θ ≤ kU < ∞, (A.4)

where kL = π−θU and kU = (2π)dϵd−θL/(θL − d) + ϵ−θU .

Then, (b) follows from (A.4),

(4d sin2(ϵ/2))2τ ≤


d∑

j=1

4 sin2(hλj/2)


2τ

≤ (4d)2τ ,
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and by setting KL ≡ c (4d sin2(ϵ/2))2τkL and KU ≡ c (4d)2τkU .

(c) follows from observing that
∑

Q∈Zd |λ+ 2πQ|−θ
has lower and upper

bounds that are uniform on Θ×Aρ as given in (A.4).

For (d), we have∣∣∣∣ ∂g∂λi

∣∣∣∣ = c

∣∣∣∣∣4τ
{ d∑

j=1

4 sin2(λj/2)

}2τ−1

sin(λi)
∑
Q∈Zd

|λ+ 2πQ|−θ

− θ

{ d∑
j=1

4 sin2(λj/2)

}2τ−1 ∑
Q∈Zd

(λi + 2πQi) |λ+ 2πQ|−θ−2

∣∣∣∣∣
≤ K

∑
Q∈Zd

|λ+ 2πQ|−θ

≤ K kU

for some constant K > 0 and kU given in (A.4), which implies uniform bound-

edness of ∇g on Θ×Aρ. For the uniform bound of ġ and g̈ , we first compute

ġ and g̈:

ġ = −c

{ d∑
j=1

4 sin2(λj/2)

}2τ ∑
Q∈Zd

|λ+ 2πQ|−θ
log |λ+ 2πQ| ,

g̈ = c

{ d∑
j=1

4 sin2(λj/2)

}2τ ∑
Q∈Zd

|λ+ 2πQ|−θ
(log |λ+ 2πQ|)2 .

Since we can find x0 and K such that for a given β > 0, | log x| ≤ Kxβ for all

x > x0, we can show that there exist n0, K1 and K2 that satisfy

|ġ| ≤ K1 +K2

∑
Q∈Zd,||Q||≥n0

|λ+ 2πQ|−θ+β

for some fixed β > 0. When we choose β = (θL − θ)/2, we can show that∑
Q∈Zd,||Q||≥n0

|λ+ 2πQ|−θ+β
< ∞ using a similar argument to show (A.3),

which leads to uniform boundedness of ġ. Similarly, we can show uniform bound-

edness of g̈.

The uniform boundedness of ġ/g follows from uniform boundedness of ġ and
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(b). To show uniform boundedness of ∇(ġ/g), consider

∂

∂λi
(ġ/g) = −

∑
Q∈Zd |λ+ 2πQ|−θ−2

(λi + 2πQi)(1− θ log |λ+ 2πQ|)∑
Q∈Zd |λ+ 2πQ|−θ

+

(∑
Q∈Zd |λ+ 2πQ|−θ

log |λ+ 2πQ|
)

(∑
Q∈Zd |λ+ 2πQ|−θ

)2
×

−θ
∑
Q∈Zd

|λ+ 2πQ|−θ−2
(λi + 2πQi)


Since denominators in the expression of ∂ (ġ/g) /∂λi have uniform lower bounds

as shown in (A.4), it is enough to find uniform bounds of numerators to show

uniform boundedness of ∂ (ġ/g) /∂λi. By observing that |λi+2πQi| ≤ |λ+ 2πQ|
and |λ+ 2πQ|−1 ≤ K for some K > 0 on Aρ, we can show that each numerator

in the expression of ∂ (ġ/g) /∂λi is uniformly bounded on Θ×Aρ using a similar

argument to show uniform boundedness of ġ.

Appendix B: Proofs of Theorems in Section 3

Proof of Theorem 3.1. If f(λ) satisfies (2.4) for all λ, (3.1) and (3.2) hold

by results in Stein (1995) and Lim and Stein (2008). To prove (3.1) and (3.2)

when (2.4) holds only for large λ, we need to show that the effect of f(λ) on

|λ| ≤ C is negligible.

