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Abstract

Detection of clustering and estimation of incidence risks from disease data are im-

portant in public health and epidemiological research. The popular models for disease

risks such as conditional autoregressive (CAR) models assume known spatial depen-

dence structure. Instead, we consider spatial clusters in which areas are geographically

connected. Given spatial clustering idea, we propose a methodology that simultane-

ously estimates disease risks and detects clusters based on different features of the

regression model. The proposed model is flexible in terms of local, regional and global

shrinking and in terms of number of clusters, cluster memberships and cluster loca-

tions. We develop an algorithm based on the reversible jump Markov chain Monte

Carlo (MCMC) method for model estimation. Numerical study shows effectiveness of

the proposed methodology.

Keywords: Disease risk estimation; Hierarchical Bayes modeling; Reversible jump

MCMC; Shrinkage estimation; Spatial Clustering; Spatial regression.
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1 Introduction

Analyzing incidence counts, aggregated over a set of geographically disjoint areas, has been
increasingly popular in public health and in spatial epidemiology. An underlying spatial de-
pendence across the “neighboring” areas often plays an important role in statistical analysis
of these data. We consider disease mapping to estimate relative risks of each study area and
detection of spatial clusters simultaneously in this article. The spatial clusters, determined
by the variation in regression parameters, are of our special interest here. Conventional
clustering techniques are not suitable if we want areas in each cluster to be geographically
connected.

Disease mapping has been proven to be useful to understand disease etiology and has a
long history in epidemiology. The standardized mortality ratio (SMR), the ratio of observed
cases over the expected number of cases, may be a simple statistics to produce disease
maps. Clayton and Kaldor (1987), in their seminal paper, highlighted the drawbacks of
using this simple statistics. The generated map could be seriously misleading particularly
for rare diseases and sparse populations. Clayton and Kaldor (1987) took an empirical
Bayes approach that shrinks the SMR’s towards a local or global mean, where the amount
of shrinkage may depend on local (spatial) and global variability. The statistical models and
methods for disease mapping are well established in the literature. Wakefield (2007) nicely
and critically reviewed well known approaches on disease mapping and spatial regression
in the context of count data. Instead of repeating the literature, we refer this article and
references therein for detail.

Despite the advantages of the models developed in disease mapping literature, most of
them, except Knorr-Held and Raßer (2000), used Markov random field (MRF) to model
the spatial process and fail to acknowledge spatial discontinuity, i.e., unexpected change
in disease risks between adjacent (spatial) areas. This discontinuity is related to unknown
spatial distribution of diseases over contiguous geographical areas. As noted by Knorr-Held
and Raßer (2000), this is also related to the detection of clusters of elevated (or lowered)
risks in diseases. They pointed out the difficulties in detecting discontinuities in the map
using an MRF approach taken by other researchers such as Besag et al. (1991), Clayton and
Bernardinelli (1992) and Mollié (1996).

The discontinuity in high/low disease risk may not reveal the truth when the discontinuity
actually exists in the underlying regression model. As a motivating example, we consider
the county map of the state of Michigan. One objective is to develop a map of lung cancer
risks based on spatial regression. The detail description of the data is given in section 5.
Following the existing methods, e.g. Wakefield (2007), one can develop a spatial regression
model based on a regressor variable, say, poverty rate. In this case, there will be a single
regression surface that represents the whole Michigan. However, if we divide all Michigan
counties into three parts (as seen in Figure 1) such as the upper peninsula (Cluster 1),
the major lower peninsula (Cluster 2) and the northeastern lower peninsula (Cluster 3),
the existence of clusters through the regression lines is clear. Cluster 2 and 3 have similar
regression lines, nearly no difference in their positive slopes and negative intercepts. Different
from Cluster 2 and 3, Cluster 1 has a negative slope and a positive intercept. This shows
the evidence of discontinuities in the disease map but such discontinuity can not be detected
when the usual spatial regression with known underlying spatial process is applied.
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Figure 1: Preliminary Investigation on Michigan Lung Cancer data. Each scatter plot
displays the association of log relative risk vs. poverty rate for each cluster.

