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Abstract

The family of multiplicative error models, introduced by Engle (2002), has attracted
considerable attention in the recent literature for modeling positive random variables,
such as the duration between trades at a stock exchange, volume transactions and
squared log returns. Such models are also applicable to other positive variables like
waiting time at a queue, daily/hourly rainfall, or demand for electricity. This paper
develops a new method for testing the lack-of-fit of a given parametric multiplicative
error model having a Markov structure. The test statistic is of Kolmogorov-Smirnov
type based on a particular martingale transformation of a marked empirical process.
The test is asymptotically distribution free, consistent against a large class of fixed
alternatives and has non-trivial asymptotic power against a class of nonparametric local
alternatives converging to the null hypothesis at the rate of O(n−1/2). In a simulation
study, the test performed better overall than the general purpose Ljung-Box Q-test, a
Lagrange Multiplier type test and a Generalized Moment test. We illustrate the testing
procedure by considering two data examples.
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1 Introduction

Non-negative random variables are frequently encountered in economics and finance, as well

as in other fields of social and natural sciences. Examples include, financial durations such

as the duration between consecutive trades at a stock exchange, waiting time at a queue,

daily/hourly rainfall, and demand for electricity. As a general framework for modeling such

nonnegative processes, Engle (2002) introduced a family of multiplicative error models.

To introduce this family of models, let yi, i ∈ Z := {0,±1,±2, · · · }, be a discrete time

process defined on [0,∞), and let Hi−1 denote the information available for forecasting yi.

A multiplicative error model takes the form

yi = E[yi | Hi−1]εi, εi | Hi−1 ∼ D+(1, σ2), (1)

where D+(1, σ2) is a probability distribution on the positive real line with unit mean and

a finite variance σ2. The error sequence εi, i ∈ Z, is often assumed to be independent and

identically distributed.

This family of models has attracted considerable attention in the recent literature. Mul-

tiplicative error specifications have been adopted for modeling durations (Engle and Russell

1998), volume transactions (Manganelli 2005), high–low price range (Chou 2005), squared log

returns (Engle and Gallo 2006), equity market volatilities (Engle, Gallo and Velucchi 2011),

and realized volatility (Lanne 2006, and Engle and Gallo 2006), amongst many others.

The parametric form of E[yi | Hi−1] is the main component of interest in a multiplica-

tive error model (MEM), and hence, testing for the specification of this component has an

important place in the process of model evaluation. However, a large proportion of MEMs

have a complicated probabilistic structure (see Pacurar 2008 and Brownlees, Cipollini and

Gallo 2011 ). Consequently, assessing the goodness-of-fit of such parametric specifications is

a non-trivial task. A small number of general methods have been developed for testing the

goodness-of-fit of a given parametric form for E[yi | Hi−1]. We will shortly describe some

of these tests. One aspect of these general methods is that they are designed for models

with more dynamic parametric forms. For example, they would typically allow E[yi | Hi−1]

to depend on the whole infinite past, {yt−1 : t ≤ i}. However, in empirical studies, one

would want to consider such elaborate models only if a simpler one does not fit. This paper

develops a formal test for this purpose. More specifically, a method is developed for testing

the lack-of-fit of a given MEM having the Markov specification

E[yi | Hi−1] = τ(yi−1), (2)

where τ(·) is a positive function defined on R
+ := [0,∞). We shall call the model (1)–(2), a

Markov MEM.
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In what follows, we describe some of the existing methods of testing for multiplicative

error models. A common practice for evaluating a MEM is to carry out simple diagnostic

tests to examine the dynamical and distributional properties of the estimated residuals; for

example, see Jasiak (1998), Giot (2000), Ghysels, Gouriéroux and Jasiak (2004), Bauwens

and Veredas (2004), Luca and Gallo (2004) and Bauwens (2006). The Box-Pierce-Ljung type

portmanteau test statistic applied to the estimated residuals or squared estimated residuals

is among the most frequently used tests in the literature. This approach was employed for the

class of multiplicative error models known as autoregressive conditional duration (ACD) by

Engle and Russell (1998), and has frequently been employed in subsequent studies. Another

method which was introduced by Engle and Russell (1998) is to test for no excess dispersion

of the estimated residuals, paying particular attention for checking the first and second

moments of the residuals when the error distribution is assumed to be either exponential or

Weibull. These diagnostic tests may suggest that the MEM is misspecified as a result of a

misspecification of the conditional mean and/or of the error distribution.

Several tests that exclusively test for misspecifications of the conditional mean function

have also been proposed recently. Meitz and Teräsvirta (2006) developed Lagrange multiplier

[LM] type tests, focusing on testing the specifications of the functional form of the condi-

tional mean against various forms of parametric alternatives (e.g., tests against higher-order

models, tests of linearity, and tests of parameter constancy). Hautsch (2006) also considered

some Lagrange multiplier tests. One aspect of such LM-type tests is that they require the

alternative hypothesis to specify a larger finite dimensional parametric model, so that the

null hypothesis is obtained by setting some components of the model parameter equal to

zero. Thus, LM type tests are targeted to detect departures in the direction of the particular

finite dimensional parametric model in the alternative hypothesis.

Recently, Hong and Lee (2011) developed a class of tests using a generalized spectral

derivative approach for testing the specification of the conditional mean, without assuming

the knowledge of a parametric form under the alternative. These tests are based on kernel

density estimators, and hence, their finite sample performances are subject to the choice

of the kernal and the bandwidth. Chen and Hsieh (2010) proposed a set of generalized

moment tests, unifying several existing parametric tests for the conditional mean. In addi-

tion, the general diagnostic test considered by Hong and Lee (2003) can also be used as a

misspecification test for multiplicative error models (see Meitz and Teräsvirta 2006).

There are also methods available for testing the goodness-of-fit of a given parametric form

for the distribution of the error term εi in (1) (for example see Fernandes and Grammig 2005,

Chen and Hsieh 2010). However, these methods are not applicable for testing the adequacy

of a given parametric form for the conditional mean function, which is the topic of this paper.

This paper develops a new test for the conditional mean specification of a Markov mul-
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tiplicative error model. Most of the existing tests that we mentioned above are developed

for general models that are not necessarily Markov. Thus, by design, they do not make

use of the simple dynamic structure of the Markov model (2). By contrast, the test pro-

posed in this paper is designed specifically to exploit the special structure of the model (2).

Therefore, there is some ground to conjecture that, for the case of testing the lack-of-fit

of a given Markov MEM, the test proposed in this paper would be more suitable than the

existing ones. In a simulation study, when testing for the conditional mean specification of

a Markov model, the new test performed significantly better than a LM test, a generalized

moment test and a Box-Pierce-Ljung type portmanteau test. We expect that the new test

complements these tests and spectral derivative based tests for multiplicative error models

in a desirable fashion.

The test is introduced in section 2. It is based on a marked empirical process of residuals,

analogous to the ones in Stute, Thies and Zhu (1998) and Koul and Stute (1999). The

main result of section 2 says that the asymptotic null distribution of the test statistic is

that of the supremum of the standard Brownian motion on [0, 1]. Therefore, the test is

asymptotically distribution free, and a set of asymptotic critical values are available for

general use. Consistency against a fixed alternative and the asymptotic power against a

sequence of local nonparametric alternatives are discussed in section 3. Section 4 contains a

simulation study. Two illustrative examples are discussed in section 5. Section 6 concludes

the paper. The proofs are relegated to an Appendix.

2 The test statistic and its asymptotic null distribution

This section provides an informal motivation for the test, defines the test statistic and states

its asymptotic null distribution. First, subsection 2.1 provides a motivation for the test and a

brief indication of the approach adopted in constructing the test statistic. Then, subsection

2.2 introduces the regularity conditions, defines the test statistic and states the main result

on its asymptotic null distribution.

To introduce the null and alternative hypotheses of our interest, let q be a known positive

integer, Θ j R
q, and let M = {Ψ(y, θ) : y ≥ 0, θ ∈ Θ} be a parametric family of positive

functions. We wish to test

H0 : τ(y) = Ψ(y, θ), for some θ ∈ Θ and ∀ y ≥ 0, vs H1 : Not H0. (3)

Let {Y0, Y1, . . . , Yn} be observations of a positive, strictly stationary and ergodic process

{Yi} that obeys the model (1)–(2). Let G denote the stationary distribution function of

Y0. Let τ , Ψ, σ2 and the testing problem be as in (1)–(2) and (3). Let θ denote the true
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parameter value under H0 and ϑ denote an arbitrary point in Θ. Under H0, G may depend

on θ, but we do not exhibit this dependence.

2.1 Motivation for the test statistic

This subsection provides a motivation for the test and an overview of the general approach.

The regularity conditions are not discussed here; they will be provided in the next subsection.

Let T (y, ϑ) =
∫ y

0
[{τ(x)/Ψ(x; ϑ)} − 1]dG(x), and

Un(y, ϑ) = n−1/2
n∑

i=1

{ Yi

Ψ(Yi−1, ϑ)
− 1

}
I(Yi−1 ≤ y), y ≥ 0, ϑ ∈ Θ. (4)

First, consider the special case when the true parameter value θ in H0 is given. Arguing

analogously as in Stute et al. (1998), because θ is known, the integral transform T (·, θ) is

uniquely determined by τ(·), assuming G is known. Therefore, inference about the functional

form of τ(·) could be based on an estimator of T (·, θ). From (2) it follows that under H0,

T (y, θ) = EI(Y0 ≤ y)[{Y1/Ψ(Y0, θ)}−1] = 0, for all y ≥ 0. Further, an unbiased estimator of

T (y, θ) is given by n−1/2Un(y, θ). It is shown later that, under H0, Un(y, θ) converges weakly

to W ◦ G, where W is the standard Brownian motion. Therefore, a Kolmogorov-Smirnov

type test could be based on supy |Un(y, θ)|, which converges weakly to sup0≤t≤1 |W (t)|, under

H0.

Now, consider the testing problem (3), where H0 specifies a parametric family Ψ(·, θ) for

τ(·), for some unknown θ. Let θ̂ be a n1/2-consistent estimator of θ. Then, an estimator of

T (y, θ) is n−1/2Un(y, θ̂). The limiting null distribution of Un(y, θ̂) depends on θ̂ and the un-

known parameter θ in a complicated fashion. Therefore, the method outlined in the previous

paragraph for known θ is no longer applicable, and it does not lead to an asymptotically

distribution free test. Constructing such a test based on Un(y, θ̂) is the focus of the next

subsection.