Consider a spectral density k(λ) which satisfies k(λ) ∼ c|Hλ|−θ as |λ| →
∞ and k(λ) is twice differentiable and satisfies (2.4) for all λ. Also assume

that k(λ) ≡ f(λ) for |λ| > C. Let If,τm (λ) be the periodogram at λ from the

observations under f(λ) and

af,τm,ϕ(J ,K) = (2πm)−d

∫
Rd

{ d∑
j=1

4 sin2 (ϕλj/2)

}2τ

f(λ)

×
d∏

j=1

sin2 (mϕλj/2)

sin (ϕλj/2 + πJj/m) sin (ϕλj/2 + πKj/m)
dλ.

Note that

E
(
If,τm (2πJ/m)

)
= af,τm,ϕ(J ,J),

V ar
(
If,τm (2πJ/m)

)
= af,τm,ϕ(J ,J)

2 + af,τm,ϕ(J ,−J)2.
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(3.1) and (3.2) follow from Theorems 3, 6 and 12 in Lim and Stein (2008)

when these Theorems hold for f under Assumption 1. The key part of proofs of

these Theorems under Assumption 1 is to show

E
(
If,τm (2πJ/m)

)
f̄τ
ϕ (2πJ/m)

= 1 +O(m−β1) (B.1)

V ar
(
If,τm (2πJ/m)

)
f̄τ
ϕ (2πJ/m)2

= 1 +O(m−β2), (B.2)

for some β1, β2 > 0. Once (B.1) and (B.2) are shown, the other parts of proofs

are similar to the proofs in Lim and Stein (2008).

Since results in Stein (1995) and Lim and Stein (2008) hold for k(λ), we have

(B.1) and (B.2) for k(λ). Then, (B.1) and (B.2) for f(λ) follow from∣∣∣af,τm,ϕ(J ,±J)− ak,τm,ϕ(J ,±J)
∣∣∣ = O(m−d−4τ ), (B.3)

for J that satisfies ∥J∥ ≍ m and 2J/m ̸∈ Zd. (B.3) holds since∣∣∣af,τm,ϕ(J ,±J)− ak,τm,ϕ(J ,±J)
∣∣∣

=

∣∣∣∣∣(2πm)−d

∫
|λ|≤C

{ d∑
j=1

4 sin2 (ϕλj/2)
}2τ

(f(λ)− k(λ))

×
d∏

j=1

sin2
(

mϕλj

2

)
sin (ϕλj/2 + πJj/m) sin (ϕλj/2± πJj/m)

dλ

∣∣∣∣∣

≤ (2πm)−d

∫
|λ|≤C

{ d∑
j=1

4 sin2 (ϕλj/2)
}2τ

|f(λ)− k(λ)|

×
d∏

j=1

sin2 (mϕλj/2)

|sin (ϕλj/2 + πJj/m) sin (ϕλj/2± πJj/m)|
dλ

≤ vm−d−4τ

for some positive constant v since k(λ) ≡ f(λ) for |λ| > C and ∥ϕλj/2± πJj/m∥
stays away from zero and π when m is large.

Proof of Theorem 3.2. To show weak consistency of ĉ, we consider upper

and lower bounds of ĉ. Let KU = argmaxK∈Tm,Wh(K )̸=0 g0 (2π(J +K)/m) and

KL = argminK∈Tm,,Wh(K )̸=0 g0 (2π(J +K)/m). Recall that g0 = g1,θ0 . Then,
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we have ∑
K∈Tm

Wh(K)Iτm(2π(J +K)/m)

md−θ0g0(2π(J +KU )/m)
≤ ĉ

≤
∑

K∈Tm
Wh(K)Iτm(2π(J +K)/m)

md−θ0g0(2π(J +KL)/m)
,

which can be rewritten as

c Îτm(2πJ/m)

md−θ0gc,θ0(2π(J +KU )/m)
≤ ĉ

≤ c Îτm(2πJ/m)

md−θ0gc,θ0(2π(J +KL)/m)
(B.4)

with probability one. Note that both gc,θ0(2π(J + KU )/m) and gc,θ0(2π(J +

KL)/m) converge to gc,θ0((π/2)1d) by continuity of gc,θ(λ) andm−(d−θ0)Îτm(2πJ/m)

converges to gc,θ0((π/2)1d) in probability by Theorem 3.1. Thus, it follows that

ĉ converges to c in probability.

