
RM696

This Chapter is dedicated to the memory of Kesar Singh (1955–2012),

pioneer of the mathematical foundations of bootstrap resampling.
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Abstract

The main focus of this article is to carefully examine the information content of

resampling techniques in bootstrap from a survey sampling point of view. Given an

observed sample of size n, resampling for bootstrap involves n repeated trials of simple

random sampling with replacement (SRSWR). It is well-known that SRSWR does not

result in samples that are equally informative (Pathak, 1964). In 1997, Rao, Pathak

and Koltchinskii introduced a sequential bootstrap resampling scheme in the literature,

stemming from the observation made by Efron (1983) that the usual bootstrap samples

are supported on average on approximately 0.632n of the original data points. The

primary goal of our sequential bootstrap was to stablize the information content of

bootstrapped samples as well as to investigate whether consistency and second-order

correctness of Efron’s simple bootstrap carried over to this sequential case. In Rao,

Pathak and Koltchinskii (1997), we showed that the main empirical characteristics of

the sequential bootstrap asymptotically differ from those of the corresponding simple

bootstrap by a magnitude of O(n−3/4). In Babu, Pathak and Rao (1999), we estab-

lished the second-order correctness of the sequential bootstrap for a general class of
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estimators under regularity conditions analogous to those for the simple bootstrap.

In a separate paper, Shoemaker and Pathak (2001) carried out simulations similar to

those of Mammen (1992), confirming the consistency of the sequential bootstrap. More

recently, Jiménez-Gamero et al. (2006), Pino-Mej́ıas et al. (2010), Pauly (2011) and

others have investigated the sequential bootstrap and its variants both empirically as

well as theoretically. These investigations indicate that the sequential bootstrap is

likely to perform better than the simple bootstrap in small to moderate samples. We

present an expositary account of these findings and discuss their potential applications.

KEY WORDS: bootstrap, sequential resampling, poisson sampling, information con-

tent, sampling viewpoint, asymptotic correctness, empirical measures, empirical pro-

cesses, weak convergence, quantiles
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1. Introduction

The bootstrap is a ubiquitous technique to estimate performance characteristics of complex

statistical methods which often do not admit simple closed form solutions. Its wide-spread

use in statistics was initiated by Bradley Efron (1979), its rigorous mathematical foundations

were established by Kesar Singh (1981) and its underlying principles have their origins in

randomization, sample surveys and Jackknife. In sample surveys terminology, its paradigm

is akin to Mahalanobis’ interpenetrating subsampling, as well as two-phase sampling (Hall,

2003). As an illustration, a two-phase sampling version of Efron’s simple bootstrap can be

paraphrased as follows. Consider a target population of finitely many units and for simplicity

assume that its units take values in the real line. Let F , µ, and σ2 respectively denote this

population’s distribution function, mean, and variance. Consider the problem of estimating

these parameters. Let S = (X1, X2, . . . , Xn) be a random sample from this population. It is

easily seen that δX1
is an unbiased estimator of F with δx being the unit probability function

at x. Similarly X1 is an unbiased estimator of µ, and (X1−X2)
2/2 is an unbiased estimator

of σ2. These estimators are evidently poor estimators. Given the observed sample S, the

Rao-Blackwellization of these estimators yields better estimators. These are:

(1.1) Fn := E(δX1
|S) = n−1

∑

1≤i≤n

δXi

(1.2) X̄n := E(X1|S) = n−1
∑

1≤i≤n

Xi

(1.3) s2n := E((X1 −X2)
2/2|S) = (n− 1)−1

∑

1≤i≤n

(Xi − X̄n)
2

The respective sampling errors of these estimators are:

(1.4) (Fn − F ), (X̄n − µ), (s2n − σ2)
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The simple bootstrap is a resampling technique for estimating such sampling errors and

their distributions purely from the observed sample S. In survey sampling terminology,

given S, this entails a second phase of sampling in which one selects a with replacement

simple random sample of size n from the sample S from the first phase, resulting in the

second phase sample:

(1.5) Ŝ := (X̂1, X̂2, . . . , X̂n)

The survey sampling paradigm for two-phase sampling is to consider S as a surrogate target

population and the second-phase sample Ŝ as the surrogate sample S. In terms of the

surrogate target population S and the surrogate sample Ŝ, the estimators for the sampling

errors in the preceding equations are given by:

(1.6) (F̂n − Fn), (X̄n̂ − X̄n), (ŝ2n − s2n)

in which F̂n, X̄n̂ , ŝ2n are respectively the emprical distribution, mean and variance based

on the surrogate sample Ŝ .