The process Un(y, θ̂) is an extension of the so called cumulative sum process for the one

sample setting to the current set up. The use of cumulative sum process for testing the

lack-of-fit of a given regression function goes back to von Neumann (1941), who proposed a

test of constant regression based on an analog of this process. More recently, its analogs have

been used by several authors to propose asymptotically distribution free (ADF) lack-of-fit

tests in some other models.

Stute, Xu and Zhu (2008) and Escanciano (2010) proposed residual empirical processes

marked by appropriately chosen weighting functions, for additive regression and certain time

series models, respectively. The testing procedure proposed in Escanciano (2010) could also

be viewed as a generalization of the method developed in Wooldridge (1990) for obtaining

ADF tests. This approach is not directly applicable for testing H0 in (3) using Un(y, θ̂),
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because Un(y, θ̂) is a marked empirical process with the marks that are the centered residuals

(Yi/Ψ(Yi−1, θ̂) - 1) and not functions of a conditioning set containing past observations as in

Escanciano (2010).

Escanciano and Mayoral (2010) and Ling and Tong (2011) have also developed ADF tests

based on marked empirical processes similar to Un(y, θ̂). However, the hypotheses considered

in these papers are different from (3), and hence, these tests are not applicable in the present

context.

In this paper, we appeal to a particular martingale transformation method to construct

an ADF test for H0 in (3) based on Un(y, θ̂). Such martingale transformation methods have

been successfully applied to location, regression and certain autoregressive models. More

specifically, tests have been developed when the null hypothesis specifies a parametric family

for the mean function of a regression and/or an autoregressive model, and the conditional

variance function in a regression model; see, for example, Stute et al. (1998), Koul and Stute

(1999), Khmaladze and Koul (2004), Dette and Hetzler (2009), and Koul and Song (2010).

A common feature of all these studies is that they are all for additive models. The Markov

multiplicative time series models studied in this paper are structurally different (see Engle

2002, Brownlees et al. 2011).

2.2 The test and the main results

Let F denote the cumulative distribution function [cdf ] of ε1. In the sequel, ‖a‖ denotes

Euclidean norm of a vector a ∈ R
q, and for a q × q real matrix D, ‖D‖ := sup{‖aT D‖; a ∈

R
q, ‖a‖ = 1}. Now we shall introduce a set of regularity conditions.

(C1). The cdf G is continuous, G(y) > 0 for y > 0, and EY 4
0 < ∞. The sequence of random

variables {εi} is positive and independent and identically distributed (i.i.d.) with E(ε1) = 1,

0 < σ2 < ∞ and εi is stochastically independent of {Yj−1, j ≤ i}.
(C2). The cdf F of ε1 has a bounded Lebesgue density f .

(C3). (a) Ψ(y, ϑ) is bounded away from zero, uniformly over y ∈ R
+ and ϑ ∈ Θ.

(b) The true parameter value θ is in the interior of Θ, and
∫ ∞
0

|Ψ(y, θ)|2 dG(y) < ∞. For

all y, Ψ(y, ϑ) is continuously differentiable with respect to ϑ in the interior of Θ.

For ϑ ∈ Θ and y ≥ 0, let Ψ̇(y, ϑ) =
[
(∂/∂ϑ1)Ψ(y, ϑ), · · · , (∂/∂ϑq)Ψ(y, ϑ)

]T

,

g(y, ϑ) = Ψ̇(y, ϑ)/Ψ(y, ϑ), and C(y, ϑ) =

∫

z≥y

g(z, ϑ)g(z, ϑ)T dG(z).

(C4). For every 0 < K < ∞,

sup
1≤i≤n,

√
n‖ϑ−θ‖≤K

√
n|Ψ(Yi−1, ϑ) − Ψ(Yi−1, θ) − (ϑ − θ)′Ψ̇(Yi−1, θ)| = op(1).
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(C5). There exists a q × q square matrix ġ(y, θ) and a nonnegative function h(y, θ), both

measurable in the y-coordinate, and satisfying the following: ∀ δ > 0, ∃ η > 0 such that

‖ϑ − θ‖ ≤ η implies

‖g(y, ϑ)− g(y, θ)− ġ(y, θ)(ϑ− θ)‖ ≤ δh(y, θ)‖ϑ− θ‖, ∀ y ≥ 0,

Eh2(Y0, θ) < ∞, E‖ġ(Y0, θ)‖‖g(Y0, θ)‖j < ∞, j = 0, 1.

(C6).
∫ ∞
0

‖g(y, θ)‖2 dG(y) < ∞.

(C7). C(y, θ) is a positive definite matrix for all y ∈ [0,∞).

(C8). ‖gT (·, θ)C−1(·, θ)‖ is bounded on bounded intervals.

(C9).
∫
‖gT (y, θ)C−1(y, θ)‖ dG(y) < ∞.

(C10). There exists an estimator θ̂n of θ satisfying n1/2‖θ̂n − θ‖ = Op(1).

An example of θ̂n satisfying Condition (C10) is the quasi maximum likelihood (QML) esti-

mator of θ given by

θ̂n = arg min
ϑ∈Θ

Qn(ϑ), where Qn(ϑ) = n−1

n∑

i=1

{ Yi

Ψ(Yi−1, ϑ)
+ lnΨ(Yi−1, ϑ)

}
. (5)

Conditions (C2), (C8) and (C9) are needed to ensure tightness of some sequences of stochastic

processes appearing in the proofs. Conditions (C3)−(C6) are concerned with the smoothness

of the parametric model being fitted to the conditional mean function. Similar conditions

have been assumed for regression and autoregressive models in Stute et al. (1998) and Koul

and Stute (1999). It can be shown that, the conditions (C3)−(C9) are satisfied by linear

Markov models of the form Ψ(y, ϑ) = ϑ1 + ϑ2y, ϑ1, ϑ2 > 0. The condition (C2) on the error

distribution is satisfied by many distributions that are continuous and have positive supports,

including exponential, Weibull, gamma, generalized-gamma, Burr and many others.

Now, let Ûn(y) := Un(y, θ̂n), ĝ(y) := g(y, θ̂n), Gn(y) := n−1
∑n

i=1 I(Yi−1 ≤ y), and

Ĉy :=
∫

x≥y
ĝ(x)ĝ(x)T dGn(x). The proposed test is to be based on the following transform

of the Ûn:

Ŵn(y) := Ûn(y) −
∫ y

0

[ĝ(x)]T Ĉ−1
x

∫

z≥x

ĝ(z)dÛn(z) dGn(x). (6)

This transformation is similar to the Stute-Thies-Zhu transform of Stute et al. (1998), which

in turn has its roots in the work of Khmaladze (1981).

The next theorem provides the required weak convergence result. It implies that the

transform (6) of U(·, θ̂n), under H0, is asymptotically nuisance parameter free. Recall that

the weak convergence in D[0,∞) is the weak convergence in D[0, y], for every 0 ≤ y < ∞
(see Stone 1963). Here, and in the sequel, the symbol “=⇒” denotes weak convergence and

W is the standard Brownian motion.
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Theorem 1. Suppose that (1)–(2), (C1)−(C10) and H0 hold. Further, suppose that, for

some β > 0, γ > 0, we have that

(a) E‖g(Y0, θ)‖4 < ∞, (b) E{‖g(Y0, θ)‖4|Y0|1+β} < ∞,

(c) E{(‖g(Y1, θ)‖2‖g(Y0, θ)‖2|ε1 − 1|2|Y1|}1+γ < ∞. (7)

Then, for any consistent estimator σ̂ of σ,

σ̂−1Ŵn(y) =⇒ W ◦ G(y), in D[0,∞) and the uniform metric.

Let 0 < y0 < ∞. For the rest of this section, we assume that the conditions of Theorem

1 are satisfied, unless the contrary is clear. Then, it follows from the foregoing theorem

that σ̂−1Ŵn(y) =⇒ W ◦ G(y) on D[0, y0] with respect to the uniform metric. Therefore,

σ̂−1Ŵn(y) converges weakly to a centered Gaussian process. Further, as shown in the next

section, σ̂−1Ŵn(y) has a drift under H1. This suggests that a test of H0 vs H1 could be

based on a suitably chosen functional of σ̂−1Ŵn(y). To this end, define

TKS =
{
σ̂
√

Gn(y0)
}−1

sup
0≤y≤y0

|Ŵn(y)|. (8)

Then, by arguments similar to those in Stute et al. (1998), it follows that TKS
d→ sup0≤t≤1 |W (t)|.

Therefore, an asymptotic level-α test rejects H0 if TKS > cα where P (sup0≤t≤1 |W (t)| >

cα) = α. While the foregoing result holds for any fixed y0, in practice, its choice would

depend on the data. A practical choice of y0 could be the 99-th percentile of {Y0, . . . , Yn}
(see, Stute et al. 1998).

For computing Ŵn(y), the following equivalent expression may be used:

Ŵn(y) =
1√
n

n∑

i=1

ri

[
I(Yi−1 ≤ y) − 1

n

n∑

j=1

GiI(Yj−1 ≤ Yi−1 ∧ y)
]
, (9)

where ri := {Yi/Ψ(Yi−1, θ̂n) − 1} and Gi := ĝT (Yj−1)Ĉ
−1
Yj−1

ĝ(Yi−1).

A candidate for σ̂2 in the foregoing theorem is

σ̂2 := n−1
n∑

i=1

{ Yi

Ψ(Yi−1, θ̂n)
− 1

}2

. (10)

By (C3)(b), (C6) and (C10), the σ̂2 in (10) converges in probability to σ2, under H0.

3 Asymptotic Power

In this section we show that the test introduced in the previous section is consistent against

certain fixed alternatives, and that it has nontrivial asymptotic power against a class of local

nonparametric alternatives converging to the null hypothesis at the rate of O(n−1/2).
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3.1 Consistency

Let v /∈ M be a known positive measurable function defined on R
+. The alternative we are

interested in is

Ha : τ(y) = v(y), ∀y ≥ 0. (11)

Consider the following set of conditions.

(C11). (a) The estimator θ̂n of θ, obtained under the assumption that H0 holds, con-

verges in probability to some point in Θ under Ha; we shall also denote this limit by θ. (b)

infy∈R+ v(y) > 0.

