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Abstract

We establish asymptotic normality of weighted sums of periodograms of a stationary

linear process where weights depend on the sample size. Such sums appear in numerous

statistical applications and can be regarded as a discretized versions of the quadratic

forms involving integrals of weighted periodograms. Conditions for asymptotic nor-

mality of these weighted sums are simple and resemble Lindeberg-Feller condition for

weighted sums of independent and identically distributed random variables. Our re-

sults are valid for short, long or negative memory processes. The proof is based on

sharp bounds derived for Bartlett type approximation of these sums by the correspond-

ing sums of weighted periodograms of independent and identically distributed random

variables.
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1 Introduction

Let Xj , j = 0,±1, · · · , be a stationary process with a spectral density fX and let uj = 2πj/n,

j = 1, · · · , [n/2], denote discrete Fourier frequencies. In this paper we develop asymptotic

distribution theory for the weighted sums

[n/2]
∑

j=1

bn,jIX(uj), n ≥ 1, (1.1)

of periodograms IX(uj) =
∣

∣(2πn)−1
∑n

t=1 eitujXt

∣

∣

2
, where bn,j are real weights. In particular,

if bn,j = bn(uj) where bn, n ≥ 1 is a sequence of real valued functions on Π := [−π, π], these

sums are estimates of
∑[n/2]

j=1 bn(uj)fX(uj) and can be viewed as discretized versions of the

integrals
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In :=

∫ π

0

bn(u)IX(u)du.

Integrals In arise naturally in many situations in statistical inference. For example, the spec-

tral distribution function F can be written as F (y) =
∫ y

−π
fX(u)du, and the auto-covariance

function of {Xj} is

Cov(Xk, X0) = 2

∫ π

0

cos(ku)fX(u)du, k = 0, 1, 2, · · · .

In these two examples b does not depend on n. If one wishes to estimate fX(u0) at a point

u0 ∈ (0, π) by kernel smoothing method, then b will typically depend on n.

In the case when b does not depend on n and {Xj} is a stationary Gaussian or linear

process, asymptotic distribution theory of In is well understood and investigated both for

short memory and long memory linear processes: for asymptotic normality results see Han-

nan (1973), Fox and Taqqu (1987), Giraitis and Surgailis (1990) and Giraitis and Taqqu

(1998); for non-Gaussian limits see Terrin and Taqqu (1990) and Giraitis, Taqqu and Terrin

(1998). Simple sufficient conditions for central limit theorem (CLT) of quadratic forms that

can be written as a sequence of multiple stochastic integrals can be found in Nualart and

Peccati (2005).

It is perhaps worth pointing out that even in the case when b does not depend on

n, investigation of limit distribution of In is technically involved. As is evident from the

works of Hannan (1973) and Bhansali, Giraitis and Kokoszka (2007b), deriving asymptotic

distribution of In in case of general weight sequences bn depending on n will be prohibitively

complicated, and conditions for asymptotic normality will lack desirable simplicity.

In comparison, the verification of asymptotic normality of weighted sums of periodograms

is relatively simple. In sections 2 and 3 below we provide theoretical tools to establish

asymptotic normality of

Dn :=

[n/2]
∑

j=1

bn,jIX(uj) −
[n/2]
∑

j=1

bn,jfX(uj)

and to evaluate the mean-squared error ED2
n, when {Xj} is a stationary linear process with

i.i.d. innovations, possibly having long memory. Our conditions for asymptotic normality of

these weighted sums are formulated in terms of {bn,j, fX(uj)}. They are simple and resemble

Lindeberg-Feller type condition for weighted sums of i.i.d. r.v.’s, regardless of the dependence

structure of the process {Xj}, which can be short, long or negative memory. In contrast,

conditions for asymptotic normality of integrated periodogram In given in Bhansali, Giraitis

and Kokoszka (2007b) cannot be expressed directly in terms of weights bn and spectral density

fX . They are more involved and their verification requires significant technical effort.

Secondly, important benefit of using discretization is the translation invariance property

of the periodogram, viz, IX+c(uj) = IX(uj), for any c ∈ R, and j = 1, · · · , n − 1, i.e. the

data is automatically de-meaned.
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A number of papers in the literature deal with more general quadratic forms (sums

of weighted periodograms). Generalizations of Dn usually includes relaxing assumption of

linearity of {Xj}. Hsing and Wu (2004) obtain asymptotic normality of a quadratic form
∑n

t,s=1 bt−sK(Xt, Xs) for a non-linear transform K of a linear process {Xj} under a set

of complex conditions that do not provide a direct answer in term of {bt}, K and {Xj}.
Moreover, their weights bt’s are not allowed to depend on n.

Shao and Wu (2007a) derive CLT for discrete Fourier transforms and spectral density

estimates under some restrictions on dependence structure of {Xj} based on conditional

moments. Liu and Wu (2010) consider nonparametric estimation of spectral density of a sta-

tionary process using m-dependent approximation of Xj ’s. Wu and Shao (2007b) establish

the CLT for quadratic forms with weights depending on n using martingale approximation

method. Generality of these papers requires verification of a number of complex technical

conditions which impose a priori a rate condition in approximations, that must be verified in

each specific case. For example, Shao and Wu (2007a) requires geometric-contraction condi-

tion, which implies exponential decay of the autocovariance γ(k) function of {Xj}, whereas

in Liu and Wu (2010) the dependence is restricted assuming summability of |γ(k)| and the

use of a coupling argument. Both papers also restrict the set of bn,j’s to specific weights

appearing in kernel estimation. Such structural assumptions may be easier to verify than

verifying mixing conditions, but they are redundant, not informative and too restrictive in

the case when {Xj} is a linear process. The present paper establishes asymptotic normality

of Dn in the latter case under minimal conditions, which allow for all types of dependence

in {Xj} and arbitrary weights bn,j as along as fX(uj)bn,j ’s satisfy condition of uniform neg-

ligibility, e.g. (3.6). The main tool of the proof is Bartlett type approximation for discrete

Fourier transforms of Xj’s which is essentially different from the methods of approximations

used in the above works. The obtained conditions are close to being necessary, and simple

and easy to verify.

Assumptions. Accordingly, let Z := {0,±1, · · · },

Xj =

∞
∑

k=0

akζj−k, j ∈ Z,

∞
∑

k=0

a2
k < ∞, (1.2)

be a linear process where {ζj, j ∈ Z} are i.i.d. standardized r.v.’s.

We assume that the spectral density fX of the process Xj, j ∈ Z, satisfies

fX(u) = |u|−2dg(u), |u| ≤ π, (1.3)

for some |d| < 1/2, where g(u) is a continuous function satisfying

0 < C1 ≤ g(u) ≤ C2 < ∞, u ∈ Π, (∃ 0 < C1, C2 < ∞).

As was shown by Hosking (1981), ARFIMA(p, d, q) model satisfies this assumption for all

d ∈ (−1/2, 1/2).
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Condition (1.3) allows to derive the mean square error bounds of estimates which is

discussed in Theorem 3.3. To derive asymptotic normality and some delicate Bartlett type

approximations, we shall additionally need to assume that the transfer function AX(u) :=
∑∞

k=0 e−ikuak, u ∈ Π, is differentiable in (0, π) and its derivative ȦX has the property

|ȦX(u)| ≤ C|u|−1−d, u ∈ Π. (1.4)

Since fX(u) = |AX(u)|2/2π, u ∈ Π, assumptions (1.3) and (1.4) imply

|ḟX(u)| ≤ C |u|−1−2d, u ∈ Π. (1.5)

Conditions (1.3) and (1.4) are formulated this way to cover long and negative memory

models, with |d| < 1/2, d 6= 0. They allow spectral density to vanish or to have a singu-

larity point at zero frequency. The standard case where functions fX and AX are Lipshitz

continuous and bounded away from 0 and ∞ is discussed in section 3.

To proceed further, let

wX,j =
1√
2πn

n
∑

k=1

eiujkXk, wζ,j =
1√
2πn

n
∑

k=1

eiujkζk, (1.6)

denote the discrete Fourier transforms of {Xj} and {ζj}, respectively, computed at frequen-

cies uj’s, j = 0, · · · , [n/2]. The corresponding periodograms, transfer functions and spectral

densities of {Xj} and {ζj} at frequency uj are denoted by

IX,j = |wX,j|2, Iζ,j = |wζ,j|2, AX,j = AX,j(uj), Aζ,j = 1,

fX,j := fX(uj), fζ,j := fζ(uj) ≡
1

2π
, j = 0, 1, · · · , n/2.