The conditional distributions of these statistics given S furnish estimates of the sampling

distribution of the corresponding statistics from phase one sampling.

Efron used repeated resamplings a large number of times (B) at the second phase to em-

pirically estimate these distributions and referred to his method as “bootstrap resampling”.

The main purpose of our illustration is to point out that Efron’s method has a great po-

tential for extending his paradigm to more complex non-IID scenarios under the two-phase

sampling framework with Rao-Blackwellization. For example, if the first-phase sampling is

simple random sampling (without replacement) of size n from a population of size N then

for the bootstrap sampling to go through, the second phase sampling needs to ensure that

the surrogate image F̂ of the underlynig population F is such that for each unit in F̂ , the
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probability of its inclusion in the second phase is ≈ (n/N) and for each pair of units in F̂ ,

its probability of inclusion is ≈ n(n− 1)/N(N − 1).

What bootstrap is: There are numerous versions of the bootstrap. It has been studied

for virtually all forms of statistical inference, including point and interval estimations, tests

of hypothesis, classification models, and cross-validation (Chernick, 2008). For readers un-

familiar with the bootstrap, a brief outline of Efron’s simple bootstrap in the context of

variance estimation is as follows:

1. Let F be a given population (distribution function) and let µ(F ) be a given parameter

to be estimated on the basis of an observed sample S := (X1, X2, . . . , Xn) drawn from

the population F . Suppose that the plug-in estimater µ(Fn) = T (X1, X2, . . . , Xn), say,

is used to estimate µ(F ), in which Fn is the empirical distribution based on S. Now

to estimate the variance of µ(Fn), do

2. Draw observations X̂1, X̂2, . . . , X̂n from S by simple random sampling with replacement

(SRSWR), i.e. (X̂1, X̂2, . . . , X̂n) ∼ Fn

3. Compute T̂n = T (X̂1, X̂2, . . . , X̂n)

4. Repeat Steps 2 and 3, B times, say 1000, and let (T̂n,1, T̂n,2, . . . , T̂n,B) denote the

respective estimates so computed.

5. The bootstrap estimate of the variance of µ(Fn) is:

vboot =
1

B

B
∑

j=1

(T̂n,j −
1

B

B
∑

k=1

T̂n,k)
2

We turn now to examine Efron’s simple bootstrap in some detail from the viewpoint of

information content. We will continue to use the notations introduced in preceding discus-

sions and suppose that the plug-in estimator µ(Fn) is to be used as an estimator of µ(F ).
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Then, for a large class of functions µ, Efron’s bootstrap resampling method (1979) provides

a robust method of evaluating the performance characteristics of µ(Fn), solely on the basis

of information derived (through randomization) from the observed sample S. Consider the

simple case when µ(F ) is the population mean, µ(Fn) the corresponding sample mean, and

consider the pivot.

(1.7) Πn =
√
n(µ(Fn)− µ(F ))/

√

σ2(Fn)

in which σ2(Fn) is the sample variance based on Fn.

The central limit theorem entails that the sampling distribution of Πn can be approx-

imated by the standard normal distribution. On the other hand, the bootstrap furnishes

an alternative approach based on resampling to estimating the sampling distribution of Πn

from S more precisely. Generally speaking, the central limit approximation is accurate to

o(1), while resampling approximation is accurate to o(n−1/2). For example, let Gn denote

the distribution function of Πn. Then the central limit theorem yields that

(1.8) ‖Gn − Φ‖ := sup
x

|Gn(x)− Φ(x)| = o(1)

where Φ(x) denotes the standard normal distribution function. The bootstrap approximation

captures the skewness of the distribution Gn in the following sense:

(1.9)
√
n‖Gn −Hn‖ = o(1)

in which Hn represents a one-term Edgeworth expansion for Gn.

The simple bootstrap resampling scheme to approximating the distribution Gn is based

on resampling by simple random sampling with replacement (SRSWR). Given the observed

sample S, let Ŝn = (X̂1, . . . , X̂n) be an SRSWR sample drawn from S in this manner. Let

F̂n be the empirical distribution based on Ŝn. Let

(1.10) Π̂n =
√
n(µ(F̂n)− µ(Fn))/

√

σ2(F̂n) =
√
n(µ̂n − µn)/σ̂n, say,
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denote the pivot based on Ŝn. Then for large n, the conditional distribution of Π̂n given S is

close to that of Πn. In practice, this conditional distribution of Π̂n is simulated by repeated

resampling from S by SRSWR of size n, a large number of times usually of order O(1000).