(c) E[v(Y0)/Ψ(Y0, θ)] 6= 1 and Ev2(Y0) < ∞ under Ha, where θ is as in part (a) of this

condition, and conditions (C3)(b) and (C5)−(C7) are assumed to hold.

(d) There exists a d > 0 and a nonnegative function t(y, θ), measurable in the y-coordinate,

such that, for ġ(y, θ) as in (C5), Et2(Y0, θ) < ∞, E‖ġ(Y0, θ)‖t(Y0, θ) < ∞, and ‖Ψ(y, ϑ) −
Ψ(y, θ)‖ ≤ t(y, θ)‖ϑ − θ‖ for y ≥ 0 and ‖ϑ − θ‖ ≤ d.

(e) There exists a y > 0, such that

E
([ v(Y0)

Ψ(Y0, θ)
− 1

]
I(Y0 ≤ y)

)
− B(y, θ) 6= 0, (12)

where D(x, θ) := E
(
[v(Y0)/Ψ(Y0, θ) − 1]g(Y0, θ)I(Y0 ≥ x)

)
, and

B(y, θ) :=

∫ y

0

gT (x, θ)C−1(x, θ)D(x, θ)dG(x).

Now, the following theorem states the consistency of the proposed test.

Theorem 2. Assume that (1)–(2), Ha, (C1), (C3)(a) and (C11) hold, and that the estimator

σ̂2 converges in probability to a constant σ2
a > 0. Then, P (TKS > cα) → 1. That is, the test

that rejects H0 whenever TKS > cα, is consistent for Ha.

Under Ha, by (C1), (C3)(a), (C11) and the Ergodic Theorem [ET], the σ̂2 of (10) con-

verges in probability to σ2
a := σ2E{v(Y0)/Ψ(Y0, θ)}2 + E{v(Y0)/Ψ(Y0, θ) − 1}2 > 0.

3.2 Local Power

Let γ /∈ M be a positive measurable function on R
+, θ be as in H0, and consider the following

sequence of alternatives

Hnγ : τ(y) = Ψ(y, θ) + n−1/2γ(y), y ≥ 0. (13)

Assume that θ̂n continues to be
√

n-consistent under Hnγ. Let

ρ(y) := E
[ γ(Y0)

Ψ(Y0, θ)
g(Y0)I(Y0 ≥ y)

]
.

Then we have the following theorem.
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Theorem 3. Assume that (1)–(2), Hnγ, (7) and conditions (C1)−(C10) hold, and that the

σ̂ in Theorem 1 continues to be a consistent estimator of σ. Also, assume that the function

γ in (13) satisfies E[γ2(Y0)] < ∞. Then, for all y0 > 0,

lim
n→∞

P (TKS > cα) = P
(

sup
0≤y≤y0

|W ◦ G(y) + σ−2M(y)| ≥ cα

)
,

where M(y) = E
[
{γ(Y0)/Ψ(Y0, θ)}I(Y0 ≥ y)

]
−

∫
x≤y

gT (x)C−1
x ρ(x) dG(x). Consequently, the

test based on TKS of (8) has nontrivial asymptotic power against Hnγ, for all γ for which

M 6= 0.

A routine argument shows that the estimator θ̂n defined in (5) continues to satisfy (C10),

under Hnγ. In fact, one can verify that under Hnγ and the assumed conditions, n1/2(θ̂n −
θ) →D N

(
C−1(0, θ)E{γ(Y0)g(Y0, θ)/Ψ(Y0, θ)}, σ2C−1(0, θ)

)
.

Note also that the σ̂2 in (10) continues to be a consistent estimator of σ2 under Hnγ,

because

σ̂2 = n−1
n∑

i=1

{
εi

Ψ(Yi−1, θ)

Ψ(Yi−1, θ̂n)
− 1

}2

+ n−2
n∑

i=1

{
εi

γ(Yi−1)

Ψ(Yi−1, θ̂n)

}2

+ 2n−1

n∑

i=1

{
n−1/2 Ψ(Yi−1, θ)

Ψ2(Yi−1, θ̂n)
(εi − 1)εiγ(Yi−1)

}

+ 2n−1
n∑

i=1

{
n−1/2

[
Ψ(Yi−1, θ) − Ψ(Yi−1, θ̂n)

]

Ψ2(Yi−1, θ̂n)
εiγ(Yi−1)

}
.

It follows from (C3)(b), (C6) and (C10) that, under Hnγ, max1≤i≤n |Ψi(Yi−1, θ)−Ψi(Yi−1, θ̂n)| =

op(1) [see (A.15) below in the Appendix]. Thus, the first term on the right of the last equality

converges in probability to σ2. Since E[γ2(Y0)] < ∞ and ε1 is independent of Y0, by Ergodic

Theorem, the second term is op(1). Since n−1/2 max1≤i≤n |Ψ(Yi−1, θ)| = op(1) by (C3)(b),

and max1≤i≤n |Ψi(Yi−1, θ) − Ψi(Yi−1, θ̂n)| = op(1), the last two terms are also op(1).

4 A simulation study

A simulation study was carried out to investigate the finite sample performance of the pro-

posed test for checking the lack-of-fit of a given parametric form for the conditional mean

E[yt | Ht−1] of a Markov multiplicative error model. For comparison, the Ljung-Box Q test

(Ljung and Box 1978), a Lagrange multiplier (LM) test (Meitz and Teräsvirta 2006), and a

generalized moment test (Chen and Hsieh 2010) were also considered. The Ljung-Box Q test

was first used for evaluating a multiplicative error model by Engle and Russell (1998). Since

then, it has been used in a large proportion of the subsequent studies involving multiplica-

tive error models. Ljung-Box Q statistic is given by LBQ(L) = T (T + 2)
∑L

k=1 (T − k)−1ρ2
k,
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where L is the number of autocorrelation lags included in the statistic, and ρ2
k is the squared

sample autocorrelation at lag k of the residuals corresponding to the estimated model.

Design of the study:

To evaluate size performances of the tests, 6 data generating processes (DGPs) were

considered for generating Y0, Y1, · · · , Yn. Five of them were based on the model,

ACD(1, 0) : Yi = τiεi, τi = 0.2 + 0.1Yi−1, (14)

where the error distributions were, respectively, the Exp(1) [E] and the following Weibull

[W], Gamma [G], Generalized Gamma [GG] and Burr [B] distributions:

W: fW (x, a) = (a/b)(x/b)a−1 exp{−(x/b)a}, a = 0.6

G: fG(x) = {4/Γ(2)}x exp(−2x)

GG: fGG(x, a, c) = {bacΓ(a)}−1cxac−1 exp{−(x/b)c}, a = 3, c = 0.3

B: fB(x, a, d) = (a/b)(x/b)a−1{1 + d(x/b)a}−(1+d−1), a = 1.3, d = 0.4.

For each of these distributions, the scale parameter b was chosen so that E(ε1) = 1. The

sixth DGP for size was the following Squared-ARCH(1) model:

Squared-ARCH(1) : Xi =
√

τiεi, τi = 0.1 + 0.85Yi−1, Yi = X2
i , (15)

where the errors {εi} are i.i.d. standard normal [N]. Here, Yi = X2
i follows a Markov

multiplicative error model of the form (1)–(2).

To evaluate the powers of the tests, 4 data generating processes were considered. First

three of them were based on the following Markov multiplicative error model:

M(α, β, γ) : Yi = τiεi, τi = α + βYi−1 + γ
√

Yi−1. (16)

The data were generated from M(0.2, 0.1, 0.3), M(0.2, 0.1, 0.5) and M(0.2, 0.1, 0.7), keeping

Exp(1) as the distribution of the error term εi. The fourth DGP to evaluate powers was the

following Squared-ARCH(2) model:

Squared-ARCH(2) : Xi =
√

τiεi, τi = 0.2 + 0.1Yi−1 + 0.05Yi−2, Yi = X2
i , (17)

where {εi} are i.i.d. standard normal. The Yi = X2
i in (17) follows a multiplicative error

model, however, it is not Markov.

For each DGP, the null and alternative hypotheses were

H0 : τi = Ψ(Yi−1, ϑ), where Ψ(y, ϑ) = ϑ1 + ϑ2y, and H1 : Not H0 (18)

respectively, with ϑ = (ϑ1, ϑ2)
′ ∈ (R+)2, Yi = τiεi and εi are i.i.d.. Thus, ACD(1,0) in

(14) and Squared-ARCH(1) in (15) are models under H0, whereas, M(α, β, γ) and Squared-

ARCH(2) in (16) and (17) are models under H1.



12

To start the recursive data generating processes to generate Y0, Y1, · · · , Yn, the initial

value of τi was set equal to the unconditional mean of Y for every DGP. To ensure that

the effect of initialization is negligible, we generated (n + ` + 1) observations with ` = 300,

discarded the first ` observations and used the remaining n+1 observations as Y0, Y1, · · · , Yn.

All the simulation estimates are based on 1000 repetitions.

It follows from the null hypothesis in (18) that the parametric family to be fitted is

M = {Ψ(·, ϑ) : Ψ(y, ϑ) = ϑ1 + ϑ2y, ϑ1, ϑ2 > 0, y ≥ 0}. Let θ̂ = (θ̂1, θ̂2)
′ denote the quasi-

maximum likelihood estimator (5) of θ and let σ̂2 be given by (10). Then, we have that

Ψ̇(y, ϑ) = (1, y)′, g(y, ϑ) = Ψ̇(y, ϑ)/Ψ(y, ϑ),

ĝ(y) = g(y, θ̂n) = [1, y]′/{θ̂1 + θ̂2y}, ri = Yi/{θ̂1 + θ̂2Yi−1} − 1 and

Ĉy = n−1

n∑

i=1

ĝ(Yi−1)ĝ(Yi−1)
T I(Yi−1 > y) = n−1

n∑

i=1

Vi−1/{θ̂1 + θ̂2Yi−1}2I(Yi−1 > y),

where

Vi−1 =

[
1 Yi−1

Yi−1 Y 2
i−1

]
.

Now, let Y(1), Y(2), · · · , Y(n) be the ordered values of the sample Y1, Y2, · · · , Yn. Then, with

the forgoing choices and with y0 being the 99% quantile, we have that

TKS = {σ̂
√

0.99}−1 sup
0≤y≤y0

|Ŵn(y)| = {σ̂
√

0.99}−1 max
1≤i≤[n0.99]

|Ŵn(Y(i−1))|,

where Ŵn is as in (9).