For the asymptotic distribution of ĉ, note that we have

mη

(
Îτm (2πJ/m)

md−θ0
− gc,θ0 ((π/2)1d)

)
d−→ N

(
0 ,

Λ2

Λ2
1

(
2π

C

)d

g2c,θ0((π/2)1d)

)
(B.5)

from Theorem 3.1 and

mη
(
gc,θ0

(
2π(J +KE)/m

)
− gc,θ0 ((π/2)1d)

)
−→ 0, (B.6)

for E = U or L, since 4τ > θ0 − 1, h = Cm−γ and d
d+2 < γ < 1. Then, (3.6)

follows from (B.5) and (B.6).

To prove Theorem 3.3, we consider following lemmas.

Lemma B.1. Consider a function hm(x) = − log(x)+dm(x−1), where dm is a

positive function of a positive integer m. Also assume that dm → 1 as m → ∞.

Then, for a given r with 0 < r < 1, there exist δr > 0 and Mr > 0 such that for

all m ≥ Mr,

hm(x) > δr,

for any x ∈ Zr ≡ {z : |z − 1| > r, z > 0}.
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Proof. It can be easily shown that for any positive integer m, hm(x) is a con-

vex function on (0,∞) and minimized at x = 1/dm with hm(1/dm) ≤ 0. Let

h∞(x) = − log(x)+ x− 1. Since dm → 1, for any r ∈ (0, 1), there exists Mr > 0

such that for allm ≥ Mr, we have |1/dm−1| ≤ r and min{hm(1−r), hm(1+r)} >

(1/2)min{h∞(1− r), h∞(1 + r)} > 0. Hence for all x ∈ Zr, we have

hr(x) ≥ min{hm(1− r), hm(1 + r)} > (1/2)min{h∞(1− r), h∞(1 + r)} ≡ δr.

Lemma B.2. For a positive integer m and θ ∈ Θ, we have

L(c0, θ)− L(c0, θ0) ≥ Am +Bm + Cm,

where

Am = − log

mθ−θ0
gc0,θ0

(
2π(J+Sm)

m

)
gc0,θ

(
2π(J+Sm)

m

)
+

Îτm

(
2πJ
m

)
md−θ0gc0,θ0

(
2π(J+KM )

m

)(B.7)
×

mθ−θ0
gc0,θ0

(
2π(J+Sm)

m

)
gc0,θ

(
2π(J+Sm)

m

) − 1

 ,

Bm = log

(
gc0,θ0(2π(J + Sm)/m)

gc0,θ0(2π(J + SM )/m)

gc0,θ(2π(J + SM )/m)

gc0,θ(2π(J + Sm)/m)

)
, (B.8)

Cm =
Îτm(2πJ/m)

md−θ0gc0,θ0(2π(J +KM )/m)

(
1− gc0,θ0(2π(J +KM )/m)

gc0,θ0(2π(J +Km)/m)

)
.(B.9)

In (B.7)-(B.9), KM , Km, SM and Sm are defined as

KM = argmax{K∈Tm,Wh(K )̸=0}gc0,θ0(2π(J +K)/m),

Km = argmin{K∈Tm,Wh(K )̸=0}gc0,θ0(2π(J +K)/m),

SM = argmax{K∈Tm,Wh(K )̸=0} log

(
gc0,θ0(2π(J +K)/m)

gc0,θ(2π(J +K)/m)

)
,

Sm = argmin{K∈Tm,Wh(K )̸=0}
gc0,θ0(2π(J +K)/m)

gc0,θ(2π(J +K)/m)
.