This observed frequency distribution (ensemble) of Π̂n is referred to as the bootstrap dis-

tribution of the pivot Πn. Thus for example, for large n, the quantiles from the bootstrap

distribution of Πn can be used to set up a confidence interval for µ based on the pivot Πn.

Owing to the with replacement nature of SRSWR, not all of the observations in bootstrap

samples Ŝn, say, are based on distinct units from S. In fact, the information content of Ŝn,

the set of observations from distinct units in Ŝn, is a random variable. Let νn denote the

number of observations in Ŝn that are based on distinct units from S. Then

(1.11) E(νn) = n[1− (1− 1

n
)n] ≃ n(1− e−1) ≃ n(0.632)

(1.12) Var(νn) = Var(n− νn) = n(1− 1

n
)n + n(n− 1)(1− 2

n
)n − n2(1− 1

n
)2n

(1.13) ≃ ne−1(1− e−1)

In fact, the distribution of νn approaches a binomial distribution b(n, p) with p ≃ 0.632,

showing that the information content of a bootstrap sample, is approximately sixty-three

percent of the information content of the observed sample S. In what follows, we describe

alternatives to the simple bootstrap that keep the information content of the bootstrap

samples more stable.

2. A Sequential Bootstrap Resampling Scheme

Under this resampling scheme, we keep the information content of each bootstrap sample

constant by requiring that the number of distinct observations in each sample be kept con-

stant, equal to a preassigned value ≈ (0.632)n as follows:
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To select a bootstrap sample, draw observations from S sequentially by SRSWR until there

are (m+ 1) ≈ n(1− e−1) + 1 distinct observations in the observed bootstrap sample, the last

observation in the bootstrap sample is discarded to ensure simplicity in technical details.

Thus an observed bootstrap sample has the form:

(2.1) ŜN = (X̂1, X̂2, . . . , X̂N )

in which X̂1, . . . , X̂N have m ≈ n(1 − e−1) distinct observations from S. The number of

distinct observations in ŜN is precisely [n(1 − e−1)]; it is no longer a random variable. The

sample size N is a random variable with E(N) ≈ n. The pivot based on ŜN is

(2.2) Π̂N =
√
N(µ(F̂N)− µ(Fn))

in which F̂N denotes the empirical distribution based on the bootstrap sample ŜN . For

simplicity in exposition, we assume σ2(F ) = 1. Now for a comparative study of the pivot

Π̂N based on the sequential resampling approach, versus Π̂n based on a bootstrap sample of

fixed size n, it is necessary to estimate the order of magnitude of the random variable N . It

is easily seen that N admits the following decomposition in terms of independent (geometric)

random variables:

(2.3) N = I1 + I2 + . . .+ Im

in which m = [n(1− e−1)], I1 = 1 and for each k, 2 ≤ k ≤ m, and for j ≥ 1:

(2.4) P (Ik = j) = (1− k − 1

n
)(
k − 1

n
)j−1
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Therefore

(2.5) E(N) = n[
1

n
+

1

(n− 1)
+ . . .+

1

(n−m+ 1)
] = n+O(1)

since m = [n(1− e−1)]

Similarly, it is easily seen that

(2.6) Var(N) =
m
∑

k=1

n(k − 1)

(n− k + 1)2
= n(e− 1) +O(1)

Thus

(2.7)
E(N − n)2

n2
=

(e− 1)

n
+O(

1

n2
)

showing that (N/n) → 1 in probability.

Further analysis similar to that of Mitra and Pathak (1984) can be used to show that

(2.8)
E(Π̂N − Π̂n)

2

Var(Πn)
≤ K

√

Var(N)

n2
= O(

1√
n
)

This implies that Π̂n and Π̂N are asymptotically equivalent. The preceding computations

show that this sequential resampling plan, in addition to keeping the information content of

bootstrap samples constant, also preserves its asymptotic correctness (consistency). In fact,

our investigations show that under sequential forms of resampling, asymptotic correctness

of the bootstrap procedure goes through only if the number m of distinct units in bootstrap

samples satisfies: m = n(1 − e−1) + o(n). Consequently any other sequential resampling

procedure for which first-order asymptotics goes through cannot be “significantly” different

from ours in terms of its information content, e.g. consistency of variants of our sequential

bootstrap by Jiménez-Gamero et al. (2004, 2006), Pino-Mej́ıas et al. (2010) and Pauly

(2011) is a consequence of this regularity condition. Incidentally, the measure of disparity

in two estimators as given by (2.8) is a simple tool frequently used in sampling theory to

establish asymptotic equivalence of two competing estimators.