The large sample level-α critical value cα of TKS is equal to the 100(1 − α)% quantile

of sup0≤t≤1 |W (t)|. For α = 0.01, 0.05 and 0.10, these critical values are 2.807034, 2.241403

and 1.959964, respectively. These values, prepared by Dr R. Brownrigg, are available at

http://homepages.mcs.vuw.ac.nz/∼ray/Brownian.

For the LM test, we used the form in Theorem 1 of Meitz and Teräsvirta (2006), with

ACD(2, 0) being the model under the maintained hypothesis. Because the null model is

ACD(1, 0), the asymptotic null distribution of LM is χ2
1 (Meitz and Teräsvirta 2006). The

generalized moment test is the M-test proposed in Chen and Hsieh (2010). Its test statistic

M , was computed as on page 354 of Chen and Hsieh (2010), using (εi−1 − 1) as the “mis-

specification indicator” gi. Under H0, the statistic M converges in distribution to χ2
1 (see

page 353 in Chen and Hsieh 2010). As in Engle and Russell (1998), the critical values for

the LBQ(L) were obtained from χ2
L.

Results:

We evaluated the performance of the TKS test, with the LM, Ljung-Box Q (with lags 1,

5, 10 and 15) and M tests, for 1%, 5% and 10% levels, considering different data generating
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processes and sample sizes. A summary of the main results are presented in Table 1. More

detailed results are available from the authors on request.

Each entry in Table 1 is the percentage of times H0 was rejected out of 1000 repetitions,

at 5% level. For each such entry, say p, a corresponding standard error is {p(1−p)/1000}1/2.

It is evident from Table 1 that the TKS test proposed in this paper performed well in terms

of size, although it was slightly undersized for n = 200. The M test exhibited serious size

distortions for n = 200, but to a lesser extent for n = 500. Table 1 shows that, for n = 200,

the type I error rate of the 5% level M test was at least 20%. However, this test performed

well in terms of size when n = 1000, 2000, and 5000. The results for LBQ and LM were

not particularly good. The LM test exhibited significant sensitivity to the form of the error

distribution. For example, for the ACD(1,0) model, the type I error rate of the 5% level LM

test ranged from 0.3% for gamma distribution to 22% for the Weibull distribution.

The estimated powers of the tests (in %) corresponding to 5% level are also presented in

Table 1. The main observations may be summarized as follows.

(i) The test proposed in this paper, TKS, performed consistently well throughout. Its

performance was either the best or close to the best. Specially, when the DGP was

Markov, the power of the TKS test was substantially better than those for LBQ, LM

and M tests.

(ii) The LM test implemented in this study was defined for testing against a Squared-

ARCH(2) alternative. Consequently, as expected, the LM test performed the best

when the DGP was Squared-ARCH(2) in (17). However, when the DGP was not

Squared-ARCH(2), the LM test performed substantially worse than the TKS test.

(iii) The LBQ test appeared somewhat sensitive to the number of lags included in the

statistic. In comparison, the performance of the M test was more consistent, through-

out. However, its power was considerably lower than that of the TKS test, in all the

simulations.

5 Empirical examples

In this section, we illustrate our testing procedure by considering two data examples. For

comparison, the LBQ, LM and M tests considered in Section 4 are also employed.

Example 1:

We first apply the testing procedures to monthly squared log returns of Intel stocks.

The data for this example were downloaded from the home page of Professor Ruey S. Tsay.

The sample consists of monthly log stock returns of Intel Corporation from January 1973 to

December 2008. Tsay (2010) studied this data set, and concluded that an ARCH(1) model
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appears to fit well. This indicates that a multiplicative Markov model of the form (1)–(2)

may be adequate for squared log returns. We employ the proposed testing procedure for

checking the adequacy of the following Markov multiplicative error model:

Yi = Ψ(Yi−1, ϑ)εi, Ψ(y, ϑ) = ϑ1 + ϑ2y, ϑ = (ϑ1, ϑ2)
T ∈ (R+)2. (19)

First, the model (19) is estimated by the QML estimator (5). The estimated model is,

Ψ(y, θ̂) = 0.0115 + 0.3661y, where the standard errors of the parameters are 0.0015, and

0.1226, respectively. Figure 1 provides a plot of {σ̂
√

0.99}−1|Ŵn(y)| against y. From this

graph, we obtain that TKS = 1.9192, which is the supremum of the graph. Hence, the TKS

test does not reject the null model in (19) at 10% level. For other three tests, the observed

test statistics are LBQ(1)=0.8001, LBQ(5)=6.7610, LBQ(10)=13.1506, LBQ(15)=30.5898,

LM=0.8153 and M = 3.5415, with the corresponding p-values 0.3708, 0.2390, 0.2154, 0.010,

0.3666 and 0.06, respectively.

Thus, apart from LBQ(15), all other tests fail to reject the null model (19), at 5% level.

In the simulations carried out in the last section, it was evident that the LBQ test was

somewhat sensitive to the number of lags included in the statistic. Therefore, it is prudent

not to rely on the conclusion of the LBQ(15) alone. The LM test too, in the simulations,

was considerably sensitive to the distribution of the error term εi, which is unknown to

us in this case. However, the TKS test, which displayed the best overall performance in

the simulations, fails to reject the null model (19). The conclusions from the LBQ(L) (at

L = 1, 5, 10) and M tests, are also similar. Therefore, the indications are that the model (19)

provides a good fit for the data.

Example 2:

For the second example we consider the viscosity data (Series D) from Box and Jenkins

(1976). This sample consists of 310 observations of hourly viscosity readings of a particular

chemical process. Based on preliminary diagnostic tests, Datta and McCormick (1995) who

studied this data set, concluded that a positive AR(1) model appears to fit well. This

suggests that an additive Markov structure is adequate for the hourly viscosity readings of

the process. In order to check whether a multiplicative Markov structure would also be

adequate, we test the lack-of-fit of the Markov multiplicative error model in (19) for the

data set.

We first estimate the model using QML estimator (5), and obtain that Ψ(y, θ̂) = 4.2814 +

0.5299y, where the standard errors of the parameters are 0.3111, and 0.0342, respectively. A

plot of {σ̂
√

0.99}−1|Ŵn(y)| against y for this data set is given in Figure 2. As appears from

this graph, we have that TKS = 10.9627. Therefore, our test would reject the null model

(19) at any reasonable level of significance. This is also consistent with the conclusions

of the M and LBQ tests. However, the LM test fails to reject the null model (19) even
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when α is as high as 0.7. Specifically, we obtain that LBQ(1)=80.8609, LBQ(5)=229.3536,

LBQ(10)=287.1413, LBQ(15)=306.0199, LM=0.133 and M = 338.6616, with the p-value of

LM being 0.7154 and the p-values of M and LBQ(L), at all lags, being almost zero.

Therefore, as indicated by the TKS, M and LBQ tests, it does not appear that the

multiplicative model (19) is a good fit for the data. The LM test performed poorly in

the simulations carried out in the last section within the Markov setting. Therefore, the

conclusion of the LM test may not be very reliable in this case.

6 Conclusion

The contribution of this paper has methodological and theoretical components. We devel-

oped a new test for the lack-of-fit of a given multiplicative error model having a Markov

structure. The family of such Markov multiplicative error models is a simple subfamily of

the general class of multiplicative models introduced by Engle (2002). In empirical studies,

one would want to consider a general non-Markov model only if a simpler Markov model

does not fit. The development of the test proposed in this paper, makes use of the Markov

structure in the proposed model. Therefore, this test is fundamentally different from the

more general ones such as the Lagrange Multiplier (LM) type tests (Meitz and Teräsvirta

2006, Hautsch 2006), spectral derivative based tests (Hong and Lee 2011) or generalized

moment tests (Chen and Hsieh 2010), for multiplicative error models. Thus, it is reasonable

to conjecture that these may also have properties that are complementary. In fact, in a

simulation study, the new test performed better overall than the Ljung-Box Q-test, a LM

test and a generalized moment test. Therefore, the indications are that the test proposed

in this paper would be useful in empirical studies involving multiplicative error models. We

illustrated the testing procedure by considering two data examples.

This paper also makes a theoretical contribution. The approach of constructing a process

such as Ŵn(·) through a particular martingale transformation of an empirical process marked

by the residuals, and then using it to construct an asymptotically distribution free test, is

fairly recent. At this stage, this method has been developed for location, regression and

certain autoregressive models. This paper is the first to develop the method for multiplicative

time series models.

The technical details of this method included in the Appendix to this paper, would

provide valuable insight and facilitate extension to other models.
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APPENDIX: PROOFS

In this section we present the proofs of Theorem 1 and Theorem 2. We first obtain several

needed preliminaries. The following lemma provides a general weak convergence result about

the marked empirical process

αn(y) = n−1/2
n∑

i=1

`(Yi−1)(εi − 1)I(Yi−1 ≤ y),

where ` is a nonnegative measurable function on R
+. This result will be used in the proofs

of the other results in this section.

Lemma 1. Assume that model (1)–(2), (C1) and (C2) hold, and that infy∈R+ τ(y) > 0.

Suppose, in addition, that for some β > 0, γ > 0,

(a) E`4(Y0) < ∞, (b) E{`4(Y0)|Y0|1+β} < ∞,

(c) E{`2(Y0)`
2(Y1)|ε1 − 1|2|Y1|}1+γ < ∞. (A.1)

Then, αn =⇒ W ◦ ρ, in the space D[0,∞] with respect to uniform metric, where ρ(y) :=

σ2E`2(Y0)I(Y0 ≤ y).

This lemma is similar to Lemma 3.1 of Koul and Stute (1999) but it does not directly

follow from that lemma. The main reason is that the present model is multiplicative while

the one considered in Koul and Stute (1999) is additive.

Proof of Lemma 1. The convergence of finite dimensional distributions of αn(·) follows by

an application of the CLT for martingales [Hall and Heyde (1980), Corollary 3.1]. To show the

tightness of αn(·) we now argue as in Koul and Stute (1999). First fix 0 ≤ t1 < t2 < t3 ≤ ∞.

Then,

[αn(t3) − αn(t2)]
2[αn(t2) − αn(t1)]

2 = n−2
∑

i, j, k, l

UiUjVkVl,

where Ui = `(Yi−1)(εi − 1)I(t2 < Yi−1 ≤ t3) and Vi = `(Yi−1)(εi − 1)I(t1 < Yi−1 ≤ t2).