The main focus of this paper is to establish asymptotic normality of the quadratic forms

Qn,X =
ν

∑

j=1

bn,jIX,j , ν = νn := [n/2] − 1,

where {bn,j, j = 1, · · · , ν} is an array of real numbers depending on n. This in turn is

facilitated by first developing asymptotic distribution theory for the sums

Sn,X =
ν

∑

j=1

bn,j
IX,j

fX,j

.

Moreover, asymptotic analysis of these sums is more illustrative of the methodology used.

The asymptotic normality of the sums Sn,X is discussed in section 2, and that of Qn,X in

section 3. It is based on Bartlett type approximation of Sn,X and Qn,X by the corresponding

sums of weighted periodograms of the i.i.d. r.v.’s {ζj}.
Asymptotic normality (CLT) for the quadratic forms Qn,X with weights bn,j ≡ bj that

do not depend on n was investigated by Hannan (1973), see also Proposition 10.8.6. of
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Brockwell and Davis (1991). Their proof required restrictive condition
∑∞

k=0 k1/2|ak| < ∞
on coefficients ak of the linear process {Xj} of (1.2) and was based on Bartlett approximation

of periodogram IX,j/fX,j by periodogram Iζ,j/fζ,j of the noise. Robinson (1995b) established

asymptotic normality of the sum Sn,X in a particular case of weights bn,j = log(j/m) −
m−1

∑m
k=1 log(k/m), j = 1, · · · , m where m = mn → ∞, m = o(n).

In the present paper we show that CLT’s for Qn,X and Sn,X hold under similar conditions

as the classical CLT for weighted sums of i.i.d. r.v.’s. It requires Lindeberg-Feller type

condition on weights bn,j and minimal restrictions on a linear process {Xj} which may have

short or long memory. For example, in short memory case it suffices to assume that ak of the

linear process {Xj} of (1.2) satisfy
∑∞

k=0 |ak| < ∞ and the spectral density fX is bounded

away from ∞ and 0. Results below demonstrate that weighted sums of rescaled periodogram

IX,j/fX,j of a linear process behave, to some extend, similarly as the weighted sums of i.i.d.

r.v.’s.

We also investigate precision of Bartlett approximation of Qn,X and Sn,X by sums of

weighted periodograms Iζ,j/fζ,j. Approximation Lemma 2.1 and Theorem 3.3 contain sharp

bounds and are of independent interest. From these results one sees that the above approxi-

mation is extremely precise, and the resulting error is small and can be effectively controlled

by the weights {bn,j} alone.

In the sequel, Cumk(Z) denotes the kth cummulant of the r.v. Z, IID(0, 1) denotes the

class of i.i.d. standardized r.v.’s, a ∧ b := min(a, b), and a ∨ b := max(a, b), for any real

numbers a, b.

2 Asymptotic normality of Sn,X

Important role in the asymptotic analysis of Sn,X is played by Bartlett type approximation

(

IX,j/fX,j

)

∼
(

Iζ,j/fζ,j

)

= 2π Iζ,j, j = 1, · · · , ν, ν = [n/2] − 1.

Our first goal is to approximate Sn,X by the weighted sum of Iζ,j,

Sn,ζ =
ν

∑

j=1

bn,j

(

Iζ,j/fζ,j

)

≡
ν

∑

j=1

bn,j2π Iζ,j. (2.1)

Let

Rn := Sn,X − Sn,ζ, bn := max
j=1,··· ,ν

|bn,j |, Bn :=
(

ν
∑

j=1

b2
n,j

)1/2
, (2.2)

q2
n := B2

n + Cum4(ζ0)
1

n

(

ν
∑

j=1

bn,j

)2

.

We show later that Var(Sn,ζ) = q2
n, see (2.19).
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By definition Sn,X = Sn,ζ + Rn. Lemma 2.1 below provides an upper bound of order

bn log2 n for ER2
n. The main term Sn,ζ is a quadratic form in i.i.d. r.v.’s. Its asymptotic

normality is established under minimal conditions on the weights bn,j in Lemma 2.2.

The following theorem proves asymptotic normality for Sn,X under Lindeberg - Feller type

condition (2.3) on weights bn,j, which is analogous to the asymptotic normality condition for

the sums of i.i.d. r.v.’s
∑ν

j=1 bn,jεj , {εj} ∼ IID(0, 1).

Because of the invariance property IX+µ(uj) = IX(uj), µ ∈ R, j = 1, · · · , n−1, all results

obtained below remain valid also for a process {Xj} of (1.2) that has non-zero mean.

Theorem 2.1 Suppose the linear process {Xj, j ∈ Z} of (1.2) satisfies assumptions (1.3)

and (1.4), and Eζ4
0 < ∞. About the weights bn,j’s assume

maxj=1,··· ,ν |bn,j|
(
∑ν

j=1 b2
n,j

)1/2
=

bn

Bn
→ 0. (2.3)

Then, the following hold.

ESn,X =
ν

∑

j=1

bn,j + o(qn), Var(Sn,X) = q2
n + o(q2

n), (2.4)

q−1
n

(

Sn,X −
ν

∑

j=1

bn,j

)

→D N (0, 1).

Moreover,

min
(

1, Var(ζ2
0)/2

)

B2
n ≤ q2

n ≤ (1 + |Cum4(ζ0)|)B2
n. (2.5)

Proof. The proof uses Lemmas 2.1 and 2.2 given below. To prove (2.5), use definition

of qn and the Cauchy-Schwarz inequality to obtain the upper bound. The lower bound is

derived in (2.21) of Lemma 2.2.

By (2.18) of Lemma 2.2 and (2.10) of Lemma 2.1, (2.3) and (2.5),

ESn,ζ =

ν
∑

j=1

bn,j, E|Rn| ≤ (ER2
n)1/2 = o(Bn) = o(qn). (2.6)

These facts in turn complete the proof of the first claim in (2.4).

To prove the second claim, note that by (2.19), Var(Sn,ζ) = q2
n, which together with (2.6)

yields Var(Rn) ≤ ER2
n = o(q2

n), |Cov(Sn,ζ, Rn)| = o(q2
n). These facts together with the fact

Var(Sn,X) = Var(Sn,ζ) + Var(Rn) + 2Cov(Sn,ζ, Rn) completes the proof of the second claim

in (2.4).

Finally, since ESn,ζ =
∑ν

j=1 bn,j and ER2
n = o(q2

n),

Sn,X −
ν

∑

j=1

bn,j = Sn,X − ESn,ζ = Sn,ζ − ESn,ζ + op(qn).
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This together with (2.20) of Lemma 2.2 implies the asymptotic normality result in (2.4). 2

The following lemma provides two types of sharp upper bounds for the mean square

error ER2
n that are useful in approximating Sn,X by Sn,ζ. The idea of using Bartlett type

approximations to establish the asymptotic normality of an integrated weighted periodogram

of a short memory linear process goes back to the work of Hannan and Heyde (1972) and

Hannan (1973), whereas for sums of weighted periodograms of an ARMA process it was used

in Proposition 10.8.5 of Brockwell and Davis (1991). Their approximations were derived

under the assumption that the weight function b did not depend on n, and the bounds

they obtain have low-level of sharpness, though they are sufficient to show that the main

term dominates the remainder. The sharp bounds for an integrated weighted periodogram

established in Bhansali, et al. (2007b) technically are more involved and harder to apply

than those for sums in the next lemma.

Lemma 2.1 Assume that {Xj} of (1.2) satisfies (1.3) and (1.4), and Eζ4
0 < ∞. Then, the

following hold.

E(Rn − ERn)2 ≤ Cb2
n log3 n, and (2.7)

≤ CbnBn,

|ERn| ≤ Cbn log2 n, and (2.8)

= o(Bn), if bn = o(Bn).

In particular,

E(Sn,X − Sn,ζ)
2 ≤ Cb2

n log4 n; (2.9)

E(Sn,X − Sn,ζ)
2 = o(B2

n), if bn = o(Bn). (2.10)

To prove Lemma 2.1, we need two auxiliary results. Next proposition provides a general

approximation bound.