A second approach for consistency of the sequential bootstrap can be based on the so-

called Mallows metric for weak convergence (cf Bickel and Friedman, 1981): In a given class
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of distributions with a finite second moment, define a given sequence of distributions {Fn}

to converge in M -sense to F if and only if (a) Fn converges weakly to F and (b)
∫

x2dFn

converges to
∫

x2dF . It is easily seen that this notion of convergence is induced by the

following M -metric:

(2.9) d2(F,G) = inf
X∼F,Y∼G

E(X − Y )2

in which the infimum is taken over all pairs of random variables (X, Y ) with given marginals

F and G respectively (Mallows, 1972).

Under this metric, (2.9), it is easily shown that

(2.10) d(Π̂n,Πn) ≤ d(Fn, F )

so that

(2.11) d(Π̂n,Φ) ≤ d(Π̂n,Πn) + d(Πn,Φ) ≤ d(Fn, F ) + d(Πn,Φ)

The first term on the right converges to zero by the law of large numbers (the Glivenko-

Cantelli lemma), while the second term does so by the central limit theorem. This establishes

the consistency of the simple bootstrap. An added complication that arises in sequential

resampling scheme is that the bootstrap sample size N is now a random variable. Thus for

the consistency of the sequential bootstrap to go through, one needs to show that d(Π̂N ,Φ)

can be made arbitrarily small; (2.11) is no longer directly applicable. Nevertheless, based

on techniques similar to those of Pathak (1964) and Mitra and Pathak (1984) (Lemma 3.1

in Mitra and Pathak), it can be shown that:

(2.12) d(Π̂N , Π̂n) = O(n−1/4)
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Consistency of the pivot Π̂N follows from (2.11) and (2.12) and the triangle inequality.

A limitation of the preceding two approaches is that they apply only to linear statistics and

cannot be easily extended to more general statistics. A third and a more general approach

is to treat pivots like Π̂n and Π̂N as random signed measures and study their convergence

in the functional sense. In this functional setting, we now describe the key result which

furnishes a rigorous justification of the sequential bootstrap for a large class of functionals.

3. Bootstrapping Empirical Measures With

A Random Sample Size

For simplicity in exposition, we tacitly assume at the outset the existence of a suitable

probability space where the random variables, functions etc. under study are well-defined

(see Rao, Pathak and Koltchinskii, 1997). Now consider {Xn : n ≥ 1} a sequence of

independent random elements with a common distribution P in a certain given space χ. Let

Pn denote the empirical measure based on the sample (X1, . . . , Xn) from P , i.e.,

(3.1) Pn := n−1
∑

1≤i≤n

δXi

with δx being the unit point mass at x ∈ X.

Let {X̂n,j : j ≥ 1} be a sequence of independent random elements with common distri-

bution Pn. We refer to this sequence as a sequence of bootstrapped observations, or just

a bootstrapped sequence. Given a number N ≥ 1, let P̂n,N denote the empirical measure

based on the bootstrap sample (X̂n,1, . . . , X̂n,N ) of size N ; i.e.

(3.2) P̂n,N := N−1
∑

1≤i≤N

δX̂n,i

We refer to it as a bootstrapped empirical measure of size N . The main object of this

section is to show that if (N/n) converges to one in probability, then the bootstrapped
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empirical measure P̂n,N is at a distance of o(n−1/2) from the bootstrapped empirical measure

P̂n := P̂n,n, so that all of the
√
n - asymptotic results for the classical bootstrap carry over

to the sequential bootstrap with a random sample size.

To do so, define the random measure: Zn :=
√
n(Pn − P ), n ≥ 1, and for any class

F of measurable functions f : χ 7→ R1, let GP be a mean zero Gaussian process indexed

by F , with covariance E[f(X)g(X)] − Ef(X)Eg(X) for all f, g ∈ F . Both Zn and GP

can be viewed as being indexed by F . We say that F is P-Donsker if Zn converges in the

Hoffman-Jφrgensen weak sense to GP in the space ℓ∞(F) of all uniformly bounded functions

on the class F . In this case we say that F ∈ CLT (P ). The following result is well-known

(Giné and Zinn, 1986). If F ∈ CLT (P ), then

(3.3) E∗‖
∑

1≤i≤n

(δXi
− P )‖F = O(n1/2)

in which E∗ is the so-called outer expectation.