Since εi is independent of {Yi−1, Yi−2, · · · , Y0} and E(εi) = 1,

E
{
n−2

∑

i, j, k, l

UiUjVkVl

}
= n−2

∑

i, j<k

E{ViVjU
2
k} + n−2

∑

i, j<k

E{UiUjV
2
k }. (A.2)

Note that by (A.1)(a) the above expectations exist.

We shall now find bounds for the two sums in the right hand side. We only consider the

first sum. A bound for the second sum can be obtained similarly. First, let k be an arbitrary
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integer in the range 2 ≤ k ≤ n. Then, by the inequality (a + b)2 ≤ 2a2 + 2b2, a, b ∈ R, and

the stationarity of {Yi},

∑

i, j<k

E{ViVjU
2
k} ≤ 2σ2

[
E

{( k−2∑

i=1

Vi

)2

`2(Yk−1)I(t2 < Yk−1 ≤ t3)
}

+ E{V 2
1 `2(Y1)I(t2 < Y1 ≤ t3)}

]
. (A.3)

By conditioning on Yk−2 and using Fubini’s theorem and the Cauchy - Schwarz inequality,

the first expectation inside brackets is the same as

E
{( k−2∑

i=1

Vi

)2
∫ t3

t2

`2(y)

τ(Yk−2)
f
( y

τ(Yk−2)

)
dy

}

≤
∫ t3

t2

{
E

( k−2∑

i=1

Vi

)4}1/2{
`4(y)E

[ 1

τ 2(Y0)
f 2

( y

τ(Y0)

)]}1/2

dy.

Since the Vi’s form a centered martingale difference array, by the Burkholder’s inequality

[Chow and Teicher (1978), page 384] and the fact (
∑k−2

i=1 V 2
i )2 ≤ (k − 2)(

∑k−2
i=1 V 4

i ),

E
( k−2∑

i=1

Vi

)4

≤ KE
( k−2∑

i=1

V 2
i

)2

≤ K(k − 2)2EV 4
1 .

Here and in the rest of the proof, K is a generic constant that does not depend on n, k or

the chosen t1, t2 and t3 but may vary from expression to expression. Now, let

F1(t) := E(ε1 − 1)4E
(
`4(Y0)I(Y0 ≤ t)

)
, 0 ≤ t ≤ ∞,

F2(t) :=

∫ t

0

{
`4(y)E

[ 1

τ 2(Y0)
f 2

( y

τ(Y0)

)]}1/2

dy, 0 ≤ t ≤ ∞.

Then, we obtain, EV 4
1 = E(ε1 − 1)4E

(
`4(Y0)I(t1 < Y0 ≤ t2)

)
= [F1(t2) − F1(t1)] and∫ t3

t2

{
`4(y)E

[
f 2(y/τ(Y0))/τ

2(Y0)
]}1/2

dy = [F2(t3) − F2(t2)]. Hence, the first expectation

inside brackets in (A.3) is bounded from the above by

K(k − 2)[F1(t2) − F1(t1)]
1/2[F2(t3) − F2(t2)]. (A.4)

Since, EY 4
1 < ∞, we have that E(ε1 − 1)4 < ∞. Then, by assumption (A.1)(a), F1 is a

continuous nondecreasing bounded function on R
+. Clearly, F2 is also nondecreasing and

continuous. We shall now show that F2(∞) is finite.

To this end, let r be a strictly positive continuous Lebesgue density on R
+ such that

r(y) ∼ y−1−β as y → ∞, where β is as in (A.1)(b). Then, by the Cauchy – Schwarz
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inequality, Fubini’s theorem, and using the fact that f/τ is uniformly bounded,

F2(∞) ≤
[ ∫ ∞

0

`4(y)E
[ 1

τ 2(Y0)
f 2

( y

τ(Y0)

)]
r−1(y) dy

]1/2

≤ K

[
E

{∫ ∞

0

`4(y)
1

τ(Y0)
f
( y

τ(Y0)

)
r−1(y) dy

}]1/2

< ∞,

where the finiteness of the last expectation follows from (A.1)(b).

By conditioning on Y0, using Fubini’s theorem, Hölder’s inequality and the γ as in

(A.1)(c), we obtain that the second expectation inside brackets in (A.3) is the same as
∫ t3

t2

E

{
I(t1 < Y0 ≤ t2)`

2(Y0)`
2(y)

( y

τ(Y0)
− 1

)2 1

τ(Y0)
f
( y

τ(Y0)

)}
dy

≤
{
EI(t1 < Y0 ≤ t2)

}γ/(1+γ)

×
∫ t3

t2

[
E

{
`2(Y0)`

2(y)
( y

τ(Y0)
− 1

)2 1

τ(Y0)
f
( y

τ(Y0)

)}1+γ
]1/(1+γ)

dy.

Thus,

E{V 2
1 `2(Y1)I(t2 < Y1 ≤ t3)} ≤ [G(t2) − G(t1)]

γ/(1+γ)[F3(t3) − F3(t2)], (A.5)

where, for t ∈ [0,∞],

F3(t) :=

∫ t

0

[
E

{
`2(Y0)`

2(y)
( y

τ(Y0)
− 1

)2f
(
y/τ(Y0)

)

τ(Y0)

}1/(1+γ)
]1+γ

dy.

Clearly, F3 is a nondecreasing and continuous function on R
+. For the boundedness, we shall

show that F3(∞) is finite. Towards this end, let s be a strictly positive continuous Lebesgue

density on R
+ such that s(y) ∼ y−1−1/γ as y → ∞, where γ is as in (A.1)(c). Arguing as in

the case of F2, we obtain that F3(∞) is less than or equal to
[ ∫ ∞

0

E
{
`2(Y0)`

2(y)
( y

τ(Y0)
− 1

)2 1

τ(Y0)
f
( y

τ(Y0)

)}1+γ

s−γ(y) dy

]1/(1+γ)

≤ K
[
E

{
`2(Y0)`

2(Y1)(ε1 − 1)2s−γ/(1+γ)(Y1)
}1+γ]1/(1+γ)

< ∞,

This yields that F3 is also a continuous nondecreasing and bounded function on R
+. Now,

by (A.3), (A.4) and (A.5) and summing from k = 2 to k = n we obtain

n−2
∑

i, j<k

E{ViVjU
2
k} ≤ K

{
[F1(t2) − F1(t1)]

1/2[F2(t3) − F2(t2)]

+ n−1[G(t2) − G(t1)]
γ/(1+γ)[F3(t3) − F3(t2)]

}
.

By similar arguments, the second sum in the right hand side of (A.2) also has a similar

bound. Consequently, tightness of {αn} follows from Theorem 15.6 in Billingsley (1968).

This completes the proof of Lemma 1. �
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For the proof of Theorem 1 we need some more additional results. Next lemma gives the

needed weak convergence result for Un(y, θ).

Lemma 2. Suppose (1)–(2), (C1), (C2), (C3)(a) and H0 hold. Then, σ−1Un(y, θ) =⇒
W ◦ G(y), in D[0,∞] and uniform metric.

Proof. Under H0 and (C3)(a), τ(y) = Ψ(y, θ) is bounded away from zero uniformly in y.

Since, by (C1), EY 4
0 < ∞ then condition (A.1) is satisfied for `(y) ≡ 1. Thus, an application

of Lemma 1 completes the proof. �

For brevity, write Un(y) = Un(y, θ), g(y) = g(y, θ) and Cy = C(y, θ), and define

Wn(y) := Un(y) −
∫ y

0

gT (x)C−1
x

[ ∫ ∞

x

g(z) dUn(z)
]

dG(x), µi(y) := I(Yi−1 ≥ y).

The following lemma gives the weak convergence of Wn.

Lemma 3. Under (1)–(2), (C1)−(C9) and H0, σ−1Wn(y) =⇒ W ◦ G(y), in D[0,∞] and

uniform metric.

Proof. Arguing as in Stute et al. (1998) and using a conditioning argument, one can verify

that Cov{σ−1Wn(r), σ−1Wn(s)} = G(r ∧ s).

To establish the convergence of finite dimensional distributions, let Fi be the σ-algebra

generated by {εi, εi−1, · · · , Yi−1, Yi−2, · · · } , i ∈ Z and

hi(y) = σ−1(εi − 1)
{
I(Yi−1 ≤ y) −

∫ y∧Yi−1

0

gT (x)C−1
x g(Yi−1) dG(x)

}
, i = 1, · · · , n.

Note that E
(
hi(y)|Fi−1

)
= 0, for all i and σ−1Wn(y) = n−1/2

∑n
i=1 hi(y), for all y. Because

Cov
(
σ−1Wn(x), σ−1Wn(y)

)
= Cov

(
W ◦ G(x), W ◦ G(y)

)
, by CLT for martingales, e.g., cf.

Corollary 3.1 of Hall and Heyde (1980), all finite dimensional distributions of σ−1Wn converge

to those of W ◦ G.

Lemma 2 implies the tightness of the process Un(·) in uniform metric. It remains to prove

the tightness of the second term in Wn. Denote it by W2n. Then,

W2n(y) =
1√
n

n∑

i=1

(εi − 1)

∫ y

0

gT (x)C−1
x g(Yi−1)µi(x)dG(x).

Proceeding as on page 231 of Koul and Stute (1999), let A(y) :=
∫ y

0
‖gT (x)C−1

x ‖ dG(x),

y ∈ [0,∞]. By condition (C9), 0 < A(∞) < ∞. Because G is continuous, the function

A(y) := A(y)/A(∞) is strictly increasing continuous distribution function on [0,∞]. More-

over, using the fact ‖Cx‖ ≤
∫
‖g‖2dG, for all 0 ≤ x ≤ ∞, and by the Fubini Theorem, for
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y1 < y < y2,

E
[
W2n(y1) −W2n(y2)

]2
= σ2

∫ y2

y1

∫ y2

y1

gT (x1)C
−1
x1

Cx1∨x2
C−1

x2
g(x2) dG(x1) dG(x2)

≤ σ2

∫
‖g(y)‖2 dG(y)[A(y2) −A(y1)]

2A2(∞).

This bound, together with Theorem 12.3 of Billingsley (1968), imply that W2n is tight. This

completes the proof of Lemma 3. �

For the proof of Theorem 1 we also make use of Lemma 3.4 of Stute et al. (1998) which

in turn is a generalization of Lemma 3.2 of Chang (1990). For the sake of completeness we

reproduce it here.