Furthermore,

sup
θ∈Θ

|Bm| = o(1), (B.10)

Cm = op(1), (B.11)

where (B.11) holds under the conditions of Theorem 3.3.
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Proof. From the expression of L(c, θ) given in (3.3), we have

L(c0, θ)− L(c0, θ0)

=
∑

K∈Tm

Wh(K)

{
log
(
md−θgc0,θ (2π(J +K)/m)

)
− log

(
md−θ0gc0,θ0 (2π(J +K)/m)

)}
+
∑

K∈Tm

Wh(K)
1

md−θ

Iτm(2π(J +K)/m)

gc0,θ(2π(J +K)/m)

−
∑

K∈Tm

Wh(K)
1

md−θ0

Iτm(2π(J +K)/m)

gc0,θ0(2π(J +K)/m)

= −
∑

K∈Tm

Wh(K) log

(
mθ−θ0

gc0,θ0 (2π(J +K)/m)

gc0,θ (2π(J +K)/m)

)
+
∑

K∈Tm

Wh(K)
Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)

×mθ−θ0
gc0,θ0(2π(J +K)/m)

gc0,θ(2π(J +K)/m)

−
∑

K∈Tm

Wh(K)
Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)

≥ − log

(
mθ−θ0

gc0,θ0 (2π(J + SM )/m)

gc0,θ (2π(J + SM )/m)

)
+
∑

K∈Tm

Wh(K)
Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +KM )/m)

×mθ−θ0
gc0,θ0(2π(J + Sm)/m)

gc0,θ(2π(J + Sm)/m)

−
∑

K∈Tm

Wh(K)
Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +Km)/m)

= − log

(
mθ−θ0

gc0,θ0(2π(J + SM )/m)

gc0,θ(2π(J + SM )/m)

)
+

Îτm(2πJ/m)

md−θ0gc0,θ0(2π(J +KM )/m)

×
(
mθ−θ0

gc0,θ0(2π(J + Sm)/m)

gc0,θ(2π(J + Sm)/m)
− gc0,θ0(2π(J +KM )/m)

gc0,θ0(2π(J +Km)/m)

)
=: Hm.
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Hm is further decomposed as

Hm = − log

(
mθ−θ0

gc0,θ0(2π(J + Sm)/m)

gc0,θ(2π(J + Sm)/m)

)
+

Îτm(2πJ/m)

md−θ0gc0,θ0(2π(J +KM )/m)

(
mθ−θ0

gc0,θ0(2π(J + Sm)/m)

gc0,θ(2π(J + Sm)/m)
− 1

)
+ log

(
gc0,θ0(2π(J + Sm)/m)

gc0,θ0(2π(J + SM )/m)

gc0,θ(2π(J + SM )/m)

gc0,θ(2π(J + Sm)/m)

)
+

Îτm(2πJ/m)

md−θ0gc0,θ0(2π(J +KM )/m)

(
1− gc0,θ0(2π(J +KM )/m)

gc0,θ0(2π(J +Km)/m)

)
,

which is Am +Bm + Cm given in (B.7)-(B.9).

Note that 2π(J + KM )/m, 2π(J + Km)/m, 2π(J + SM )/m and 2π(J +

Sm)/m converge to (π/2)1d as m → ∞. Note also that the convergence of

2π(J+SM )/m and 2π(J+Sm)/m holds for θ uniformly on Θ, because h → 0.

The continuity of gc0,θ in Lemma A.1 implies that

log

(
gc0,θ0(2π(J + Sm)/m)

gc0,θ0(2π(J + SM )/m)

gc0,θ(2π(J + SM )/m)

gc0,θ(2π(J + Sm)/m)

)
−→ 0 (B.12)

holds for θ uniformly on Θ, therefore, supΘ |Bm| = o(1). Also, we have

m−(d−θ0)Îτm(2πJ/m)/gc0,θ0(2π(J +KM )/m)
p−→ 1,

since m−(d−θ0)Îτm(2πJ/m)/gc0,θ0 ((π/2)1d) converges to one in probability by

Theorem 3.1 and gc0,θ0 (2π(J +KM )/m) converges to gc0,θ0 ((π/2)1d). Thus,

together with

1− gc0,θ0(2π(J +KM )/m)

gc0,θ0(2π(J +Km)/m)
→ 0, (B.13)

Cm converges to zero in probability.

Proof of Theorem 3.3. Let (Ω,F , P ) be the probability space where a sta-

tionary Gaussian random field Z(s) is defined. To emphasize dependence on m,

we use θ̂m instead of θ̂ in this proof.