The investigation of the classical bootstrap for the general empirical measures was ini-

tiated by P. Gaenssler (1987). A remarkable theorem due to Giné and Zinn (1990) is the

equivalence of the following two conditions:

(a) F ∈ CLT (P );

(b) There exists a Gaussian process GP defined on a certain probability space such that

(3.4)
√
n(P̂n − Pn) → GP weakly in ℓ∞(F)

establishing the equivalence of the consistency of the simple bootstrap for the general em-

pirical measures over a class F and the corresponding central limit theorem: F ∈ CLT (P ).

Praestgaard and Wellner (1993) studied more general versions of the bootstrap, including

the one in which the size of bootstrap sample m 6= n.

We adopt the following terminology in the sequel. Given a sequence {ηn : n ≥ 1} of

random variables and a sequence {an : n ≥ 1} of positive real numbers, we write

(3.5) ηn = op(an)
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iff, for each ε > 0,

(3.6) lim sup
n→∞

E∗(I({|ηn| ≥ εan})) = 0

We write

(3.7) ηn = Op(an)

iff

(3.8) lim
c→∞

lim sup
n→∞

E∗(I({|ηn| ≥ can})) = 0

It is easy to check that ηn = Op(an) if and only if ηn = op(bn), for any sequence bn of

positive numbers such that an = o(bn). An immediate consequence of Fubini’s theorem is

that ηn = op(an) iff, for each ε > 0,

(3.9) I({|ηn| ≥ εan}) = op(1)

i.e. the random element on the left hand side of (3.9) converges to zero in probability.

We now turn to the key results of this section that are instrumental in establishing

consistency of various forms of sequential bootstrap resampling schemes in the literature.

Theorem 3.1. Let {an} be a sequence of positive real numbers such that an = O(n).

Suppose that F ∈ CLT (P ) and let

(3.10) |Nn − n| = op(an)

Then

(3.11) |P̂n,Nn
− P̂n|F = op(

a
1/2
n

n
)

The proof of this theorem follows mainly from the Giné-Zinn theorem (1990), (3.4) and
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suitable triangle inequalities (cf Rao, Pathak and Koltchinskii (1997) for details).

Corollary 3.1.1: Let {an} be a sequence of positive numbers such that an = o(n).

Suppose that F ∈ CLT (P ) and |Nn − n| = Op(an). Then

(3.12) |P̂n,Nn
− P̂n|F = Op(

a
1/2
n

n
)

For a proof, apply Theorem 3.1 to any sequence {bn} such that an = o(bn).

Corollary 3.1.2: Suppose that F ∈ CLT (P ) and |Nn − n| = op(n). Then

(3.13) |P̂n,Nn
− P̂n|F = op(n

−1/2)

Corollary 3.1.3: Under the conditions of Corollary 3.1.2,

(3.14) |N1/2
n (P̂n,Nn

− Pn)− n1/2(P̂n − Pn)|F = op(1)

Moreover, under the conditions of Theorem 3.1,

(3.15) |N1/2
n (P̂n,Nn

− Pn)− n1/2(P̂n − Pn)|F = op(

√

an
n
)

and under the conditions of Corollary 3.1.2

(3.16) ‖N1/2
n (P̂n,Nn

− Pn)− n1/2(P̂n − Pn)‖F = Op(

√

an
n
)

Indeed,

‖N1/2
n (P̂n,Nn

− Pn)− n1/2(P̂n − Pn)‖F(3.17)

≤ |N1/2
n − n1/2|(‖P̂n,Nn

− Pn‖F + ‖P̂n − Pn‖F) + n1/2‖P̂n,Nn
− P̂n‖F .(3.18)
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Under the conditions of Corollary 3.1.2,

(3.19) |N1/2
n − n1/2| = n1/2|(Nn

n
)1/2 − 1| = op(n

1/2)

Under the conditions of Theorem 3.1 we have

(3.20) |N1/2
n − n1/2| = op(ann

−1) = op(

√

an
n
)

The Giné-Zinn Theorem implies that {n1/2‖P̂n − Pn‖F} is stochastically bounded, and the

result follows from Corollary 3.1.2 and Theorem 3.1.