Lemma 4. Let V be a relatively compact subset of D[0, y0]. Then with probability 1, for all

y0 < ∞,
∫ y

0
v(x)[dGn(x) − dG(x)] −→ 0 as n → ∞, uniformly in 0 ≤ y ≤ y0 and v ∈ V .

Proof of Theorem 1. Fix a y0 > 0. Recall that Un(y) = Un(u, θ) and Ûn(y) = Un(y, θ̂n).

Let

W̃n(y) := Un(y) −
∫ y

0

ĝT (x)Ĉ−1
x

[ ∫ ∞

x

ĝ(z) dUn(z)
]

dGn(x).

We shall first show that sup0≤y≤y0

∣∣Ŵn(y) − W̃n(y)
∣∣ = op(1). Write

Ŵn(y) − W̃n(y) = Ûn(y) − Un(y) −
∫ y

0

ĝT (x)Ĉ−1
x Jn(x) dGn(x), (A.6)

where Jn(y) :=
∫ ∞

y
ĝ(z) dÛn(z) −

∫ ∞
y

ĝ(z) dUn(z).

First, consider Ûn(y)−Un(y). Let ∆n := n1/2(θ̂n − θ). By the mean value theorem, there

is a sequence of random vectors {θ∗n} in Θ with ‖θ∗n − θ‖ ≤ ‖θ̂n − θ‖, and such that

Ûn(y) − Un(y) = −∆T
nn−1

n∑

i=1

εig(Yi−1)I(Yi−1 ≤ y) + ∆T
nRn(y), (A.7)

where Rn(y) := −n−1
n∑

i=1

( Ψ(Yi−1, θ)

Ψ(Yi−1, θ∗n)
g(Yi−1, θ

∗
n) − g(Yi−1)

)
εiI(Yi−1 ≤ y).

Since, by (C3)(a), Ψ is bounded from below, κ := 1/ infy,ϑ Ψ(y, ϑ) < ∞. By the triangle

inequality, supy≥0 ‖Rn(y)‖ is bounded from the above by

n−1
n∑

i=1

∥∥∥
( Ψ(Yi−1, θ)

Ψ(Yi−1, θ∗n)
− 1

)
g(Yi−1, θ

∗
n)εi +

(
g(Yi−1, θ

∗
n) − g(Yi−1)

)
εi

∥∥∥

≤ κ max
1≤i≤n

|Ψ(Yi−1, θ) − Ψ(Yi−1, θ
∗
n)|

(
n−1

n∑

i=1

‖g(Yi−1, θ
∗
n)εi‖

)

+ n−1

n∑

i=1

∥∥(
g(Yi−1, θ

∗
n) − g(Yi−1)

)
εi

∥∥. (A.8)
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By condition (C4),

max
1≤i≤n

|Ψ(Yi−1, θ) − Ψ(Yi−1, θ
∗
n)| ≤ ‖∆n‖n−1/2 max

1≤i≤n
‖Ψ̇(Yi−1, θ)‖ + op(n

−1/2). (A.9)

Since (C3)(b) gives
∫
|Ψ(y, θ)|2 dG(y) < ∞, along with (C6), we obtain

∫
‖Ψ̇(y, θ)‖2 dG(y) ≤

∫
‖g(y)‖2 dG(y)

∫
|Ψ(y, θ)|2 dG(y) < ∞.

This in turn implies that

n−1/2 max
1≤i≤n

‖Ψ̇(Yi−1, θ)‖ = op(1). (A.10)

Thus, in view of (A.9) and (C10), max1≤i≤n |Ψ(Yi−1, θ)−Ψ(Yi−1, θ
∗
n)| = op(1). By the triangle

inequality

n−1

n∑

i=1

‖g(Yi−1, θ
∗
n)εi‖ ≤ n−1

n∑

i=1

‖g(Yi−1)‖εi + n−1

n∑

i=1

‖g(Yi−1, θ
∗
n) − g(Yi−1)‖εi.

Since E(ε1) = 1, and ε1 is independent of Y0, by the ET and (C6), the first term in the right

hand side converges almost surely (a.s.) to E‖g(Y0)‖ < ∞. By (C5), the second term, on the

set {‖θ̂∗n − θ‖ ≤ η}, with η and h as in (C5), is less than or equal to {n−1
∑n

i=1 ‖ġ(Yi−1)‖εi +

n−1
∑n

i=1 δh(Yi−1, θ)εi}‖θ̂∗ − θ‖. Then, (C5) and (C10) together with the ET imply

n−1
n∑

i=1

‖g(Yi−1, θ
∗
n)εi‖ = Op(1). (A.11)

From these derivations, we obtain that the first term in the upper bound (A.8) is op(1). A

similar argument together with condition (C5) shows that the second term in this bound

tends to zero, in probability.

Thus, supy≥0 ‖Rn(y)‖ = op(1), and uniformly over 0 ≤ y ≤ ∞,

Ûn(y) − Un(y) = −∆T
nn−1

n∑

i=1

εig(Yi−1)I(Yi−1 ≤ y) + op(1)

= −∆T
nn−1

n∑

i=1

g(Yi−1)I(Yi−1 ≤ y) + op(1). (A.12)

The last claim is proved as follows. Since εi is independent of {Yi−1, Yi−2, · · · , Y0}, E(ε1) = 1

and, by (C6), E‖g(Y0)‖ < ∞, ET implies the point wise convergence in (A.12). The unifor-

mity is obtained by adapting a Glivenko-Cantelli type argument for the strictly stationary

case as explained under (4.1) in Koul and Stute (1999).
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Next, consider Jn in (A.6). For the sake of brevity, write ĝi−1 = ĝ(Yi−1) and gi−1 =

g(Yi−1). Because εi = Yi/Ψ(Yi−1, θ),

Jn(y) = −n−1/2

n∑

i=1

ĝi−1

(Ψ(Yi−1, θ̂) − Ψ(Yi−1, θ)

Ψ(Yi−1, θ̂)

)
εiµi(y)

= J1n(y)∆n + J2n(y)∆n + J3n(y)∆n + J4n(y) + J5n(y)∆n + J6n(y)∆n,

where

J1n(y) = −1

n

n∑

i=1

ĝi−1ĝ
T
i−1µi(y), J2n(y) =

1

n

n∑

i=1

gi−1g
T
i−1(1 − εi)µi(y),

J3n(y) =
1

n

n∑

i=1

(
ĝi−1ĝ

T
i−1 − gi−1g

T
i−1

)
(1 − εi)µi(y),

J4n(y) =
−1√

n

n∑

i=1

[
Ψ(Yi−1, θ̂) − Ψ(Yi−1, θ) − (θ̂ − θ)T Ψ̇(Yi−1, θ)

] ĝi−1εi

Ψ(Yi−1, θ̂)
µi(y),

J5n(y) =
1

n

n∑

i=1

ĝi−1

(
ĝi−1 − gi−1

)T
εiµi(y),

J6n(y) =
1

n

n∑

i=1

ĝi−1g
T
i−1

(
Ψ(Yi−1, θ̂) − Ψ(Yi−1, θ)

Ψ(Yi−1, θ̂)

)
εiµi(y).

By definition J1n(y) = −Ĉy. We now show that

sup
y≥0

‖Jjn(y)‖ = op(1), j = 2, · · · , 6. (A.13)

Arguing as for (A.12) and (A.11), one obtains, respectively, supy≥0 ‖J2n(y)‖ = op(1), and

n−1
∑n

i=1 ‖ĝi−1‖εi = Op(1). Then, as Ψ is bounded below by 1/κ, condition (C4) implies that,

supy≥0 ‖J4n(y)‖ ≤ √
n max1≤i≤n |Ψ(Yi−1, θ̂)−Ψ(Yi−1, θ)−(θ̂−θ)T Ψ̇(Yi−1, θ)|κ n−1

∑n
i=1 ‖ĝi−1‖εi =

op(1).

Next, consider J3n(y). Let ġi−1 = ġ(Yi−1, θ), hi−1 = h(Yi−1, θ) where h is as in assumption

(C5), γn := θ̂n − θ and ηi = 1 − εi. Then, (C5) and the triangle inequality implies that, on

the set {‖γn‖ ≤ η}, where η is as in (C5),

sup
y≥0

‖J3n(y)‖ ≤ 1

n

n∑

i=1

[
‖ĝi−1 − gi−1‖2 + 2‖gi−1‖

(
‖ĝi−1 − gi−1‖

)]
|ηi|

≤ 1

n

n∑

i=1

[(
δhi−1 + ‖ġi−1‖

)2‖γn‖2 + 2‖gi−1‖
(
δhi−1 + ‖ġi−1‖

)
‖γn‖

]
|ηi|.

Then by (C5), ET and (C10), supy≥0 ‖J3n(y)‖ = op(1). A similar argument proves (A.13)

for j = 5. For the case of j = 6, note that supy≥0 ‖J6n(y)‖ is bounded above by

κ
(

max
1≤i≤n

|Ψ(Yi−1, θ̂) − Ψ(Yi−1, θ)|
)∥∥∥1

n

n∑

i=1

ĝi−1g
T
i−1εi

∥∥∥, (A.14)
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where 1/κ is the lower bound on Ψ. By (A.10), (C4) and (C10),

max
1≤i≤n

|Ψ(Yi−1, θ̂) − Ψ(Yi−1, θ)| = op(1). (A.15)

By (C5), (C10) and the ET, on the set {‖γn‖ ≤ η}, where η is as in (C5),

∥∥∥1

n

n∑

i=1

ĝi−1g
T
i−1εi

∥∥∥ ≤ 1

n

n∑

i=1

(‖ġi−1‖‖γn‖ + δhi−1‖γn‖ + ‖gi−1‖)‖gi−1‖εi

= ‖γn‖
(
E‖ġ0‖‖g0‖ + δE(h0‖g0‖) + op(1)

)
+ E‖g0‖2 + op(1)

= E‖g0‖2 + op(1) = Op(1).