Note that we have

P (L(c0, θ̂m)− L(c0, θ0) ≤ 0) = 1 (B.14)

for each positive integer m by the definition of θ̂m. We are going to prove con-

sistency of θ̂m by deriving a contradiction to (B.14) when θ̂m does not converge
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to θ0 in probability. Suppose that θ̂m does not converge to θ0 in probability.

Then, there exist ϵ > 0, δ > 0 and M1 such that for m ≥ M1,

P (|θ̂m − θ0| > ϵ) > δ.

We define Dm = {ω ∈ Ω : |θ̂m(ω)− θ0| > ϵ}. By Lemma B.2, we have

L(c0, θ̂m(ω))− L(c0, θ0) ≥ Am +Bm + Cm,

where Am, Bm and Cm are given in (B.7)-(B.9) with θ = θ̂m(ω), ω ∈ Dm. We

are going to show that there exist {mk}, a subsequence of {m} and a subset of

Dmk
on which Amk

+ Bmk
+ Cmk

is bounded away from zero for large enough

mk.

Note that

Am = hm

(
mθ̂m−θ0

gc0,θ0(2π(J + Sm)/m)

gc0,θ̂m(2π(J + Sm)/m)

)
,

where hm(·) is defined in Lemma B.1 with

dm =
Îτm(2πJ/m)

md−θ0gc0,θ0(2π(J +KM )/m)
, (B.15)

where KM is defined in Lemma B.2.

By Theorem 3.1 and the convergence of gc0,θ0 (2π(J +KM )/m) to gc0,θ0 ((π/2)1d),

we have dm
p→ 1. Then, there exists {mk}, a subsequence of {m} such that dmk

converges to one almost surely. By (B.13) in the proof of Lemma B.2, almost

sure convergence of dmk
implies that Cmk

defined in (B.9) converges to zero

almost surely. To use Lemma B.1, we need uniform convergence of dmk
. By

Egorov’s Theorem (Folland, 1999), there exists Gδ ⊂ Ω such that dmk
and Cmk

converge uniformly on Gδ and P (Gδ) > 1 − δ/2. Let Hmk
= Dmk

∩ Gδ. Note

that P (Hmk
) > δ/2 > 0 for mk ≥ M1.

On the other hand, there exists a M2, which does not depend on ω, such that

for mk ≥ M2,∣∣∣∣∣mθ̂mk
−θ0

k

gc0,θ0(2π(J + Smk
)/mk)

gc0,θ̂mk
(2π(J + Smk

)/mk)
− 1

∣∣∣∣∣ >
1

2
(B.16)

for all ω ∈ Dmk
, because of the uniform boundedness of gc0,θ0/gc0,θ. Then, by

Lemma B.1 with r = 1/2, there exist δr > 0 and Mr ≥ max{M1,M2} such that
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for mk ≥ Mr,

Amk
= − log

(
m

θ̂mk
−θ0

k

gc0,θ0(2π(J + Smk
)/mk)

gc0,θ̂mk
(2π(J + Smk

)/mk)

)
(B.17)

+
Îτmk

(2πJ/mk)

md−θ0
k gc0,θ0(2π(J +KM )/mk)

×

(
m

θ̂mk
−θ0

k

gc0,θ0(2π(J + Smk
)/mk)

gc0,θ̂mk
(2π(J + Smk

)/mk)
− 1

)
> δr

uniformly on Hmk
.

By the uniform convergence of |Bm| on Θ shown in Lemma B.2, there exists

a M3 such that for mk ≥ M3,

|Bmk
| <

δr
4

(B.18)

with θ = θ̂mk
(ω) uniformly on Hmk

. The uniform convergence of Cmk
on Gδ

allows us to find M4 such that for mk ≥ M4,

|Cmk
| <

δr
4

(B.19)

uniformly on Hmk
.