4. Convergence Rates For The Sequential Bootstrap

In what follows we apply the results of Section 3 to the empirical measures based on the

sequential bootstrap. We start with the following theorem summarizing the properties of

the empirical measures in this case.

Theorem 4.1. Suppose that F ∈ CLT (P ) and let P̂n,Nn
be the empirical measure based

on a sequential bootstrap sample. Then

(4.1) |P̂n,Nn
− P̂n|F = Op(n

−3/4)

and

(4.2) |N1/2
n (P̂Nn,n − Pn)− n1/2(P̂n − Pn)|F = Op(n

−1/4)

Indeed, in this case we have, by (2.7), |Nn−n| = Op(n
1/2) and Corollaries 3.1.1 and 3.1.3

imply the result. In fact, a more careful analysis , e.g. by invoking the Mills ratio, allows one

to replace O-terms by o-terms in these equations. It is worth noting that Equation (4.2) here

implies the asymptotic equivalence of the sequential bootstrap and the simple bootstrap.
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Illustrative Example: Consider the case X = R1 and let F := {I(−∞,t] : t ∈ R1} so

that general empirical measures considered earlier turn out to be the classical empirical

distribution functions. Denote

(4.3) F (t) := P ((−∞, t]) =

∫

R1

I(−∞,t]dP,

(4.4) Fn(t) := Pn((−∞, t]) =

∫

R1

I(−∞,t]dPn

and

(4.5) F̂n,N(t) := P̂n,N((−∞, t]) =

∫

R1

I(−∞,t]dP̂n,N

We also use the abbreviation F̂n := F̂n,n and | · |∞ denotes the sup-norm.

Since, by the Kolmogorov-Donsker theorem, F ∈ CLT (P ) for all Borel probability measures

P on R1 (where F = {I(−∞,t] : t ∈ R1}), we have the following result.

Theorem 4.2. For any distribution function F on R1,

(4.6) |F̂n,Nn
− F̂n|∞ = Op(n

−3/4)

and

(4.7) |N1/2
n (F̂n,Nn

− Fn)− n1/2(F̂n − Fn)|∞ = Op(n
−1/4)

In case F is the uniform distribution on [0, 1], we get as a trivial corollary that the

sequence of stochastic processes

(4.8)
{

N1/2
n (F̂n,Nn

(t)− Fn(t)) : t ∈ [0, 1]
}

n≥1

converges weakly (in the space ℓ∞([0, 1]) or D[0, 1]) to the standard Brownian bridge process

(4.9) B(t) := w(t)− tw(1), t ∈ [0, 1],
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w being the standard Wiener process. More generally, if F is continuous, then the limit is the

process (B ◦F )(t) = B(F (t)), t ∈ R1. These facts easily imply justification of the sequential

bootstrap for a variety of statistics θn, which can be represented as θn = T (Fn) with a

compactly (Hadamard) differentiable functional T . More precisely, let T be a functional (or,

more generally, an operator with values in a linear normed space) G 7→ T (G), defined on a

set G of distribution functions G. Then T is supposed to be compactly differentiable at F

tangentially to the space of all uniformly bounded and uniformly continuos functions (this is

differentiability in a certain uniform sense and is much like uniform continuity on compact

sets (cf Gill, 1989)). For such statistics, we have

(4.10) T (F̂n,Nn
)− T (F̂n) = op(n

−1/2),

proving the first order asymptotic correctness of the sequential resampling approach. These

observations can be applied, for instance, to the operator G 7→ G−1, defined by

(4.11) G−1(t) := inf{x ∈ R1 : G(x) ≥ t}

and taking a distribution function to its quantile function (see, e.g., Fernholz (1983) or Gill

(1989) for compact differentiability of such operators). Specifically, if F is continuously

differentiable at a point x ∈ R1 with F ′(x) > 0, then

(4.12) |F̂−1
n,Nn

(t)− F̂−1
n (t)| = op(n

−1/2)

where t = F (x). In fact, we have obtained bounds for quantiles that are sharper than (4.12)

(see Theorem 4.4 in Rao, Pathak and Koltchinskii, 1997). The different approaches that we

have described so far show that the distance between the sequential and the usual bootstrap is

at most of the order of O(n− 1

4 ). Although this entails consistency of the sequential bootstrap,

it does not guarantee its second order correctness. We turn now to two approaches to

estblishing second order correctness of the sequential bootstrap.
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5. Second Order Correctness Of The Sequential

Bootstrap

The proof of the second order correctness of the sequential bootstrap requires the Edgeworth

expansion for dependent random variables. Along the lines of the Hall-Mammen work (1994),

we first outline an approach based on cumulants. This approach assumes that a formal

Edgeworth expansion is valid for pivot under the sequential bootstrap.