Hence, the upper bound (A.14) is op(1). We have thus proved that

sup
y≥0

‖Jn(y) + Ĉy∆n‖ = op(1). (A.16)

Next, observe supy≥0 ‖Ĉy−Cy‖ ≤ supy≥0

∥∥n−1
∑n

i=1

(
ĝi−1ĝ

T
i−1−gi−1g

T
i−1

)
µi(y)

∥∥ + supy≥0

∥∥n−1
∑n

i=1 gi−1g

Cy

∥∥. The first term in the right hand side is op(1) by arguing as for (A.13), j = 3. A

Glivenko-Cantelli type argument and ET imply that the second term is also op(1). Thus,

supy≥0 ‖Ĉy − Cy‖ = op(1). Consequently, the positive definiteness of Cy for all y ∈ [0,∞)

implies that

sup
0≤y≤y0

∥∥Ĉ−1
y − C−1

y

∥∥ = op(1). (A.17)

Condition (C5) and ET imply n−1
∑n

i=1 ‖ĝi−1−gi−1‖ = op(1). Hence, (A.17), (C9) and a

routine argument yield n−1
∑n

i=1 ĝT
i−1Ĉ

−1
Yi−1

I(Yi−1 ≤ y) = Op(1), uniformly over 0 ≤ y ≤ y0.

Upon combining these facts with (A.6), (A.12) and (A.16), we obtain

sup
0≤y≤y0

|Ŵn(y) − W̃n(y)| = op(1). (A.18)

Next, we shall show

sup
0≤y≤y0

|W̃n(y) −Wn(y)| = op(1). (A.19)

First observe that, Wn(y) − W̃n(y) = D1n(y) + D2n(y) + D3n(y) + D4n(y), where

D1n(y) =

∫ y

0

gT (x)C−1
x

{∫ ∞

x

g(z) dUn(z)
}

[dGn(x) − dG(x)],

D2n(y) =

∫ y

0

[
ĝT (x)

(
Ĉ−1

x − C−1
x

){∫ ∞

x

ĝ(z) dUn(z)
}]

dGn(x),

D3n(y) =

∫ y

0

[
ĝT (x)C−1

x

{∫ ∞

x

(
ĝ(z) − g(z)

)
dUn(z)

}]
dGn(x),

D4n(y) =

∫ y

0

[(
ĝT (x) − gT (x)

)
C−1

x

{∫ ∞

x

g(z) dUn(z)
}]

dGn(x).
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Note that because g0 and ε1 − 1 are square integrable, uniformly in y ≥ 0,

∫ ∞

y

g(z)dUn(z) =
1√
n

n∑

i=1

gi−1(εi − 1)I(Yi−1 ≥ y)

=
1√
n

n∑

i=1

gi−1(εi − 1) − 1√
n

n∑

i=1

gi−1(εi − 1)I(Yi−1 ≤ y) + op(1).

By the martingale CLT, the first term is bounded in probability. Lemma 1 together with

(C1), (C2), (C3)(a), (7) and the continuous mapping theorem, imply that the second term

is Op(1), uniformly over y ≥ 0. Hence,

sup
y≥0

‖
∫ ∞

y

gdUn‖ = Op(1). (A.20)

By (C8) and (C7), sup0≤y≤y0
‖g(y)TC−1

y ‖ < ∞. These facts together with Lemma 4 yield

sup0≤y≤y0
‖D1n(y)‖ = op(1).

We shall next prove that sup0≤y≤y0
|Djn(y)| = op(1) for j = 2, 3, 4. Towards this end we

make use of the following fact.

sup
y≥0

∥∥∥n−1/2
n∑

i=1

(
ĝi−1 − gi−1

)
(εi − 1)µi(y)

∥∥∥ = op(1). (A.21)

The proofs of this fact will be given shortly.

Arguing as in the proof of (A.11), by (C5), (C10) and ET, we obtain that n−1
∑n

i=1

‖ĝi−1 − gi−1‖ = op(1) and n−1
∑n

i=1 ‖gi−1‖ = Op(1). Since, for each 0 ≤ y ≤ y0, Cy − Cy0

is positive semi-definite, we also have sup0≤y≤y0
‖C−1

y ‖ < ∞. Hence, (A.17), (A.20), (A.21)

and a routine argument yield supy∈[0,y0] |D2n(y)| = op(1). Similarly, by (A.21), it follows

that supy∈[0,y0] |D3n(y)| = op(1), and by (A.20), it yields supy∈[0,y0] |D4n(y)| = op(1). This

completes the proof of sup0≤y≤y0
|Djn(y)| = op(1) for j = 2, 3, 4, and hence of (A.19).

Consequently, in view of (A.18), we obtain

sup
0≤y≤y0

|Ŵn(y) −Wn(y)| = op(1). (A.22)

This fact, together with consistency of σ̂ for σ > 0 and Lemma 3 completes the proof of

Theorem 1.

We shall now prove (A.21). Again, for the sake of brevity, write ξi−1 = (ĝi−1 − gi−1 −
ġi−1(θ̂n − θ)). Observe that the left hand side of (A.21) is bounded above by

sup
y≥0

∥∥∥n−1/2

n∑

i=1

ξi−1(εi − 1)µi(y)
∥∥∥ + sup

y≥0

∥∥∥n−1

n∑

i=1

ġi−1(εi − 1)µi(y)
∥∥∥ ‖∆n‖. (A.23)
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The following argument is similar to that in the proof of (4.19) of Koul and Stute (1999).

Condition (C5) implies that, on the set {‖θ̂n − θ‖ ≤ η}, where η is as in (C5),

sup
y≥0

∥∥∥n−1/2

n∑

i=1

ξi−1(εi − 1)µi(y)
∥∥∥ ≤ δ∆nn

−1

n∑

i=1

h(Yi−1)|εi − 1| = Op(δ).

Since δ > 0 is arbitrarily chosen, this implies that the first term in (A.23) is op(1). On the

other hand, as εi is independent of {Yi−1, Yi−2, · · · , Y0}, E(ε1) = 1 and E‖ġ0‖ < ∞, we have

Eġ0(ε1 − 1)µ0(y) = 0. Hence, by (C10), a Glivenko-Cantelli type argument and ET, the

second term in the bound (A.23) is op(1). �

Proof of Theorem 2. It suffices to show that n−1/2|Ŵn(y)| = Op(1), for some 0 < y < ∞
satisfying (12). Fix such a y. Under Ha, εi = Yi/v(Yi−1). Write vi := v(Yi), Ψi := Ψ(Yi, θ),

and Ψ̂i := Ψ(Yi, θ̂n). Then, with θ as in (C11),

n−1/2Ûn(y) = n−1

n∑

i=1

εivi−1

[
Ψ̂−1

i−1 − Ψ−1
i−1

]
I(Yi−1 ≤ y)

+ n−1
n∑

i=1

{
εi

(
vi−1/Ψi−1

)
− 1

}
I(Yi−1 ≤ y). (A.24)

By (C11)(d), for d and t(·, θ) as in (C11), on the set ‖θ̂n − θ‖ ≤ d, the first term on the right

hand side of (A.24) is bounded from the above by κ2n−1
∑n

i=1 εivi−1t(Yi−1, θ)‖θ̂n −θ‖ = op(1),

by ET, and because θ̂n →p θ. Hence, by an extended Glivenko-Cantelli type argument,

n−1/2Ûn(y) = E
(
[v(Y0)/Ψ(Y0, θ) − 1]I(Y0 ≤ y)

)
+ op(1), under Ha. (A.25)

Recall under (C11), E(v(Y0)/Ψ(Y0, θ)) 6= 1.

Next, let L̂n(y) denote the second term in Ŵn(y) and

K̂n(x) := n−1/2

∫

z≥x

ĝ(z)dÛn(z), Kn(x) := n−1/2

∫

z≥x

g(z)dUn(z).

Recall ĝ(z) = g(z, θ̂), g(z) = g(z, θ) and µi(x) = I(Yi−1 ≥ x). Also, observe that Kn(x) =

n−1
∑n

i=1[εi(vi−1/Ψi−1) − 1]gi−1µi(x), and EKn(x) = E
(
[v(Y0)/Ψ(Y0, θ) − 1]g(Y0, θ)I(Y0 ≥

x)
)

= D(x, θ). Hence, an adaptation of the Glivenko-Cantelli argument yields

sup
x

‖Kn(x) − D(x, θ)‖ = op(1). (A.26)

Moreover,

K̂n(x) − Kn(x) = n−1
n∑

i=1

εivi−1

[ 1

Ψ̂i−1

− 1

Ψi−1

]
[ĝi−1 − gi−1]µi(x)

+ n−1

n∑

i=1

εivi−1

[ 1

Ψ̂i−1

− 1

Ψi−1

]
gi−1µi(x) + n−1

n∑

i=1

εi
vi−1

Ψi−1

[
ĝi−1 − gi−1

]
µi(x).
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Then using arguments as above we see that under the assumed conditions,

sup
x∈[0,∞]

‖K̂n(x) − Kn(x)‖ = op(1), under Ha. (A.27)

Now,

n−1/2L̂n(y) =

∫ y

0

ĝT (x)
(
Ĉ−1

x − C−1
x

)
K̂n(x) dGn(x)

+

∫ y

0

ĝT (x)C−1
x

(
K̂n(x) − Kn(x)

)
dGn(x) +

∫ y

0

ĝT (x)C−1
x Kn(x)dGn(x)

= S1(y) + S2(y) + S3(y), say.

Let Hn(z) :=
∫ z

0
‖ĝ(x)‖dGn(x). Arguing as above, we see that uniformly in z ∈ [0,∞],

Hn(z) = E‖g(Y0)‖I(Y0 ≤ z) + op(1). Hence, by (A.17), (A.27) and (A.26), it follows that

|S1(y)| ≤ supx≤y ‖Ĉ−1
x − C−1

x ‖ supx ‖K̂n(x)‖Hn(y) = op(1). Similarly, |S2(y)| = op(1), while

S3(y) = B(y) + op(1). These facts combined with (A.25) yield

n−1/2Ŵn(y) = n−1/2Ûn(y) − n−1/2L̂n(y)

= E
(
[

v(Y0)

Ψ(Y0, θ)
− 1]I(Y0 ≤ y)

)
− B(y, θ) + op(1), under Ha.

In view of (12), this completes the proof of Theorem 2. �

Proof of Theorem 3. Many details of the proof are similar to that of Theorem 1, so we

shall be brief at times. Fix a y0 > 0. We shall shortly show that under the assumptions

of Theorem 3, (A.22) continues to hold. Consequently, by the consistency of σ̂ for σ > 0

under Hnγ, the weak limit of σ̂−1Ŵn(y) is as same as that of σ−1Wn(y). Let Un(y) :=

n−1/2
∑n

i=1(εi − 1)I(Yi−1 ≤ y) and

Wn(y) := Un(y) −
∫ y

0

gT (x)C−1(x)
[ ∫ ∞

x

g(z) dUn(y)
]

dG(x), y ≥ 0.