To detect the regression discontinuity on a spatial domain, the clustering idea can be
applied. Clustering technique is a fundamental statistical tool for large data analysis and
has a growing literature in recent years. The commonly avaiable techniques, such as K-mean
or mixture model based clustering are not suitable in this context since the cluster members
under these methods need not necessarily be geographically connected. Knorr-Held and
Raßer (2000) first recognized this issue of spatial clustering in the context of disease mapping
and proposed a nonparametric Bayesian method. However, their method could be restrictive
in many applications including ours. For example, their method considered constant disease
risks for all the members in a given cluster, which could lead biased estimates of disease
risks for each study area. Also, they mainly focused on disease risk estimation, although the
work was motivated for cluster detection. On the other hand, we include covariates to reduce
possible bias in the estimates of the disease risks. We like to point out that covariate inclusion
in Knorr-Held - Raßer model is not trivial due to change in the dimension of parameter space
and use of reversible jump MCMC. We also consider cluster specific random effects in the
model, which is similar to the work by Booth et al. (2008). Booth et al. (2008) developed a
regression model based clustering technique, but not in spatial context. Also, their regression
model is not applicable for count data.
Our contribution: We propose a new model for disease risk estimation that takes into account
not only the local or spatial variation, but also the regional or cluster level variation. The
amount of shrinkage depends on local, regional (cluster) and global variation. The spatial
clustering is embedded into the regression model so that no prior assumption on underlying
spatial structure is needed. The system is data-driven and allows different regression models
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in different parts of the map as discontinuities occur.
Our approach is fully Bayesian. A reversible jump Markov chain Monte Carlo (MCMC)

algorithm (Green, 1995) has been adopted suitably in this context. The posterior analysis of
clustering configuration is not clear in MCMC based Bayesian methods. Thus, we develop
innovative methods to obtain the posterior estimate of clustering configuration and model
parameters. The complexity in model parameter estimation due to stochastic clustering
has been handled via two methods (area-wise and cluster-wise). Through the simulation
study, we demonstrate the effectiveness of our method for both estimating the disease risks
and detection of adversely affected clusters. The study also establishes superiority of the
proposed method over the popularly used Poisson-CAR model in this context.

The rest of the paper is organized as follows: Section 2 defines a spatial clustering model
and introduces the cluster specification and the prior distributions. The methods to obtain
the posterior estimates of clustering configuration and model parameters are described in
Section 3. In Section 4, a simulation study is presented. The simulation has two study
designs. Section 5 contains the two real data applications. We conclude our results and
make some remarks in Section 7.

2 The Model and Prior Specification

In this section, we describe a hierarchical model that allows cluster-wise varying regression,
within cluster variation and between cluster variation. The model consists of three compo-
nents: the likelihood for disease count data, the latent process model for log relative disease
risk and the prior specification for clustering and model parameters.

Suppose there are n geographically contiguous areas on the spatial domain of interest.
Let yi be the observed disease incidence/mortality counts, Ei be the expected population
under the risk, xi = (xi1, . . . , xip)

T be the p-dimensional covariate and νi be the log relative
risk at the i-th area for i = 1, · · · , n. Denote y = (y1, . . . , yn)T and ν = (ν1, . . . , νn)T . For the
cluster specification, we denote the cluster partition of the n areas as C = {C1, . . . , Ck} that
consists of k clusters. Denote nj be the number of areas in Cj and Xj be the corresponding
nj × p design matrix whose rows are {xTi : i ∈ Cj}. Note that we observe x and y only
and Ei are given. Also, n is known but k, C and the members in Cj are unknown.

2.1 Likelihood for the count data and the latent model for the log
relative risk

We adopt the Poisson likelihood for y, that is, yi ∼ Poisson(Eie
νi). The yi’s are assumed to

be conditionally independent given ν. Then, the data likelihood is

L(y |ν) =
n∏
i=1

(Eie
νi)yi

yi!
exp(−Eieνi). (1)

We model the log relative risk, ν, with cluster-wise regression coefficients and spatial cluster
random effects. For area i in j-th cluster, Cj, the log relative risk is modeled as

νi = xTi βj + εi + uj, (2)
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where βj = (βj1, . . . , βjp)
T is the regression coefficient and uj is the random effect for Cj.

We assume uj
i.i.d.∼ N(0, σ2) for j = 1, . . . , k. Thus the between cluster variation is σ2. The

ε′is are area specific random effects and are assumed to be
i.i.d.∼ N(0, σ2

j ) for i ∈ Cj. This
makes the area risks different even after eliminating the differences due to covariates. This
also builds shrinkage estimation within a cluster. Unlike common disease mapping models
such as a Poisson-CAR model, the proposed model helps detecting clusters, if any.

Using matrix notations, νj ∼ Nnj
(XT

j βj,Σj), where νj is the vector of {νi : i ∈ Cj}
and Σj = σ2

j Inj
+ σ2Jnj

. Here, Inj
is the nj-dimensional identity matrix and Jnj

is the
nj-dimensional square matrix with all entries as unity. Note that Σj has the following
properties:

Σ−1j =
1

σ2
j

Inj
− σ2

σ2
j (σ

2
j + njσ2)

Jnj
,

det(Σj) =(σ2
j )
nj + njσ

2(σ2
j )
nj−1 = (σ2

j )
nj−1(σ2

j + njσ
2).