Proposition 2.1 Let {Y (i)
n,j , j = 1, · · · , n}, i = 1, 2, n ≥ 1 be the two sets of moving

averages

Y
(i)
n,j =

∑

k∈Z

b
(i)
n,j(k)ζk,

∞
∑

k∈Z

|b(i)
n,j(k)|2 < ∞, i = 1, 2,

where {b(i)
n,j(k)} are possibly complex weights. Assume, ζk ∼ IID(0, 1), Eζ4

0 < ∞. Then, for

any real weights cn,j, j = 1, · · · , n,

Var
(

n
∑

j=1

cn,j{|Y (1)
n,j |2 − |Y (2)

n,j |2}
)

(2.11)

≤ C
n

∑

j,k=1

|cn,jcn,k|
∣

∣

∣
|r11

n,jk|2 + |r22
n,jk|2 − 2|r12

n,jk|2
∣

∣

∣
,

where ril
n,jk := E[Y

(i)
n,j Y

(l)
n,k] =

∑

t∈Z
b
(i)
n,j(t) b

(l)
n,k(t), i, l = 1, 2.
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Proof. Observe that

Qn :=

n
∑

j=1

cn,j{|Y (1)
n,j |2 − |Y (2)

n,j |2}

=
∑

t,s∈Z

(

n
∑

j=1

cn,j{b(1)
n,j(t)b

(1)
n,j(s) − b

(2)
n,j(t)b

(2)
n,j(s)}

)

ζtζs

=:
∑

t,s∈Z

Bn(t, s)ζtζs.

Hence,

E
∣

∣Qn − EQn

∣

∣

2

≤ 4
(

E
∣

∣

∣

∑

t<s

Bn(t, s)ζtζs

∣

∣

∣

2

+ E
∣

∣

∣

∑

s<t

Bn(t, s)ζtζs

∣

∣

∣

2

+E
∣

∣

∣

∑

t∈Z

Bn(t, t)(ζ2
t − Eζ2

t )
∣

∣

∣

2)

= 4
∑

t<s

|Bn(t, s)|2 + 4
∑

s<t

|Bn(t, s|2 + 4Var(ζ0)
∑

t∈Z

|Bn(t, t)|2

≤ (4 + 4Var(ζ0))
∑

t,s∈Z

|Bn(t, s)|2.

But,

∑

t,s∈Z

|Bn(t, s)|2 =

n
∑

j,k=1

cn,jcn,k

∑

t,s∈Z

{b(1)
n,j(t)b

(1)
n,j(s) − b

(2)
n,j(t)b

(2)
n,j(s)}

×{b(1)
n,k(t)b

(1)
n,k(s) − b

(2)
n,k(t)b

(2)
n,k(s)}

=

n
∑

j,k=1

cn,jcn,k

(

|r11
n,jk|2 + |r22

n,jk|2 − |r12
n,jk|2 − |r12

n,kj|2
)

.

This completes the proof of (2.11). 2

Now note that

Rn = Sn,X − Sn,ζ =

ν
∑

j=1

bn,j

( IX,j

fX,j
− Iζ,j

fζ,j

)

(2.12)

=
ν

∑

j=1

bn,j

fX,j

{

IX,j − fX,j
Iζ,j

fζ,j

}

.

Also, recall that IX,j = |wX,j|2, Iζ,j = |wζ,j|2, and that the discrete Fourier transforms wX,j

and wζ,j are moving averages with complex valued coefficients. The corollary below, which

follows from Proposition 2.1, is useful in analyzing the sums of the type appearing in (2.12).

Let fXζ(u) = (2π)−1AX(u) denote the cross-spectral density of {Xj} and {ζj}. See (4.2)

below for the definition of cross spectral density.
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Corollary 2.1 Suppose that {Xj} is a linear process as in (1.2) and Eζ4
0 < ∞. Then, for

any real weights cn,j, j = 1, · · · , n,

Var
(

ν
∑

j=1

cn,j{IX,j − fX,j
Iζ,j

fζ,j
}
)

≤ C(sn,1 + sn,2), (2.13)

where

sn,1 := C
ν

∑

j,k=1

c2
n,j

{

(E|wX,j|2 − fX,j)
2 + fX,j

∣

∣

∣
E|wX,j|2 − fX,j

∣

∣

∣

+fX,j

∣

∣

∣
E[wX,jwζ,j] − fXζ,j

∣

∣

∣

2

+ f
3/2
X,j

∣

∣

∣
E[wX,jwζ,j] − fXζ,j

∣

∣

∣

}

,

sn,2 :=
∑

1≤k<j≤ν

|cn,jcn,k|
{

|E[wX,jwX,k]|2 + fX,k|E[wX,jwζ,k]|2
}

.

Proof. The proof uses some results from section 4 below. Observe that

fX,jIζ,j

fζ,j

= |AX,j|2Iζ,j = |AX,jwζ,j|2.

Note that the r.v. Y
(1)
n,j := wX,j and Y

(2)
n,j := AX,jwζ,j can be written as moving averages of

ζj’s with complex weights. Therefore, by Proposition 2.1, the l.h.s. of (2.13) can be bounded

above by

C

ν
∑

j,k=1

|cn,jcn,k|
∣

∣

∣
E[wX,jwX,k]|2 + |AX,j|2|AX,k|2|E[wζ,jwζ,k]|2 − 2|AX,k|2|E[wX,jwζ,k]|2

∣

∣

∣

= C
(

n
∑

j=k=1

[· · · ] +
∑

k 6=j

[· · · ]
)

:= C(s′n,1 + s′n,2).

By (4.1) below, E|wζ,j|2 = 1/2π, E[wζ,jwζ,k] = 0, for 1 ≤ k < j ≤ ν. Recall also that

fX,j = |AX,j|2/(2π). Therefore,

s′n,1 =
ν

∑

j,k=1

c2
n,j

∣

∣

∣
(E|wX,j|2)2 + f 2

X,j − 4πfX,j|E[wX,jwζ,j]|2
∣

∣

∣
,

s′n,2 =
∑

1≤k<j≤ν

|cn,jcn,k|
(

|E[wX,jwX,k]|2 + fX,k|E[wX,jwζ,k]|2
)

.

Observe that s′n,2 = sn,2. To estimate s′n,1, let

A := (E|wX,j|2)2 − f 2
X,j , B := |E[wX,jwζ,j]|2 − fXζ,j.

The term within | · · · | in s′n,1 can be written as

(E|wX,j|2)2 + f 2
X,j − 4πfX,j|E[wX,jwζ,j]|2

= (A − 4πfX,jB) + (2f 2
X,j − 4πfX,j |fXζ,j|2) = A − 4πfX,jB,
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because 4πfX,j|fXζ,j|2 = 4πfX,j|AX,j |2/(2π)2 = 2f 2
X,j.

Next, note that
∣

∣ |z1|2−|z2|2
∣

∣ ≤ |z1−z2|2 +2|z1−z2||z2|, for any complex numbers z1, z2,

and that |fXζ,j| = |AX,j|/(2π)2 ≤ f
1/2
X,j . Therefore,

|A − 4πfX,jB| ≤ |A| + 4πfX,j|B|
≤ (E|wX,j|2 − fX,j)

2 + 2fX,j

∣

∣

∣
E|wX,j|2 − fX,j

∣

∣

∣

+4πfX,j

∣

∣

∣
E[wX,jwζ,j] − fXζ,j

∣

∣

∣

2

+ 8πf
3/2
X,j

∣

∣

∣
E[wX,jwζ,j] − fXζ,j

∣

∣

∣
,

which shows that s′n,1 ≤ Csn,1 and completes proof of corollary. 2

Proof of Lemma 2.1. The proof uses Theorem 4.1 given in section 4. Recall Rn =

Sn,X −Sn,ζ . We shall prove (2.7) and (2.8). Since ER2
n ≤ 2(E(Rn −ERn)2 +(ERn)2), these

two facts together imply (2.9) and (2.10).

Now, we prove (2.7). Note that from (2.12), Rn is like the r.v. in the left hand side of

(2.13) with cn,j = bn,j/fX,j. Thus, Var(Rn) ≤ sn,1 + sn,2, with

sn,1 := C

ν
∑

j=1

b2
n,j

f 2
X,j

[

(E|wX,j|2 − fX,j)
2 + fX,j

∣

∣

∣
E|wX,j|2 − fX,j

∣

∣

∣

+fX,j

∣

∣

∣
E[wX,jwζ,j] − fXζ,j

∣

∣

∣

2

+ f
3/2
X,j

∣

∣

∣
E[wX,jwζ,j] − fXζ,j

∣

∣

∣

]

,

sn,2 :=
∑

1≤k<j≤ν

|bn,jbn,k|
fX,jfX,k

(

|E[wX,jwX,k]|2 + fX,k|E[wX,jwζ,k]|2
)

.