Therefore, for mk ≥ max{Mr,M3,M4}, we have Amk
+Bmk

+Cmk
≥ Amk

−
|Bmk

| − |Cmk
| > δr/2 on Hmk

which leads

L(c0, θ̂mk
)− L(c0, θ0) >

δr
2

(B.20)

on Hmk
. Since P (Hmk

) > δ/2 > 0, it contradicts to (B.14) which completes the

proof. Here, we do not need P (∩kHmk
) > 0 since (B.14) should holds for any

m > 0.

To show the convergence rate of θ̂m given in (3.10), it is enough to show that

mθ̂m−θ0
p−→ 1 which is equivalent to show that

gc0,θ0(2π(J + Sm)/m)

gc0,θ̂m(2π(J + Sm)/m)

p−→ 1, (B.21)

mθ̂m−θ0
gc0,θ0(2π(J + Sm)/m)

gc0,θ̂m(2π(J + Sm)/m)

p−→ 1. (B.22)

(B.21) follows from the consistency of θ̂m and the continuity of gc0,θ shown in

Lemma A.1. To show (B.22), we consider a similar argument to show consistency
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of θ̂. For simplicity, we reset notations such as r, δ, δr, M and Dm, etc. used in

the proof of consistency.

Suppose that (B.22) does not hold. Then, there exists r > 0, δ > 0 and M1

such that

P

(∣∣∣∣∣mθ̂m−θ0
gc0,θ0(2π(J + Sm)/m)

gc0,θ̂m(2π(J + Sm)/m)
− 1

∣∣∣∣∣ > r

)
> δ

for all m ≥ M1. On the other hand, there exists {mk}, a subsequence of {m},
such that dmk

→ 1, Bmk
→ 0 and Cmk

→ 0 almost surely, where dm is

given in (B.15), Bm and Cm are given in (B.8) and (B.9) with θ = θ̂m(ω). Then,

by Egorov’s Thoerem, there exists Ωδ ⊂ Ω such that P (Ωδ) > 1− δ/2 and dmk
,

Bmk
and Cmk

are uniformly convergent on Ωδ. As in Lemma B.1, for amk
, a

nonzero solution of hmk
(bmk

) = 0, where

bm = mθ̂m−θ0
gc0,θ0(2π(J + Sm)/m)

gc0,θ̂m(2π(J + Sm)/m)
,

there exists M2 such that |amk
− 1| ≤ r uniformly on Ωδ for all mk ≥ M2. Now,

define

Dm =

{
ω :

∣∣∣∣∣mθ̂m−θ0
gc0,θ0(2π(J + Sm)/m)

gc0,θ̂m(2π(J + Sm)/m)
− 1

∣∣∣∣∣ > r

}
.

Note that P (Dmk
∩Ωδ) ≥ δ/2 > 0 for all mk ≥ max{M1,M2}. Similarly to the

proof of Lemma B.1, for each mk ≥ max{M1,M2}, there exists δr > 0 such that

Amk
> δr for all ω ∈ Dmk

∩ Ωδ. This implies that

P (Amk
> δr) ≥ δ/2

for each mk ≥ max{M1,M2}. Note that δr does not depend on mk which can

be seen in Lemma B.1.

Meanwhile, there exists M3 such that for mk ≥ M3,

|Bmk
| ≤ δr/4, |Cmk

| ≤ δr/4

for all ω ∈ Ωδ. Hence we have

P
(
L(c0, θ̂m)− L(c0, θ0) > δr/2

)
≥ δ/2

formk ≥ max{M1,M2,M3}, which contradicts to (B.14). Thus, (B.22) is proved.

Note that an alternative proof of the consistency of θ̂ is available [Wu (2011)].

To proof Theorem 3.4, we consider the following Lemma.
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Lemma B.3. Under the conditions of Theorem 3.3, let η = d(1−γ)/2, we have

(a)

mη

( ∑
K∈Tm

Wh(K)
Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)
− 1

)
(B.23)

D−→ N

(
0,

Λ2

Λ2
1

(
2π

C

)d
)
,

(b)

∑
K∈Tm

Wh(K)

1 −
Iτm

(
2π(J+K)

m

)
md−θ0gc0,θ0

(
2π(J+K)

m

)
 (B.24)

×
ġc0,θ0

(
2π(J+K)

m

)
gc0,θ0

(
2π(J+K)

m

) = Op(m
−η)