Then Wn(y) = Wn(y) + Mn(y), y ≥ 0, where

Mn(y) := n−1

n∑

i=1

γ(Yi−1)

Ψ(Yi−1, θ)
εiµi(y)

−
∫ y

0

gT (x)C−1(x)
[
n−1

n∑

i=1

gi−1γ(Yi−1)

Ψ(Yi−1, θ)
εiµi(x)

]
dG(x).

Proceeding as in the proof of Lemma 3 we obtain that, σ−1Wn(y) =⇒ W ◦ G(y) in

D[0,∞) and uniform metric. By ET and an extended Glivenko-Cantelli type argument,

supy≥0 |Mn(y) − M(y)| = op(1), where M is as in Theorem 3. Now, these facts, together
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with consistency of σ̂ for σ > 0, Slutsky’s theorem and the continuous mapping theorem

completes the proof of Theorem 3.

We shall now prove (A.22) holds under the conditions of Theorem 3. For brevity,

write Ψ∗
i−1 := Ψ(Yi−1, θ

∗
n), Ψ̇∗

i−1 := Ψ̇(Yi−1, θ
∗
n), and g∗

i−1 := g(Yi−1, θ
∗
n). Arguing as for (A.7),

we obtain

Ûn(y) − Un(y) = −∆T
nn−1

n∑

i=1

εi{Ψi−1Ψ̇
∗
i−1/Ψ∗2

i−1}I(Yi−1 ≤ y) + ∆T
n R̃n(y),

where {θ∗n} ∈ Θ satisfies ‖θ∗n − θ‖ ≤ ‖θ̂n − θ‖, and

R̃n(y) := −n−1
n∑

i=1

εin
−1/2{γ(Yi−1)Ψ̇

∗
i−1/Ψ∗2

i−1}I(Yi−1 ≤ y).

By the triangle inequality, n−1
∑n

i=1 εi‖Ψ̇∗
i−1/Ψ∗2

i−1‖ ≤ Sn + n−1
∑n

i=1 εi‖gi−1/Ψi−1‖, where

Sn := n−1
∑n

i=1 εi‖{g∗
i−1/Ψ∗

i−1}−{gi−1/Ψi−1}‖ ≤ max1≤i≤n ‖Ψi−1−Ψ∗
i−1‖κ2

(
n−1

∑n
i=1 ‖g∗

i−1‖εi

)

+ κ
(
n−1

∑n
i=1

∥∥g∗
i−1−gi−1

∥∥εi

)
. Proceeding as in the proof of Theorem 1, one can obtain that

max1≤i≤n ‖Ψi−1 − Ψ∗
i−1‖(n−1

∑n
i=1 ‖g∗

i−1‖εi) = op(1) and that (n−1
∑n

i=1 ‖g∗
i−1 − gi−1‖εi) =

op(1), under Hnγ. Hence, Sn = op(1). Also note that, n−1/2 max1≤i≤n |γ(Yi−1)| = op(1), and

clearly n−1
∑n

i=1 εi‖gi−1/Ψi−1‖ = Op(1). Thus, supy≥0 ‖R̃n(y)‖ ≤ n−1/2 max1≤i≤n |γ(Yi−1)|
(
Sn+

n−1
∑n

i=1 εi‖gi−1/Ψi−1‖
)

= op(1). Consequently, under Hnγ, uniformly in y ∈ [0,∞],

Ûn(y) − Un(y) = −∆T
nn−1

n∑

i=1

εi

Ψi−1Ψ̇
∗
i−1

Ψ∗2
i−1

I(Yi−1 ≤ y) + op(1).

Thus, by proceeding as for the proof of (A.12) we obtain that, under Hnγ, uniformly in

y ∈ [0,∞], Ûn(y) − Un(y) = −∆T
nn−1

∑n
i=1 gi−1I(Yi−1 ≤ y) + op(1). Then, in view of (A.6),

under Hnγ, uniformly in 0 ≤ y ≤ y0,

Ŵn(y) − W̃n(y)

= −∆T
n

1

n

n∑

i=1

gi−1I(Yi−1 ≤ y) −
∫ y

0

ĝT (x)Ĉ−1
x J̃n(x) dGn(x) + op(1),

J̃n(y) :=
1√
n

n∑

i=1

ĝi−1

( Yi

Ψ̂i−1

− 1
)
µi(y) − 1√

n

n∑

i=1

ĝi−1

( Yi

Ψi−1

− 1
)
µi(y)

=
[
− 1√

n

n∑

i=1

ĝi−1

(Ψ̂i−1 − Ψi−1

Ψ̂i−1

)
εiµi(y)

]
+ S̃n(y),

and S̃n(y) := −n−1
∑n

i=1

{
ĝi−1γ(Yi−1)(Ψ̂i−1Ψi−1)

−1(Ψ̂i−1 − Ψi−1)εiµi(y)
}
. Since we assume

Eγ2(Yi−1) < ∞, by (C5), ET and a routine argument, n−1
∑n

i=1 ‖ĝi−1‖γ(Yi−1)εi = Op(1).

One can verify, under the assumptions of Theorem 3, that (A.15) continues to hold true.
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Since Ψ is bounded below by κ−1, then it follows that supy≥0 ‖S̃n(y)‖ ≤ κ2 max1≤i≤n |Ψ̂i−1 −
Ψi−1|

[
n−1

∑n
i=1 ‖ĝi−1‖γ(Yi−1)εi

]
= op(1). Consequently, uniformly in y ≥ 0, J̃n(y) =

−n−1/2
∑n

i=1 ĝi−1

(
(Ψ̂i−1 − Ψi−1)/Ψ̂i−1

)
εiµi(y) + op(1). Thus, proceeding as in the proof

of Theorem 1, we obtain that supy≥0 ‖J̃n(y) + Ĉy∆n‖ = op(1). This fact and a routine

argument yield (A.18) continues to hold under the assumptions of Theorem 3.

Next we shall show that (A.19) also holds under the assumptions of Theorem 3. First

observe that

Un(y) = Un(y) + n−1

n∑

i=1

{γ(Yi−1)

Ψi−1
εiI(Yi−1 ≤ y)

}
, y ≥ 0.

Let en(y) := n−1
n∑

i=1

gi−1
γ(Yi−1)

Ψi−1

εiµi(y) , ẽn(y) := n−1
n∑

i=1

ĝi−1
γ(Yi−1)

Ψi−1

εiµi(y).

Then, under Hnγ, Wn(y) − W̃n(y) = Ln(y) + `1n(y) + `2n(y) + `3n(y) + `4n(y), where

Ln(y) =

∫ y

0

ĝT (x)Ĉ−1
x

[ ∫ ∞

x

ĝ(z) dUn(z)
]

dGn(x)

−
∫ y

0

gT (x)C−1
x

[ ∫ ∞

x

g(z) dUn(z)
]

dG(x),

`1n(y) =

∫ y

0

gT (x)C−1
x en(x) [dGn(x) − dG(x)],

`2n(y) =

∫ y

0

[
ĝT (x)

(
Ĉ−1

x − C−1
x

)
ẽn(x)

]
dGn(x),

`3n(y) =

∫ y

0

[
ĝT (x)C−1

x

(
ẽn(x) − en(x)

)]
dGn(x),

`4n(y) =

∫ y

0

[(
ĝT (x) − gT (x)

)
C−1

x en(x)
]

dGn(x).

Proceeding as in the proof of Theorem 1, one can show that under Hnγ and the assumed

conditions on M and γ, sup0≤y≤y0
|Ln(y)| = op(1) = sup0≤y≤y0

|`jn(y)|, j = 1, 2, 3, 4. �
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Table 1: Percentage of times the null hypothesis was rejected by 5% level tests for different

data generating processes.

DGP F TKS Q5 Q15 LM M TKS Q5 Q15 LM M

n=200 n=500

S1 E 2.5 1.4 4.1 2.4 21.8 4.9 2.9 2.9 5.1 8.2

W 3.0 2.8 3.7 22.0 22.8 4.4 4.1 4.3 21.9 9.6

G 3.6 2.0 3.2 0.4 22.1 4.5 2.3 3.7 0.3 10.9

GG 2.9 2.8 3.3 7.7 22.1 3.7 2.6 3.7 8.6 9.9

B 2.6 2.5 3.8 6.1 19.9 3.9 2.6 3.5 7.4 9.4

n=500 n=1000

S2 N 5.7 2.8 4.2 14.0 4.4 5.2 3.9 4.8 11.4 5.4

P1 E 15.5 3.4 5.0 0.0 4.4 28.2 3.1 4.4 0.1 8.8

P2 E 26.7 3.3 4.8 0.1 7.6 55.1 5.4 6.2 0.1 8.2

P3 E 40.4 4.6 5.7 0.2 7.5 76.5 7.6 6.3 0.3 8.9

P4 N 16.3 9.4 7.6 35.2 10.5 17.4 14.7 11.6 50.6 10.8

Notes: The DGPs under the null hypothesis are S1 and S2, where S1 is ACD(1,0) in (14)

and S2 is Squared-ARCH(1) in (15). The error distributions are Exponential [E], Weibull

[W], Gamma [G], Generalized Gamma [GG], Burr [B] and Normal [N].

The DGPs P1–P4, are under the alternative hypothesis. Specifically, P1 is M(0.1, 0.2, 0.3),

P2 is M(0.1, 0.2, 0.5) and P3 is M(0.1, 0.2, 0.7), where M(α, β, γ) is the model in (16), and

P4 is Squared-ARCH(2) in (17).

The test proposed in this paper is TKS. The other tests are Ljung-Box Q test with lag

length L (QL), the Lagrange Multiplier test (LM) and M test (M).
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Figure 1: Plot of {σ̂
√

0.99}−1|Ŵn(y)| against y for squared log returns of Intel stocks. The

horizontal dashed-line corresponds to the 10% level critical value of the TKS test. The

observed test statistic TKS = 1.9192 is the supremum of the curve.
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Figure 2: Plot of {σ̂
√

0.99}−1|Ŵn(y)| against y for the viscosity data (Series D in Box and

Jenkins 1976). The horizontal dashed-line corresponds to the 10% level critical value of the

TKS test.
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