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Abstract

This work is an invited work for the book “Connected at Infinity” (ed. R. Bhatia) which
consists of articles that explain to non-specialists an important piece of the work by
Indian mathematicians and their influence. In this article, we explain the work of
Professor Masani (Joint with Norbert Weiner) on multivariate prediction theory which
had a major influence in harmonic analysis, operator theory, and factorization problems.
To make the work accessible, we first explain the work of Wiener and Kolmogorov in the
univariate case starting with the work of H. Wold. We then explain the Wiener-Masani
work as a generalization of that of Wiener-Kolmogorov. The references bring readers to
some modern work influenced by them,

I'want to thank Mr. Wenning Feng for his Tex typing of this Work with important
suggestlons about the presentation.
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Introduction

The work of Wiener-Masani started at ISI during the visit of Norbert Wiener
in 1955-56. Wiener [18] had done substantial work in the univariate case and
had partial results in the multivariate case. Kolmogorov {7] had studied the
univariate case in detail, with emphasis on a fundamental theorem of H.
Wold. In addition, Zasuhin [20] had announced partial results. Because of
the connection between prediction theory (of interest to Wiener) and fac-
torization of matrix-valued functions (of interest to Wiener [18] p.150 and
Masani [12]}, their collaboration produced results and techniques which had
a lasting effect in the case of prediction theory, analysis and operator theory
(Nagy and Foias, see [13])

Finally, it will be incomplete to give the influence of Masani in Math-
ematics without mentioning his mentoring of students as described in [4].
This led to these students contributing to Mathematics in general.

In the next section, we start by describing the concepts involved in the
prediction theory in the univariate case. The material is based on {9).

We give at the end of references, the book of K. Hoffinan on analytic
functions, as a general reference.

1 Motivation for Wiener-Masani work

In order to understand the significance and motivation for the fundamental
work of Wiener-Masani, it is necessary to describe the work of Kolmogorov
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We call {X,,n € Z} purely non-deterministic (regular) if L{X : —oc) =
{0} and deterministic (singular) if L{X : —o0) = L(X : n) for all n. Now if
X, is regular, writing

0
Xo= E agly

k=—0C
t] 4] n
Xy = Z arlU™v = Z AVntk = Z -
k=-o0 k=-—o00 kf=—oc0

Major part of Kolmogorov-Wiener work is to get analytic conditions for
a process to be regular or singular. This is done by using Bochner Theorem
to obtain

r(n) = f_ ’ e dF(N)

T

We call F()) the spectral measure of X, f()), the density of F w.r.t.
Lebesgue measure o, the spectral density and L%(F) = L2{(—=, 7],

B(—m, ], F) is called spectral domain. The map V' : X, —+ €™ can be ex-
tended to a unitary operator from time domain L{X) onto spectral domain
L3(F). One then gets that {X,,} is purely non-deterministic iff f (A) = |p(N))?

where ¢(k) =0 for k < 0. If X, Z a4 Vn_k, then p(A) = Z Tpett.

If X is singular, then F is smgular w.r.t. Lebesgue measure Thus the
Wold decomposition is equivalent to Lebesgue decomposition of F. Let us
consider the map from L*(T) to H*(T") = {¢ € LX(T) : ¢(k} = 0,k < 0} as

oo

o= ¢ (p)y = p(n)e™

n=—00

We observe that ¢ € H?(T) does not vanish on a set of positive Lebesgue
measure without being identically zero. Now if f(A} = [e(M\)|?, ¢ € H*(T),
then we get that

Xn =V (e"p())

gives a stationary process with spectral density f and & = V~(e¥*) giving

0

Xo= > k)L,

k=-00
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Now RHS above equals using the map V, 0% = E|Xy — Prx..1)Xo|%, the
prediction error. Since Szegd gives

27 ¢
90(2)=exp{% [ s 50 +ng}

el — 2z

we get ¢(0)]? = E|Xo— Priee..1yXo|?. Asin general L(X : —1) C L(¢#: —1),
we get

a® = |p(0)?
and ¢ is maximal, one gets 6® = [p(0)]2. Thus we get the result of Kol-
mogorov [8].

Theorem K1. Let {X,,,n € Z} be a weakly stationary process, then

a) o? = exp { fﬂh log fa (H)do} where f, is the density of spectral measure
Fuwri o

b) X is deterministic iff fﬂzw log fo(8)do = —c0.

In order to solve the prediction problem, one wants to express v, the
innovations, in terms of {X,,,n € Z}. That is done in the next result.

Theorem K2. Let { X,,,n € Z} be a weakly stationary purely non-deterministic
process. Let f be its density and assume f € L*(de). Then

o= diXnp with > d? <oo
k=0 k
iff
fe (o)

and dy = fo% e‘““"-(;z%d)\ where ¢ is maximal factor.