Proof. To prove (B.23), we find the asymptotic distribution of its lower and

upper bounds. It can be easily shown that

Lm ≤ mη

( ∑
K∈Tm

Wh(K)
Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)
− 1

)
≤ Um,

where

Lm = mη

(
Îτm(2πJ/m)

md−θ0gc0,θ0(2π(J +KM )/m)
− 1

)
, (B.25)

Um = mη

(
Îτm(2πJ/m)

md−θ0gc0,θ0(2π(J +Km)/m)
− 1

)
(B.26)

with KM and Km as defined in Lemma B.2. We rewrite Lm as

Lm = mη

((
Îτm(2πJ/m)

md−θ0gc0,θ0((π/2)1d)
− 1

)
gc0,θ0((π/2)1d)

gc0,θ0(2π(J +KM )/m)

+
gc0,θ0((π/2)1d)

gc0,θ0(2π(J +KM )/m)
− 1

)
.

By Lemma A.1 and γ > d/(d+ 2), we have

gc0,θ0((π/2)1d)

gc0,θ0(2π(J +KM )/m)
−→ 1,

mη

(
gc0,θ0((π/2)1d)

gc0,θ0(2π(J +KM )/m)
− 1

)
−→ 0.
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Thus, by Theorem 3.1,

Lm
d−→ N

(
0,

Λ2

Λ2
1

(
2π

C

)d
)
.

Similarly, we can show

Um
d−→ N

(
0,

Λ2

Λ2
1

(
2π

C

)d
)
.

The convergence of lower and upper bounds to the same distribution implies

(B.23).

To show (B.24), we rewrite the LHS of (B.24) as∑
K∈Tm

Wh(K)

(
1 − Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)

)
ġc0,θ0(2π(J +K)/m)

gc0,θ0(2π(J +K)/m)

=
∑

K∈Tm

Wh(K)
ġc0,θ0(2π(J +K)/m)

gc0,θ0(2π(J +K)/m)
− ġc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)

−

( ∑
K∈Tm

Wh(K)
Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)

× ġc0,θ0(2π(J +K)/m)

gc0,θ0(2π(J +K)/m)
− ġc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)

)
.

By Lemma A.1 and γ > d/(d+ 2), we can show that

mη

( ∑
K∈Tm

Wh(K)
ġc0,θ0(2π(J +K)/m)

gc0,θ0(2π(J +K)/m)
− ġc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)

)
−→ 0.

Also, it can be easily shown that

L′
m ≤

∑
K∈Tm

Wh(K)
Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)

ġc0,θ0(2π(J +K)/m)

gc0,θ0(2π(J +K)/m)
≤ U ′

m,

where

L′
m =

Îτm(2πJ/m)

md−θ0gc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)ġc0,θ0(2π(J + Pm)/m)

g2c0,θ0(2π(J + Pm)/m)
,

U ′
m =

Îτm(2πJ/m)

md−θ0gc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)ġc0,θ0(2π(J + PM )/m)

g2c0,θ0(2π(J + PM )/m)
,

with

PM = argmax{K∈Tm,Wh(K )̸=0}
ġc0,θ0(2π(J +K)/m)

g2c0,θ0(2π(J +K)/m)
,

Pm = argmin{K∈Tm,Wh(K )̸=0}
ġc0,θ0(2π(J +K)/m)

g2c0,θ0(2π(J +K)/m)
.
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By Lemma A.1, γ > d/(d+ 2) and Theorem 3.1, we can show that

mη

(
L′

m − ġc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)

)
d−→ N

(
0,

(
ġc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)

)2
Λ2

Λ2
1

(
2π

C

)d
)
,

mη

(
U ′

m − ġc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)

)
d−→ N

(
0,

(
ġc0,θ0((π/2)1d)

gc0,θ0((π/2)1d)

)2
Λ2

Λ2
1

(
2π

C

)d
)
.

This completes the proof of (B.24).