It thus suffices to show that these sn,1 and sn,2 are bounded from the above by the the upper

bounds given in the r.h.s. of (2.7).

Part (iii) of Theorem 4.1 below provides bounds for E[wX,jwX,k] and E[wX,jwζ,k]. Recall

that the spectral density fX satisfies (1.3), whereas the cross-spectral density fXζ(u) =

(2π)−1AX(u) has the property |fXζ(u)| ≤ C|u|−d, |ḟXζ(u)| ≤ C|u|−1−d, u ∈ Π. Therefore,

they satisfy conditions of part (iii) of Theorem 4.1, and hence

|E|wX,j|2 − fX,j | ≤ C|uj|−2dj−1 log j, (2.14)

|E[wX,jwζ,j] − fXζ,j| ≤ C|uj|−dj−1 log j,

where C does not depend on j and n. Since, by (1.3), 1/fX,j ≤ Cu2d
j , these bounds yield

sn,1 ≤ C

ν
∑

j=1

b2
n,j(j

−1 log j).

10



From this we obtain the bounds

sn,1 ≤ Cb2
n log n

ν
∑

j=1

j−1 ≤ Cb2
n log2 n, and

sn,1 ≤ Cbn

ν
∑

j=1

|bn,j|(j−1 log j)

≤ Cbn(

ν
∑

j=1

b2
n,j)

1/2(

ν
∑

j=1

j−2 log2 j)1/2 ≤ CbnBn,

which proves that sn,1 satisfies both bounds of (2.7).

Next, by (iii) of Theorem 4.1, for all 1 ≤ k < j ≤ ν,

∣

∣E[wX,jwX,k]
∣

∣ ≤ C(u−2d
j + u−2d

k )j−1 log j,
∣

∣E[wX,jwζ,k]
∣

∣ ≤ C(u−d
j + u−d

k )j−1 log j.

Since, by (1.3),

(fjfk)
−1(u−2d

j + u−2d
k )2 ≤ C(ujuk)

2d(u−4d
j + u−4d

k ) ≤ C(j/k)2|d|,

f−1
j (u−d

j + u−d
k )2 ≤ Cu2d

j (u−2d
j + u−2d

k ) ≤ C(j/k)2|d|,

we obtain

sn,2 ≤ C
∑

1≤k<j≤ν

|bn,jbn,k| (
j

k
)2|d| log2 j

j2
. (2.15)

Bound |bn,jbn,k| by b2
n to obtain

sn,2 ≤ Cb2
n log2 n

∑

1≤k<j≤ν

1

k2|d|j2−2|d|
≤ Cb2

n log3 n,

which implies the first estimate of (2.7). Next, bound |bn,j| by bn in (2.15), to obtain

sn,2 ≤ Cbn

∑

1≤k<j≤ν

|bn,k|
log2 j

k2|d|j2−2|d|
≤ Cbn

∑

1≤k≤ν

|bn,k|
log2 k

k

≤ Cbn

(

∑

1≤k≤ν

b2
n,k

)1/2 (

∑

1≤k≤ν

log4 k

k2

)1/2

≤ CbnBn,

that establishes the second bound of (2.7).

To show (2.8), recall that fX,jE|wζ,j|2/fζ,j = fX,j. Therefore,

ERn =

ν
∑

j=1

bn,j

fX,j

(

E|wX,j|2 −
fX,j

fζ,j
E|wζ,j|2

)

=

ν
∑

j=1

bn,j

fX,j

(

E|wX,j|2 − fX,j

)

.

11



Then, by (2.14) and (1.3),

|ERn| ≤ C
ν

∑

j=1

|bn,j|
fX,j

u−2d
j j−1 log j ≤ C

ν
∑

j=1

|bn,j|j−1 log j

≤ Cbn

ν
∑

j=1

j−1 log j ≤ Cbn log2 n,

which implies the first bound in (2.8).

To establish the second bound, let K = (Bn/bn)1/2. Because of (2.3), K → ∞, bnK =

(bn/Bn)1/2Bn = o(Bn). Thus,

|ERn| ≤ C
(

K−1
∑

j=1

|bn,j|j−1 log j +
ν

∑

j=K

|bn,j|j−1 log j
)

(2.16)

≤ C
{

bnK +
(

ν
∑

j=K

b2
n,j

)1/2(
∞

∑

j=K

j−2 log2 j
)1/2}

= o(Bn).

This completes proof of the second estimate in (2.8). 2

Now we return to establishing asymptotic normality of Sn,ζ, a weighted quadratic form

in i.i.d. r.v.’s where weights depend on n. The CLT for quadratic forms in i.i.d. r.v.’s

ζj ∼ IID(0, 1) is well investigated, see Guttorp and Lockhart (1988). The following theorem

summarizes useful criterion for asymptotic normality, given in Theorem 2.1 in Bhansali et

al. (2007a). Let Cn = {cn,ts, t, s = 1, · · · , n} be a symmetric n × n matrix of real numbers

cn,ts, and define the quadratic form

Qn :=

n
∑

t,s=1

cn,tsζtζs.

Let ‖Cn‖ := (
∑n

t,s=1 c2
n,ts)

1/2 and ‖Cn‖sp := max‖x‖=1 ‖Cnx‖ denote Euclidean and spectral

norms, respectively, of Cn.

Theorem 2.2 Suppose ζj ∼ IID(0, 1) and Eζ4
0 < ∞. Then

‖Cn‖sp

‖Cn‖
→ 0 (2.17)

implies (Var(Qn))−1/2(Qn − EQn) →D N (0, 1). In addition, if the diagonal of the matrix

Cn satisfies
∑n

t=1 c2
n;tt = o(‖Cn‖2), then Var(Qn) ∼ 2‖Cn‖2, and condition Eζ4

0 < ∞ can be

replaced by E|ζ0|2+δ < ∞, for some δ > 0.

Next lemma derives asymptotic distribution of the sum Sn,ζ of (2.1). Its proof uses

Theorem 2.2 and some ideas of the proof of Theorem 2, Robinson (1995b). Recall the

definition of q2
n and Bn from (2.2).

12



Lemma 2.2 Suppose ζj ∼ IID(0, 1), Eζ4
0 < ∞, and bn,j satisfy (2.3). Then

ESn,ζ =
ν

∑

j=1

bn,j, (2.18)

V ar(Sn,ζ) = q2
n, (2.19)

q−1
n (Sn,ζ − ESn,ζ) →D N (0, 1), (2.20)

Moreover,

q2
n ≥ min

(

1, Var(ζ2
0)/2

)

B2
n. (2.21)

Proof. Write

Sn,ζ =
1

n

n
∑

t,s=1

ν
∑

j=1

ei(t−s)ujbn,jζsζt =

n
∑

t,s=1

cn(t − s)ζsζt,

where cn(t) := n−1
∑ν

j=1 bn,j cos(tuj), t = 1, 2, · · · . Matrix Cn = (cn(t − s))t,s=1,··· ,n is a

symmetric n × n matrix with real entries. Hence, (2.18) follows because ζj’s are IID(0, 1).

For the same reason,

Var(Sn,ζ) = 2
n

∑

s,t=1: t6=s

c2
n(t − s) + Var(ζ2

0)
n

∑

t=1

c2
n(t − t) (2.22)

= 2‖Cn‖2 + Cum4(ζ0)n
−1(

ν
∑

j=1

bn,j)
2

≥ min(2, Var(ζ2
0))‖Cn‖2,

since Var(ζ2
0) − 2 = Eζ4

0 − 3 = Cum4(ζ0), and cn(0) = n−1
∑ν

j=1 bn,j .

Next, we show that the weights cn(t − s) satisfy

‖Cn‖2 = 2−1B2
n, (2.23)

‖Cn‖sp = o(‖Cn‖). (2.24)

By Theorem 2.2, (2.24) implies

(Var(Sn,ζ))
−1/2(Sn,ζ − E[Sn,ζ]) →D N (0, 1),

Var(Sn,ζ) = B2
n + Cum4(ζ0)n

−1(
ν

∑

j=1

bn,j)
2,

which proves (2.20), whereas (2.23) with (2.22) prove (2.21).