Let Ni denote the number of times the ith observation xi from the original sample appears

in the sequential bootstrap sample, 1 ≤ i ≤ n. Then

(5.1) N = N1 +N2 + . . .+Nn

in which N1, N2, . . . are exchangeable random variables.

The probability distribution of N is given by

(5.2) P (N = k) =

(

n− 1

m

)

∆m(
x

n
)k

for k ≥ m, and in which ∆ is the difference operator with unit increment.

The moment generating function of N is given by

(5.3) M(t) = E(etN) =

(

n− 1

m

)

∆m n

(n− xet)

The second order correctness of the sequential bootstrap for linear statistics such as the

sample sum is closely related to the behavior of the moments of the random variables {Ni :

1 ≤ i ≤ n}. Among other things, the asymptotic distribution of each Ni is Poisson with

mean 1. In fact, it can be shown that

(5.4) E(N1 − 1)k1 . . . (Ni − 1)ki =
i

∏

j=1

(e∆ − 1−∆)(x− 1)kj +O(
1

n
)

It follows from (5.4) that to order O(n−1), the random variables {Ni : 1 ≤ i ≤ n} are

asymptotically independent. This implies that the Hall-Mammen type (1994) conditions for
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the second order correctness of the sequential bootstrap hold. This approach is based on

the tacit assumption that formal Edgeworth type expansions go through for the sequential

bootstrap. A rigorous justification of such an approach is unavailable in the literature at

the present time. Another approach which bypasses this difficulty altogether entails a slight

modification of the sequential bootstrap. It is based on the observation that each Ni in

Equation (5.1) is approximately a Poisson variate subject to the constraint:

(5.5) I(N1 > 0) + I(N2 > 0) + . . .+ I(Nn > 0) = m ≈ n(1− e−1)

i.e. there are exactly m non-zero Nis, 1 ≤ i ≤ n. This observation enables us to modify the

sequential bootstrap so that existing techniques on the Edgeworth expansion, such as those

of Babu and Bai (1996), Bai and Rao (1991, 1992), Babu and Singh (1989) and others, can

be employed. We refer to this modified version as the Poisson bootstrap.

The Poisson Bootstrap: The original sample (x1, . . . , xn) is assumed to be from R
k for

greater flexibility. Let α1, . . . , αn denote n independent observations form P (1), the Poisson

distribution with unit mean. If there are exactly m = [n(1 − e−1)] non-zero values among

α1, . . . , αn, take

(5.6) ŜN = {(x1, α1), . . . , (xn, αn)}

otherwise reject the αs and repeat the procedure. This is the conceptual definition. The

sample size N of the Poisson bootstrap admits the representation:

(5.7) N = α1 + α2 + . . .+ αn

in which α1, . . . , αn are IID Poisson variates with mean = 1 and with the added restriction

that exactly m of the n αs are non-zero, i.e. I(α1 > 0) + . . .+ I(αn > 0) = m.

A simple way to implement the Poisson bootstrap in practice is to first draw a sim-

ple random sample without replacement (SRSWOR) of size m from the set of unit-indices
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{1, 2, . . . , n}, say (i1, i2, . . . , im) . Then assign respectively to these αi1 , αi2 , . . . , αim values

independently drawn from the truncated Poisson distribution with λ = 1 and left-truncated

at x = 0 (R-syntax: qpois(runif(m, dpois(0,1), 1), 1)) and set α = 0 for the remaining αs.

It can be shown that the moment generating function MN(t) of N = α1 + α2 + . . .+ αn

is (Theorem 2.1 in Babu, Pathak and Rao, 1999):

(5.8) MN(t) =
[(e(e

t−1) − e−1)

(1− e−1)

]m

so that the distribution of N can be viewed as that ofm IID random variables with a common

moment generating function:

(5.9) m(t) =
(e(e

t−1) − e−1)

(1− e−1)

It is clear that m(t) is the moment generating function of the Poisson distribution with

location parameter λ = 1 and truncated at x = 0.