Proof of Theorem 3.4. Let L̇ = ∂L/∂θ and L̈ = ∂2L/∂θ2. To show the

asymptotic distribution of θ̂, we consider the Taylor expansion of L̇(c0, θ̂) around

θ0,

L̇(c0, θ̂) = L̇(c0, θ0) + L̈(c0, θ̄)(θ̂ − θ0),

where θ̄ lies on the line segment between θ̂ and θ0. Since L̇(c0, θ̂) = 0, we have

log(m)mη(θ̂ − θ0) = −log(m)mη
(
L̈(c0, θ̄)

)−1

L̇(c0, θ0).

Thus, it is enough to show

(log(m))−1mηL̇(c0, θ0)
d−→ N

(
0,

Λ2

Λ2
1

(
2π

C

)d
)
, (B.27)

(log(m))−2L̈(c0, θ̄)
p−→ 1. (B.28)

Since L̇(c0, θ0)

= − log(m) +
∑

K∈Tm

Wh(K)
ġc0,θ0(2π(J +K)/m)

gc0,θ0(2π(J +K)/m)

−
∑

K∈Tm

Wh(K)Iτm(2π(J +K)/m)

×
(
− log(m)md−θ0gc0,θ0(2π(J +K)/m) +md−θ0 ġc0,θ0(2π(J +K)/m)

)
(md−θ0gc0,θ0(2π(J +K)/m))

2

= log(m)

( ∑
K∈Tm

Wh(K)
Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)
− 1

)

+
∑

K∈Tm

Wh(K)

(
1 − Iτm(2π(J +K)/m)

md−θ0gc0,θ0(2π(J +K)/m)

)
ġc0,θ0(2π(J +K)/m)

gc0,θ0(2π(J +K)/m)
,

we see that (B.27) follows from Lemma B.3.
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Next we prove (B.28). After some simplification, we have

L̈(c0, θ̄)

= (log(m))2
∑

K∈Tm

Wh(K)
Iτm(2π(J +K)/m)

md−θ̄gc0,θ̄(2π(J +K)/m)

− 2 log(m)
∑

K∈Tm

Wh(K)
Iτm(2π(J +K)/m)ġc0,θ̄(2π(J +K)/m)

md−θ̄g2
c0,θ̄

(2π(J +K)/m)

+ 2
∑

K∈Tm

Wh(K)
Iτm(2π(J +K)/m)ġ2

c0,θ̄
(2π(J +K)/m)

md−θ̄g3
c0,θ̄

(2π(J +K)/m)

+
∑

K∈Tm

Wh(K)

(
1 − Iτm(2π(J +K)/m)

md−θ̄gc0,θ̄(2π(J +K)/m)

)
g̈c0,θ̄(2π(J +K)/m)

gc0,θ̄(2π(J +K)/m)

−
∑

K∈Tm

Wh(K)
ġ2
c0,θ̄

(2π(J +K)/m)

g2
c0,θ̄

(2π(J +K)/m)

=: E1 + E2,

where E1 is the first term with (log(m))2 and E2 is the last four terms in the

expression of L̈(c0, θ̄).

First, we want to show that

(log(m))−2E1
p−→ 1. (B.29)

It can be easily shown that

LB′′
m ≤ (log(m))−2E1 ≤ U ′′

m,

where

L′′
m =

Îτm(2πJ/m)

md−θ0gc0,θ0((π/2)1d)

mθ̄−θ0gc0,θ0((π/2)1d)

gc0,θ̄(2π(J + PM )/m)
,

U ′′
M =

Îτm(2πJ/m)

md−θ0gc0,θ0((π/2)1d)

mθ̄−θ0gc0,θ0((π/2)1d)

gc0,θ̄(2π(J + Pm)/m)

with

PM = argmax{K∈Tm,Wh(K )̸=0}gc0,θ̄(2π(J +K)/m),

Pm = argmin{K∈Tm,Wh(K) ̸=0}gc0,θ̄(2π(J +K)/m).

By Theorem 3.1, (3.10) in Theorem 3.3 and Lemma A.1, we can show that

both L′′
m and U ′′

m converge to one in probability, which in turn implies (B.29).

In a similar way, we can show that (log(m))−1E2 = Op(1). Thus, together with

(B.29), we can show (B.28), which completes the proof.
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