To prove (2.23), by definition of cn(t),

‖Cn‖2 =
n

∑

t,s=1

c2
n(t − s) (2.25)

= n−2

ν
∑

j,k=1

bn,jbn,k

n
∑

s,t=1

cos((t − s)uj) cos((t − s)uk).

13



Since ν = [n/2]− 1, then j + k < n in the above sums. We first recall the following equality:

for 1 ≤ j, k ≤ m, j + k < n and a, b ∈ R,

n
∑

t=1

cos(tuj + a) cos(tuk + b) =
n

2
cos(a − b)I(j = k). (2.26)

To prove this equality, use the fact cos(x) = (eix + e−ix)/2 to write the l.h.s. of (2.26) as

n
∑

t=1

1

4

(

eit(uj+uk)ei(a+b) + e−it(uj+uk)e−i(a+b)

+eit(uj−uk)ei(a−b) + e−it(uj−uk)e−i(a−b)
)

.

Since
n

∑

t=1

eitul = eiul
einul − 1

eiul − 1
= n{I(l = 0) + I(l = n)}, (2.27)

this expression reduces to (n/4)(ei(a−b) + e−i(a−b))I(j = k) = (n/2) cos(a − b)I(j = k).

Hence, applying (2.26) in (2.25), readily yields (2.23):

‖Cn‖2 = 2−1
ν

∑

j=1

b2
n,j = 2−1B2

n.

To prove (2.24), let x ∈ R
n be such that ‖x‖2 = 1. Then

‖Cnx‖2 =

n
∑

t=1

(

n
∑

s=1

cn(t − s)xs)
2 =

n
∑

s,v=1

xsxv

(

n
∑

t=1

cn(t − s)cn(t − v)
)

. (2.28)

But, by (2.26),

n
∑

t=1

cn(t − s)cn(t − v) =
1

n2

ν
∑

j,k=1

bn,jbn,k

n
∑

t=1

cos((t − s)uj) cos((t − v)uk)

=
1

2n

ν
∑

j=1

b2
n,j cos((s − v)uj).

Hence

‖Cnx‖2 =
1

2n

ν
∑

j=1

b2
n,j

n
∑

s,v=1

cos((s − v)uj)xsxv.

Thus, by the equality
∑n

s,v=1 cos((s − v)uj)xsxv = |∑n
s=1 eisujxs|2,

‖Cnx‖2 =
1

2n

ν
∑

j=1

b2
n,j|

n
∑

s=1

eisujxs|2 ≤
1

2n
b2
n

n
∑

j=1

|
n

∑

s=1

eisujxs|2

=
1

2n
b2
n

n
∑

t,s=1

n
∑

j=1

ei(t−s)ujxtxs.
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By (2.27),
∑n

j=1 ei(t−s)uj = nI(t = s). Therefore,

‖Cnx‖2 ≤ 1

2
b2
n

n
∑

t=s=1

x2
t =

1

2
b2
n‖x‖2, ‖Cn‖sp ≤ (1/

√
2)bn.

Since bn = o(Bn), and Bn =
√

2‖Cn‖ by (2.23), this proves (2.24), and also completes the

proof of the lemma. 2

3 A general case of sums of weighted periodogram

We now focuss on the sums

Qn,X :=
ν

∑

j=1

bn,jIX,j .

Bartlett approximation IX,j ∼ fX,j

(

Iζ,j/fζ,j

)

suggests to approximate Qn,X by the sum

Qn,ζ :=
ν

∑

j=1

(bn,jfX,j)(
Iζ,j

fζ,j
) =

ν
∑

j=1

bn,jfX,j(2π)Iζ,j.

Corollary 2.1 provides tools for establishing approximation to the variance and the mean

square error of Qn,X − Qn,ζ .

In Theorem 2.1 above, the spectral density fX can be unbounded at 0, but is differentiable

on (0, π). Then the asymptotic normality of the sums Sn,X =
∑ν

j=1 bn,j

(

IX,j/fX,j

)

holds

under Lindeberg-Feller type condition (2.3) on the weights bn,j .

Now we turn to case when fX is bounded and continuous on Π, with no assumptions

about its differentiability, i.e. d = 0 in (1.3). In addition, we assume that fX is bounded

away from 0 and ∞:

0 < C1 ≤ fX(u) ≤ C2 < ∞, u ∈ Π, (∃ 0 < C1, C2 < ∞). (3.1)

The restriction fX(u) ≥ C1 > 0 can be dropped at an expense of the simplicity of conditions.

Theorem 3.1 below shows that under Lindeberg-Feller type condition (2.3) on weights

bn,j, continuity of fX , or more precisely, continuity of the transfer function AX , suffices

for asymptotic normality of the centered sums Qn,X − EQn,X . To obtain an upper bound

on the variance Var(Qn,X) it suffices to assume fX to be continuous, whereas satisfactory

asymptotics of EQn,X requires fX to be Lipshitz(β), β > 1/2, see Theorem 3.3.

By Lemma 2.2, Qn,ζ has the following mean and variance.

v2
n :=

ν
∑

j=1

(bn,jfX,j)
2 + Cum4(ζ0)

1

n

(

ν
∑

j=1

bn,jfX,j

)2

,

Var(Qn,ζ) = v2
n, EQn,ζ =

ν
∑

j=1

bn,jfX,j.
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Observe that Qn,X , Qn,ζ and v2
n, respectively, are like the Sn,X , Sn,ζ and q2

n of (2.2) with bn,j

replaced by bn,jfX,j. Let

bf,n = max
j=1,··· ,ν

|bn,j|fX,j , B2
f,n =

ν
∑

j=1

(bn,jfX,j)
2.

Similarly as in (2.5), one can show that the variance v2
n has the same order as B2

f,n, i.e. for

some C1, C2 > 0,

C1B
2
f,n ≤ v2

n ≤ C2B
2
f,n, and (3.2)

C1B
2
n ≤ v2

n ≤ C2B
2
n, under (3.1).

Let C(Π) denote the class of bounded (complex valued) continuous functions on Π, and

Λβ(Π) denote Lipschitz continuous functions of order β, 0 < β ≤ 1. The next theorem

establishes asymptotic normality of Qn,X .

Theorem 3.1 Suppose the linear process {Xj, j ∈ Z} of (1.2) is such that Eζ4
0 < ∞, and

the real weights bn,j’s satisfy (2.3).

If fX satisfies (3.1) and the transfer function AX of {Xj} is continuous, then

Var(Qn,X) = v2
n + o(v2

n), v−1
n (Qn,X − EQn,X) →D N (0, 1). (3.3)

In addition, if fX ∈ Λβ(Π), with β > 1/2, then

EQn,X =

ν
∑

j=1

bn,jfX,j + o(vn), v−1
n (Qn,X −

ν
∑

j=1

bn,jfX,j) →D N (0, 1). (3.4)

In the next theorem we extend the result of asymptotic normality of Qn,X to the case

when the spectral density fX is not bounded in the neighborhood of 0, i.e. d > 0, or is

not bounded away from 0, i.e. d < 0. Then the second bound of (3.2) does not hold. The

Lindeberg-Feller condition (2.3) now has to be formulated using the weights bn,jfX,j and we

need to impose some additional smoothness conditions on AX in a small neighborhood of 0.

We assume that AX can be factored into a product AX = hG of a differentiable function

h, which may have a pole at 0, and a continuous bounded function G. In particular, if AX

satisfies (1.4), we take G ≡ 1.

Theorem 3.2 Suppose {Xj, j ∈ Z} is the linear process (1.2) with Eζ4
0 < ∞. Assume that

fX satisfies (1.3) with |d| < 1/2, the transfer function AX can be factored as AX = hG, where

G is continuous and bounded away from 0 and ∞, and h is differentiable having derivative

ḣ and satisfying

C1|u|−d ≤ |h(u)| ≤ C2|u|−d, |ḣ(u)| ≤ C|u|−1−d, 0 < |u| ≤ π, (3.5)

for some 0 < C, C1, C2 < ∞. Then, for any real weights bn,j’s satisfying

maxj=1,··· ,ν |bn,jfX,j |
(
∑ν

j=1(bn,jfX,j)2)1/2
≡ bf,n

Bf,n
→ 0, (3.6)
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(3.3) continues to hold.

If, in addition, G ∈ Λβ(Π), with β > 1/2, then also (3.4) holds.