This modification of the sequential bootstrap enables us to develop a rigorous proof of

the second order correctness in the sequential case. Now let (X1, . . . , Xn) be IID random

variables with mean µ and variance σ2. We assume that X1 is strongly non-lattice, i.e. it

satisfies Cramér’s condition:

(5.10) lim sup
|t|→∞

|E(exp(itX1))| < 1

Let {Yj : j ≥ 1} be a sequence of IID Poisson random variables with mean 1. We now

state three main results, furnishing a rigorous justification for the second order correctness

of the sequential bootstrp. These results follow from conditional Edgeworth expansions for

weighted means of multivariate random vectors (cf Babu, Pathak and Rao, 1999).
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Theorem 5.1. Suppose that E‖X1‖5 < ∞ and that the characteristic function of X1

satisfies Cramér’s condition (5.10). If m− n(1− e−1) is bounded, then

(5.11) P
( 1√

N

n
∑

i=1

(Xi−X̄)Yi ≤ xsn|Tn = m;X1, . . . , Xn

)

−P
( 1√

n

n
∑

i=1

(Xi−E(X1)) ≤ xσ
)

= Op(n
−1)

uniformly in x, given Tn :=
∑n

i=1 I(Yi > 0) = m.

Smooth Functional Model: An extension of Theorem 5.1 to the multivariate case goes

through to statistics which can be expressed as smooth fuctions of multivariate means. Now

let X1, . . . , Xn be a sequence of IID random vectors with mean µ and dispersion matrix Σ.

Let Σn denote the corresponding sample dispersion matrix. Then the following results hold.

Theorem 5.2. Suppose that X1 is strongly non-lattice and E‖X1‖3 < ∞. Let H be

a 3-times continuously differentiable function in a neighborhood of µ. Let l(y) denote the

vector of first-order partial derivatives at y and suppose that l(µ) 6= 0. If m− n(1− e−1) is

bounded, then for almost all sample sequences {Xi : 1 ≤ i ≤ n}, we have

(5.12)
√
n
∣

∣

∣
P
(

√
N(H(N−1

∑n
i=1 XiYi)−H(X̄n))

√

l′(X̄n)Σnl(X̄n)
≤ x|Tn = m;X1, . . . , Xn

)

−P
(

√
n(H(X̄n)−H(µ))
√

l′(µ)Σl(µ)
≤ x

)∣

∣

∣

∞
= o(1)

in which | · |∞ denotes the sup-norm over x.
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The following result is well-suited for applications to studentized statistics.

Theorem 5.3. Let {Xi : 1 ≤ i ≤ n} satisfy the conditions of Theorem 5.2. Suppose that

the function H is 3-times continuously differentiable in the neighborhood of the origin and

H(0) = 0. Ifm−n(1−e−1) is bounded, then for almost all sample sequences {Xi : 1 ≤ i ≤ n},

we have

(5.13)
√
n
∣

∣

∣
P
(

√
N(H(N−1

∑n
i=1(Xi − X̄)Yi))

√

l′(0)Σnl(0)
≤ z|Tn = m;X1, . . . , Xn

)

−P
(

√
n(H(X̄n − µ))
√

l′(0)Σl(0)
≤ z

)∣

∣

∣

∞
= o(1)

For example, an immediate consequence of Theorem 5.3 is the second-order correctness

of the following sequential bootstrap pivot:

(5.14) π̂N =
√
N(

n
∑

i=1

(Xi − X̄)Yj)/sn

given that Tn :=
∑n

i=1 I(Yi > 0) = m.

6. Concluding Remarks

The sequential bootstrap discussed here has its origins in the simple bootstrap of Bradley

Efron and his observation that the information content of the simple bootstrap is supported

on approximately 0.632n of the original data. It is well-known that owing to the with

replacement nature of resampling in the simple bootstrap, the information content of its

bootstrapped sample is a random variable. The sequential bootstrap keeps the informa-

tion content of its bootstrapped samples at 0.632n-level of the original sample size. This

constancy of information in the sequential bootstrap samples ensures homogeneity of infor-

mation and reduces the likelihood of information-deficient samples. The sequential bootstrap
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provides better breakdown points. The empirical characteristics of the sequential bootstrap

are within O(n−3/4) of the simple bootstrap and its second-order correctness goes through

under existing regularity conditions. It is perhaps worthwhile to conclude this article with

a final remark that recent studies in the literature (Pino-Mej́ıas et al. (2010), Pauly (2011)

and others) indicate that the sequential bootstrap is likely to perform better than the sim-

ple bootstrap in small to moderate size samples under a variety of applications commonly

encountered in practice.
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