As one can see from the review of Kolmogorov-Wiener work in one-
dimension, the solving of the problem requires combinations of methods from
analytic function theory, geometry of time domain of stationary stochas-
tic processes, isometry between the time and spectral domain. It turns
out that, in multivariate case studied by Wiener and Masani, the time do-
main is a Hilbert module and the spectral domain involves square integrable
matrix-valued functions w.r.{. a non-negative definite matrix-valued measure.
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As in the univariate case, let us define M, = M(f: n) = 5p{f, k < n},
M _ oo = (he_oo Ma. We know that UL = £}, is a unitary operator on H
and we can write

U(fn) = (Ufni);'I:l = Inga
Then we get UM, = M., and hence just as in univariate case we get U
acting projection on M, equals projection of M, acting on U. Define
g, = £, — (fu|Mn-1) and W, = sp{g,} for each n. Then one gets with
Moo =5p{f,,n € Z}

(2.2) &) My =3 OWs_x & M_,
k=0

o0

k=—c00

As in one-dimensional case, we call [19] a process purely non-deterministic
if M_, = {0} and deterministic if M,, = M__,. Using this, Wiener-Masani
prove Wold Decomposition for a stationary process {f,,n € Z}.

Wold Decomposition ([19] Thm. 6.11). Let G = ((g,, g,)). Then

f, = ZAkgn—-k + (fn,M_oo), 8; 1 (fnfM—oo)

k=0

where AyG = ((f5,8_)), Aog, = g, and i |AVG% < 00, AgVG = VG.

Note that Ay are not necessarily unique bi;OAkG and Agxv/G are unique.
The above result gives the Wold Decomposition in terms of purely non-

deterministic part (Fi Akgn_k) and deterministic part ((f,|M_o,)) and the

moving average representation of the purely non-deterministic part. The
process {g,,,n € Z} is stationary and is the innovation process of {f,,n € Z}.
Earlier, Doob [2] has given this result under full-rank assumption, i.e. G
being invertible. The following theorem is a generalization of Kolmogorov
Theorem {[7], Thm. 19).

Each of the following conditions are equivalent which can be easily derived
from the above theorem by using ¢, = g, and K = G to get (b)=(a) and
(a)=>(b) by using orthogonality {¢,} and shift U, = ¢p,,; and M/ C
Mz, Kolmogorov defines regularity of a stationary process by showing
(fo] Mf) — 0 as n — oo, which easily follows as M/ C MY,
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Theorem 3.1. (a) The moving average process (f,)%,:

+o0 +o0
fo= ABsr (8,8)=05G, D |AGE <o
e k=—c0

has absolutely continuous spectral distribution F' such that

+oo
F.'(eiﬂ) — @(eie) . @*(eia)’ @(eie) — Z AkG1/2eik6‘ @.E.

k=—00

(b) If for this process Ay = 0 for k < 0, then

(I)(eiﬂ) — ZAkglﬂeikﬂ

k=0

and either A®, vanishes identically or log AF' € L' on C, the complex
numbers, and

log A(AGAZ) < % f " log (A(F(6)))d8

. N |

Here Fy(z) = Y Apz™ for |2| < 1 with F(e") as boundary value, and A
=0

denotes the det?erminant.

Proof of (a) follows by computing (f,,f;) and representing it in spectral

“+oo
representation. One then observes that 3 |AyG|% < oo implies that ®,
k=00
&* € L2, and uniqueness of Fourier transform for ®®* gives the result. Now
® being one-sided expandable gives that each of its elements are in Hardy

space H? on the circle. So A®, vanishes identically or log AF' € L! and
. 1 [ .
o5 |A(40G"%)| = g | A04(0) < o [ log|a@(e)]as
0

using Szegd Theorem. Observe A{A,GA}) = [A(AG)|? and AF = |AD|?
to complete the proof of (b).

Using the Wold decomposition and expression for (f,, ) = (0, +v,, up+
vy), we get that the spectral measure F = F, + F, where {u,} is purely non-
deterministic and v is deterministic. Thus we get F/(e¥) = ®(e¥)®*(c¥),
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We shall call @ satisfying the above condition a generating function. This
was used by Wiener-Masani to give the form of innovations in terms of the
observed process under the boundedness condition

M < Fe®y < NI, 0<A<X <o V0.

giving analogue of Theorem K2 in Section 1 ([19], Part 1I, Theorem 5.5).

Independent of Wiener-Masani, Helson and Lowdenslager [5] studied the
prediction problem giving the right of precedence to Wiener-Masani. They
used the technique of invariant subspaces of shift due to Beurling. In a
subsequent paper, Masani [11] gave an ”elegant and unifying” treatment of
the two approaches ([3]) using a generalization of a theorem of Halmos on
isometries. This is generalized in ([6], [16]) for random fields and proper
generalization of Beurling theorem ([10]) follows. As stated in ({5], p.181),
this was a difficult problem and exact analogue was not possible {[14]). But
Masani’s paper inspired the solution.

For other influences of their work, we refer the reader to Norbert Wiener
Collected Works, II1 (ed. Masani) and papers of Salehi [15] and Muhly [13].
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