Proofs of Theorems 3.1 and 3.2. Write

Qn,X − EQn,X = Qn,ζ − EQn,ζ + rn,

where rn := Qn,X − Qn,ζ − E[Qn,X − EQn,ζ]. The proof of both theorems follows from this

decomposition and Lemmas 2.2 and 3.1. The latter lemma will be proved shortly. In (i) and

(ii) of this lemma it is shown that Er2
n = o(v2

n) under the assumptions of Theorems 3.1 and

3.2. Therefore the result (3.3) of Theorems 3.1 and 3.2 follows, noticing that, by Lemma

2.2, under assumption (3.6), v−1
n (Qn,X −Qn,ζ) →D N (0, 1). The second result (3.4) of these

theorems is shown in (3.17) of Theorem 3.3 below. 2

Lemma 3.1 below shows that the order of approximation of Qn,X−EQn,X by Qn,ζ−EQn,ζ

is determined by the smoothness of the transfer function AX . For example, by part (i) of

this lemma, if AX is a bounded continuous function, then

Qn,X − EQn,X = Qn,ζ − EQn,ζ = op(vn), (3.7)

where v2
n = Var(Qn,ζ). If, in addition, AX has a bounded derivative, then the order improves

to op(n
−1/2(log n) vn) without requiring any additional assumptions on bn,j. Lemma 3.1(ii)

shows that if AX is discontinuous at 0, then approximation (3.7) is valid under additional

regularity behavior on AX in a neighborhood of 0, as long as the weights bn,j satisfy (3.6).

To state the lemma, we need the following notation. For a complex valued function

h(u), u ∈ Π, define

εn,h := n−1 log2 n, h ∈ Λ1[Π],

= n−β, h ∈ Λβ[Π], 0 < β < 1,

= δn, δn → 0, h ∈ C[Π].

Lemma 3.1 Assume that {Xj} is as in (1.2) and Eζ4
0 < ∞. Then

Qn,X − EQn,X = Qn,ζ − EQn,ζ + rn, (3.8)

where rn satisfies the following.

(i) If AX ∈ Λβ[Π], 0 < β ≤ 1, or AX ∈ C[Π], then

Er2
n ≤ Cεn,AX

B2
n = o(v2

n).

(ii) If AX = hG, where h satisfies (3.5) and either G ∈ C(Π) or G ∈ Λβ(Π), 0 < β ≤ 1, then

Er2
n ≤ C

(

min(b2
f,n log3 n, bf,nBf,n) + εn,GB2

f,n

)

; (3.9)

≤ C min(b2
f,n log3 n, bf,nBf,n), G ∈ Λ1(Π).

If, in addition, (3.6) holds, then

Er2
n = o(v2

n). (3.10)
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Proof. Let

R̃n = Qn,X − Qn,ζ =
ν

∑

j=1

bn,j{IX,j −
fX,jIζ,j

fζ,j
}.

By Corollary 2.1,

Var(R̃n) ≤ C(tn,1 + tn,2), (3.11)

where tn,i, i = 1, 2 are like sn,i, i = 1, 2, of Corollary 2.1 with cn,j ≡ bn,j.

Proof of (i). We shall show that

E(R̃n − ER̃n)2 ≤ Cεn,AX
B2

n, (3.12)

which, in view of (3.2), proves (3.8). The proof of (3.12) is similar to that of Lemma 2.1.

For the sake of completeness, we provide the details.

We shall now prove part (i) by considering three cases separately. First, observe that fX

and fXζ = AX/(2π) are bounded functions.

Case (1). AX ∈ Λ1[Π]. Then, by (i) of Theorem 4.1,

|E|wX,j|2 − fX,j| ∨ |E[wX,jwζ,j] − fXζ,j| ≤ Cn−1 log n,

|E[wX,jwX,k]| ∨ |E[wX,jwζ,k]| ≤ Cn−1 log n, 1 ≤ k < j ≤ ν.

Therefore,

tn,1 ≤ Cn−1 log n
ν

∑

j=1

b2
n,j = Cn−1 log n B2

n,

tn,2 := Cn−2 log2 n
∑

1≤k<j≤ν

|bn,jbn,k|

≤ Cn−1 log2 n

ν
∑

j=1

b2
n,j = Cn−1 log2 nB2

n,

which proves (3.12).

Case (2). AX ∈ Λβ[Π], 0 < β < 1. Then by (i) of Theorem 4.1,

|E|wX,j|2 − fX,j| ∨ |E[wX,jwζ,j] − fXζ,j| ≤ Cn−β

|E[wX,jwX,k]| ∨ |E[wX,jwζ,k]| ≤ Cn−β`n(β; j − k), k < j.

Note that for 1 ≤ k < j ≤ ν < n/2, j − k ≤ n − j + k, and hence bound

`n(β; j − k) ≤ C
log(2 + j − k)

(2 + j − k)1−β
, (3.13)

(n−β`n(β; j − k))2 ≤ C
log2(2 + j − k)

nβ(2 + j − k)2−β
.
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Apply this fact, to obtain, that for 0 < β < 1,

tn,1 ≤ Cn−β
ν

∑

j=1

b2
n,j = Cn−βB2

n,

tn,2 ≤ C
∑

1≤k<j≤ν

|bn,jbn,k| (n−β`n(β; j − k))2

≤ Cn−β
∑

1≤k<j≤ν

|bn,jbn,k|
log2(2 + j − k)

(2 + j − k)2−β

≤ Cn−β
ν

∑

j=1

b2
n,j

∞
∑

u=0

log2(2 + u)

(2 + u)2−β
≤ Cn−βB2

n,

which proves (3.12).

Case (3). AX ∈ C[Π]. By (ii) of Theorem 4.1,

|E|wX,j|2 − fX,j | ∨ |E[wX,jwζ,j] − fXζ,j| ≤ Cδn

|E[wX,jwX,k]| ∨ |E[wX,jwζ,k]| ≤ Cδn`n(ε; j − k), k < j,

for any 0 < ε < 1/2, with some δn → 0, that does not depend on k, j and n. Next observe,

that (3.12) follows by the same argument as in case (2) above. This completes the proof of

(i) of the lemma.

Proof of (ii). First, we prove (3.9). As above, for that we need to bound tn,1 and tn,2 of

(3.11).

Recall that fX = |AX |2/(2π), fXζ = AX/(2π), AX = h(u)G(u), where h satisfies (3.5),

which together with (1.3) implies that G is bounded away from infinity and zero. For

1 ≤ k ≤ j ≤ ν, define

r̃n,jk = 0, G ∈ Λ1(Π),

= n−β log(2 + j − k)

(2 + j − k)1−β
, G ∈ Λβ(Π), 0 < β < 1,

= δn
log(2 + j − k)

(2 + j − k)1−ε
, G ∈ C(Π), 0 < ε < 1/2,

where δn → 0.

By (iv) of Theorem 4.1, for 1 ≤ k ≤ j,

|E[wX,jwX,k] − fX,jI(j = k)|
≤ C{(u−2d

k + u−2d
j )j−1 log j + (u−2d

k ∧ u−2d
j )r̃n,jk}

|E[wX,jwζ,k] − fXζ,jI(j = k)|
≤ C{(u−d

k + u−d
j )j−1 log j + (u−d

k ∧ u−d
j )r̃n,jk}.
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Since fX = |AX |2/(2π) = |hG|2/(2π), assumptions on h and G used in part (ii) of lemma,

imply that for all u ∈ Π,

fX(u) ≤ C|u|−2d, f−1
X (u) ≤ C|u|2d,

|fXζ(u)| ≤ C|u|−d, |f−1
Xζ(u)| ≤ C|u|d.

Therefore, for 1 ≤ k ≤ j,

(fX,jfX,k)
−1(u−2d

k + u−2d
j )2 ≤ C|j/k|2|d|,

(fX,jfX,k)
−1(u−2d

k ∧ u−2d
j )2 ≤ C,

(fX,j)
−1(u−d

k + u−d
j )2 ≤ C|j/k|2|d|, (fX,j)

−1(u−d
k ∧ u−d

j )2 ≤ C.

To prove (3.9) of (ii), we shall use the bound (3.11). It suffices to show that tn,1 + tn,2 can

be bounded above by the r.h.s. of (3.9). The above bounds readily yield that

tn,1 ≤ C

ν
∑

j=1

(bn,jfX,j)
2(j−1 log j + r̃n,jj),

tn,2 ≤ C
∑

1≤k<j≤ν

|bn,jfX,j | |bn,kfX,k|
(

(
j

k
)2|d| log2 j

j2
+ r̃2

n,jk

)

.

The argument used in evaluating sn,1 and sn,2 in Lemma 2.1 yields

ν
∑

j=1

(bn,jfX,j)
2 log j

j
+

∑

1≤k<j≤ν

|bn,jfX,j ||bn,kfX,k|(
j

k
)2|d| log2 j

j2

≤ C min
(

b2
f,n log3(n), bf,nBf,n

)

,

whereas estimation in Cases (2) - (3) above yields that

ν
∑

j=1

(bn,jfX,j)
2r̃n,jk +

∑

1≤k<j≤ν

|bn,jfX,j | |bn,kfX,k|r̃2
n,jk ≤ Cεn,GB2

f,n.

Therefore,

tn,1 + tn,2 ≤ C
(

min
(

b2
f,n log3(n), bf,nBf,n

)

+ εn,GB2
f,n

)

, (3.14)

which proves (3.9).

Observe that εn,G → 0. Therefore, (3.9), (3.6) and (3.2) imply (3.10). This completes

the proof of the lemma. 2

As seen above, proving CLT for v−1
n (Qn,X − ∑ν

j=1 bn,jfX,j) required some smoothness of

the spectral density fX and the transfer function AX . Conditions on AX can be relaxed if

one wishes to establish only an upper bound for the mean square error of the estimator Qn,X

of
∑ν

j=1 bn,jfX,j as is shown in the next theorem.
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Theorem 3.3 Let {Xj} be as in (1.2) with Eζ4
0 < ∞. Assume that fX(u) = |u|−2dg(u),

|d| < 1/2, where g is a continuous function, bounded away from 0 and ∞.

(i) Then

E(Qn,X − EQn,X)2 ≤ CB2
f,n. (3.15)

(ii) In addition,

E
(

Qn,X −
ν

∑

j=1

bn,jfX,j

)2

≤ CB2
f,n, (3.16)

in each of the following three cases.

c1) d = 0, g ∈ Λβ[Π], 1/2 < β ≤ 1;

c2) d 6= 0, g ∈ Λβ[Π], 1/2 < β ≤ 1;

c3) |ḟX(u)| ≤ C u−1−2d, 0 < u ≤ π.

Moreover, in case c1),

EQn,X −
ν

∑

j=1

bn,jfj = o(Bf,n). (3.17)

If bn,j’s satisfy (3.6), then (3.17) holds also in cases c2) and c3).

Proof. (i) Recall IX,j = |wX,j|2. By Proposition 2.1,

E(Qn,X − EQn,X)2 = Var
(

ν
∑

j=1

bn,jIX,j

)

≤ C

ν
∑

j,k=1

|bn,jbn,k‖E[wX,jwX,k]|2.

For j = k bounding (E|wX,j|2)2 ≤ 2(E|wX,j|2 − fX,j)
2 + 2f 2

X,j, and letting

s′n,1 :=
ν

∑

j=1

b2
n,j(E|wX,j|2 − fX,j)

2,

s′n,2 :=
∑

1≤k<j≤ν

|bn,jbn,k‖E[wX,jwX,k]|2,

one obtains

E(Qn,X − EQn,X)2 ≤ C(s′n,1 + s′n,2 + B2
f,n). (3.18)

Under assumptions of this theorem, by (iv) of Theorem 4.1, for 1 ≤ k < j ≤ ν, (0 < ε < 1/2),

|E|wX,j|2 − fX,j | ≤ Cu−2d
j

(

j−1 log j + δn),

|E[wX,jwX,k]| ≤ C
(

(u−2d
k + u−2d

j )j−1 log j + (u−2d
k ∧ u−2d

j )δn`(ε, j − k)
)

,
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where δn → 0. Observe that s′n,i ≤ tn,i, i = 1, 2, where tn,1 and tn,2 are as in the proof of

Lemma 3.1. Therefore, the same argument as used in proving (3.14) implies that s′n,1 + s′n,2

satisfies the bound (3.14), which in turn yields

s′n,1 + s′n,2 ≤ C
(

bf,nBf,n + εn,GB2
f,n

)

≤ CB2
f,n,

since bf,n ≤ Bf,n. This completes proof of (3.15).

(ii) Observe that

|E|wX,j|2 − fX,j| ≤ Cu−2d
j n−β, in case c1)

≤ Cu−2d
j (j−1 log j + n−β), in case c2)

≤ Cu−2d
j (j−1 log j), in case c3)

by parts (i), (iv) and (iii) of Theorem 4.1, respectively. Let

qn :=
∣

∣

∣
EQn,X −

ν
∑

j=1

bn,jfX,j

∣

∣

∣
=

∣

∣

∣

ν
∑

j=1

bn,j(E|wX,j|2 − fX,j)
∣

∣

∣
.

Under assumptions of theorem, f−1
X,j ≤ Cu2d

j , 0 < u ≤ π. Thus, in case c1),

qn ≤ C

ν
∑

j=1

|bn,jfX,j|n−β ≤ Cn1/2−β
(

ν
∑

j=1

(bn,jfX,j)
2
)1/2

(3.19)

= o(Bf,n),

which proves (3.16) and (3.17).

In case c2),

qn ≤ C
ν

∑

j=1

|bn,jfX,j |(j−1 log n + n−β).

By the same argument as in the proof of (2.16), it follows that

ν
∑

j=1

|bn,jfX,j|j−1 log j = O(Bf,n),

= o(Bf,n), if (3.6) holds,

which together with (3.19) yields (3.16) and (3.17).

In case c3), proof of (3.16) and (3.17) is the same as in case c2). This completes proof of

theorem. 2

Remark 3.1 Consider now the sum

Qn,X =
θn
∑

j=1

bn,jIX,j, (0 < θ < 1/2), (3.20)
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where summation is taken over a fraction {1, · · · , θn} of the set {1, · · · , ν}. Then peri-

odograms IX,j used in Qn,X are based on frequencies uj from the zero neighborhood [0, ∆],

∆ = 2πθ which is a sub-interval of [0, π]. Observe that smoothness conditions on fX and

AX are required only to obtain upper bounds on covariances E[wX,jwX,k] and E[wX,jwζ,k] in

Theorem 4.1. Therefore, it follows that in order for these bounds to be valid at frequencies

uj ∈ [0, ∆] it suffices to impose smoothness conditions on fX and AX on a slightly larger

interval [0, a], a > ∆, covering [0, ∆].

Hence, for the sum Qn,X of (3.20), all of the above results derived in this section hold

true if conditions on fX and AX are satisfied on some interval [0, a], with a > ∆, instead of

[0, π]. For example, Theorem 3.2 holds if on [0, a], AX = hG and h, f satisfy (3.5) and (1.3).

Theorem 3.3 is valid, if on [0, a], fX(u) = |u|−2dg(u) and g is Lipshitz continuous of order

β > 1/2.

No restrictions are required on fX on the interval [a, π], except the integrability condition
∫ π

a
fX(u)du < ∞.

Eample 3.1 Consider the stationary ARFIMA(p, d, q) model

φ(B)Xj = (1 − B)−dθ(B)ζj , j ∈ Z, {ζj} ∼ IID(0, σ2
ζ).

We shall show that this model satisfies the smoothness and differentiability conditions (1.3)

and (1.4) pertaining to the spectral density fX and the transfer function AX . Indeed, when

the complex roots of polynomials φ(z) and θ(z) lie outside unite circle {|z| ≤ 1}, the operator

φ(B)−1θ(B) =
∑∞

k=0 bkB
k can be written as a series of powers Bk and the above equations

are rewritten as

Xj = (1 − B)−dYj, Yj = φ(B)−1θ(B)ζj =
∞

∑

k=0

bkζj−k, j ∈ Z,

where {Yj} is a short memory process with a absolutely summable weights bk. Its transfer

and spectral density functions

AY (u) =
θ(e−iu)

φ(e−iu)
=

∞
∑

k=0

bke
−iuk, fY (u) =

σ2
ζ

2π
|AY (u)|2, u ∈ Π,

are continuous and bounded away from 0. Moreover, AY and fY have bounded derivatives.

Then, with h(u) = (1 − e−iu)−d,

fX(u) = |h(u)|2fY (u) ≡ |u|−2dg(u), (3.21)

AX(u) = h(u)AY (u),

where g(u) = (|h(u)|2/|u|−2d)fY (u) = (2| sin(u/2)|/|u|)−2dfY (u) is a continuous function on

Π, bounded away from 0 and ∞. Whence, fX satisfies assumption (1.3).
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Moreover, h is differentiable and satisfies

|h(u)| ≤ C|u|−2d, |ḣ(u)| ≤ C|u|−1−2d, ∀u ∈ [0, π], (3.22)

|h(u)| ∼ |u|−2d, u → 0.

Thus

|ȦX(u)| ≤ C(|ḣ(u)‖AY (u)| + |h(u)‖ȦY (u)|)
≤ C|1 − e−iu|−d−1 ≤ C|u|−d−1, 0 < |u| < π,

and hence AX satisfies (1.4). Note also that AX = hAY is naturally factored into a dif-

ferentiable component h and continuous component AY as required in Theorem 3.2. Thus

Theorems 2.1, 3.1, 3.2 and 3.3 are applicable.

Eample 3.2 Now consider a more general process {Xj},

Xj = (1 − B)−dYj, j ∈ Z, |d| < 1/2,

where Yj =
∑∞

k=0 bkζj−k, {ζj} ∼ IID(0, 1),
∑∞

k=0 |bk| < ∞, is a short memory process.

Observe that {Xj} has the spectral density and transfer function as in (3.21). Hence, the

same argument as used in (3.21), shows that fX satisfies (1.3) with parameter |d| < 1/2.

Although AX may not satisfy (1.4), because AY is only continuous, but AX is factored as

required in Theorems 3.2 and 3.3. Hence, these theorems are applicable.

4 Appendix. Covariances of DFT

Here we shall present some preliminary results needed about the properties of discrete Fourier

transforms. Observe, that if {ζj} is a white noise process WN(0, 1), then its discrete Fourier

transforms (DFT’s) are uncorrelated:

E[wζ,jwζ,k] =
1

2π
, 1 ≤ k = j ≤ n, (4.1)

= 0, 1 ≤ k < j ≤ n,

which follows in view of (2.27).

In general, unlike in the white noise case, DFT’s of a stationary process {Xj} with a

spectral density fX are correlated, i.e. covariances E[wX,jwX,k] 6= 0, for k 6= j.

Consider now the two linear processes

Xj =

∞
∑

k=0

akζj−k, Yj =

∞
∑

k=0

bkζj−k, j ∈ Z;

∞
∑

k=0

a2
k < ∞,

∞
∑

k=0

b2
k < ∞,

with the same white noise innovations {ζj} ∼ WN(0, σ2). Let

AX(v) :=

∞
∑

k=0

e−ikvak, AY (v) :=

∞
∑

k=0

e−ikvbk,
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denote their respective transfer functions and

fX(v) = (σ2/2π)|AX(v)|2, fY (v) = (σ2/2π)|AY (v)|2,

their respective spectral densities.

Let fXY (v) denote a (complex valued) cross-spectral density:

fXY (v) :=
σ2

2π
AX(v)AY (v), v ∈ Π, (4.2)

E[XjYj−k] =

∫

Π

eikvfXY (v)dv =
σ2

2π

∞
∑

l=0

al+kbl, k ≥ 0, j ∈ Z.

Observe, that in the case of white noise Yj = ζj, j ∈ Z,

fXζ(v) :=
σ2

2π
AX(v), v ∈ Π, (4.3)

E[XjYj−k] =
σ2

2π

∫

Π

eikvAX(v)dv = σ2ak, k ≥ 0.

Theorem 4.1 below summarizes asymptotic properties of cross-covariances E[wX,jwY,k]. It

generalizes and extends Theorem 2 of Robinson (1995a) for short memory and long memory

time series, which enable derivation of the upper bounds based on Bartlett approximation

of this paper. Its proof is technical and full details are given in Giraitis and Koul (2010).

In case when Fourier frequencies in covariances E[wX,jwY,k] are from an interval (−∆, ∆),

∆ < π (a neighborhood of 0), smoothness conditions on fX , fY , AX , AY are local, i.e. they

need to be imposed on an interval [0, a], a > ∆. If the Fourier frequencies are from the entire

spectrum over Π, then smoothness conditions have to be imposed on the whole spectrum Π.

To proceed further, let C[0, a] denote complex valued functions that are continuous on

[0, a], and Λβ[0, a], 0 < β ≤ 1 denote Lipschitz continuous functions with parameter β. We

write h ∈ C1,α[0, a], |α| < 1, if

|h(u)| ≤ C|u|−α, |ḣ(u)| ≤ C|u|−1−α, ∀u ∈ [0, a].

Class C1,α[0, a] allows an infinity peak and non-differentiability at 0, whereas Λβ[0, a] covers

continuous piecewise differentiable functions.

Note that for any h ∈ C[0, a],

ωh(η) := sup
u,v∈[0,a]:|u−v|≤η

|h(u) − h(v)| → 0, η → 0,

because h is uniformly continuous on [0, a]. Define

δn,ε(h) := ωh(n
−1 log n) + (log n)−ε, 0 < ε < 1.
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For the sake of brevity introduce the functions

`n(ε; k) :=
log(2 + k)

(2 + k)1−ε
+

log(2 + n − k)

(2 + n − k)1−ε
, 0 ≤ k ≤ j ≤ n,

rn,jk(g) := 0, g ∈ Λ1[0, a], β = 1,

:= n−β `n(β; j − k), g ∈ Λβ[0, a], 0 < β < 1,

:= δn,ε(g) `n(ε; j − k), g ∈ C[0, a], ε ∈ (0, 1).

Theorem 4.1 Let either ∆ < a ≤ π, or ∆ = a = π. Then, the following facts (i)-(iv) hold

for all 0 < |uk| ≤ uj ≤ ∆.

(i) If fXY ∈ Λβ[0, a], 0 < β ≤ 1, then

∣

∣

∣
E[wX,jwY,j] − fXY (uj)

∣

∣

∣
≤ Cn−1 log n, β = 1,

≤ Cn−β 0 < β < 1.
∣

∣

∣
E[wX,jwY,k]

∣

∣

∣
≤ Cn−1 log n, β = 1,

≤ Cn−β`n(β; j − k), 0 < β < 1, k < j.

(ii) If fXY ∈ C[0, a], then, ∀ ε ∈ (0, 1),

∣

∣

∣
E[wX,jwY,j] − fXY (uj)

∣

∣

∣
≤ Cδn,ε(fXY );

|E[wX,jwY,k]| ≤ Cδn,ε(fXY ) `n(ε; j − k), k < j.

(iii) If fXY ∈ C1,α[0, a], |α| < 1, then

∣

∣

∣
E[wX,jwY,j] − fXY (uj)

∣

∣

∣
≤ Cu−α

j j−1 log j,

|E[wX,jwY,k]| ≤ C
(

|uk|−α + u−α
j

)

j−1 log j, k < j.

(iv) Suppose fXY = hg, where h ∈ C1,α[0, a], |α| < 1, and g ∈ Λβ[0, a] ∪ C[0, a], 0 < β ≤ 1.

Then, for all 1 ≤ |k| ≤ j ≤ ñ,

∣

∣

∣
E[wX,jwY,k] − fXY (uj)I(j = k)

∣

∣

∣

≤ C
(

(|uk|−|α| + u
−|α|
j )j−1 log j +

(

|uk|−|α| ∧ u
−|α|
j

)

rn,jk(g)
)

.

The constant C in the above (i)-(iv) does not depend on k, j and n.

Parts (i)-(ii) of Theorem 4.1 consider the case when fX is continuous and bounded,

whereas part (iv) covers the case when fX(u) = |u|−2dg(u), |d| < 1/2 can be factored into

component |u|−2d and a bounded continuous part g(u). The case when g has also bounded

derivative is covered in part (iii). Obtaining upper bounds in (i)-(iv) of Theorem 4.1 does

not require the process {Xj} to be linear. For convenience of applications, theorem is
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formulated for a cross-spectral density of two stationary linear processes X and Y with the

same underlying white noise innovation process. This allows to express the cross spectral

density fXY via transfer functions AX and AY as indicated in (4.2). In general, the results

of Theorem 4.1 are valid for any spectral density or cross-spectral density that satisfies

smoothness condition of this theorem.
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