(3)

This helps immensely in computing during the implementation since we don’t need to invert
a n dimensional matrix. Thus, the method is applicable from large to very large data set as
long as the maximum cluster size remains moderate. The computational burden per MCMC
iteration reduces from O(n3) to O(n).

The latent model (2) for the log relative risk together with the Poisson likelihood (1)
can be viewed as a generalized linear mixed-effect model (GLMM) for disease count data.
The proposed model allows varying regression coefficients (βj) for different spatial clusters.
The spatial cluster random effect uj captures variability between spatial clusters and the
assumption on εi allows area-specific variability within each cluster.

2.2 Cluster specification and priors

The cluster specification is determined by a prior model. One important feature for clustering
spatial data is that, all the areas in a given cluster should be geographically connected.
This is a necessary requirement for our clustering model. We call this type of clustering
as the spatial clustering. It is also named as the partition in Denison and Holmes (2001).
The spatial clustering configuration is obtained by the minimum distance criterion. For a
given vector of the cluster centers Gk = (g1, . . . , gk), which is a subset containing k distinct
areas, the clusters are formed by assigning each area to the nearest cluster center. In other
words, Cj = {i : d(i, gj) ≤ d(i, gl) for all l 6= j}, where d(i, gj) is the distance between the
area i and the cluster center gj. The distance between two areas, d(i1, i2), can be defined
in two ways. Knorr-Held and Raßer (2000) used the minimal number of boundaries to
cross from area i1 to area i2. The alternative is the Euclidean distance between centroid
coordinates of two areas. Figure 2 shows an example of the spatial clustering configuration
by these two different distance measures on the Michigan map. Each approach has both
advantages and disadvantages: The minimal number of boundaries can be calculated by
using the adjacency matrix only, which is usually available in disease mapping data. However,
unique assignment may not be possible so that the additional scheme is needed. This can
hinder the computational efficiency and the mixing behavior in the Bayesian computation.
On the other hand, it is less likely to be an issue for the latter approach since most disease
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(a) Euclidean distance (b)Minimal number of boundaries

Figure 2: Clustering Configuration Comparison based on two different distance mea-
sures.(Crosses represent the cluster centers)

mapping data have a irregular spatial design. However, the centroid coordinates to represent
the area can be misleading for the aggregated data. We want to hold a neutral opinion on
these two distance definitions and encourage to apply both approaches in practice. In this
paper, the Euclidean distance is used since it performs well on our simulation examples.

Now we introduce a prior model π(C) which is decomposed into the prior for the number
of clusters, k, and the prior for the cluster centers Gk given the number of clusters. That
is, π(C) = π(k)π(Gk|k) (see Green 1995). Here, we follow Knorr-Held and Raßer’s prior
specifications on (k,Gk). A prior model on k is assumed to be proportional to (1 − d)k,
where d ∈ [0, 1) is a constant. When d is small, the prior on k tends to be noninformative.
When d = 0, the prior becomes a uniform distribution over the areas {1, 2, . . . , n}. Knorr-
Held and Raßer (2000) recommended to fix the d that is close to 0. In our case, however, the
choice of d can be sensitive when σ2

j ’s are relatively large. This makes sense since clustering
may be difficult or may not even make sense if the within cluster variability is very high.
Therefore, we introduce an additional hierarchy with a uniform prior on d to avoid the fixed
choice of d. Given the number of clusters, k, the prior for Gk is uniform over all the vectors
of areas, i.e.,

π(Gk | k) =
1(
n
k

)
k!

=
(n− k)!

n!
. (4)

Prior models for other parameters are βj ∼ Np(µj, Vj) for j = 1, . . . , k, σ2 ∼ IG(a, b)
and σ2

j ∼ IG(aj, bj) for j = 1, . . . , k, where IG stands for Inverse Gamma distributions
with the pre-specified shape and scale parameters. Even though a flat prior is common for
βj, the specification of a proper prior is actually crucial in reversible jump MCMC, which
requires relative normalizing constants between different subspaces. The prior mean µj can
be derived from a preliminary regression analysis, and we recommend a simple i.i.d. structure
for Vj with relatively large variance so that the normal prior can be close to noninformative.
Besides the normal prior, the Cauchy prior can also be employed here. For σ2 and σ2

j ,
the choices of a, b, aj’s and bj’s can follow the same idea by matching the mean from the
preliminary regression analysis result and choosing a large variance. As an alternative way
to set the variance-covariance parameters, one can consider the reparametrization of σ2 and

6



σ2
j ’s. For example, let σ2

j = λjσ
2, j = 1, . . . , k. Then one can assume priors on λj’s instead.

As usual, the priors on βj’s, σ
2
j ’s and σ2 are assumed to be independent.

We consider Bayesian computation using the reversible jump MCMC algorithm for esti-
mation. Detail updating steps are given in the Appendix A.

3 Posterior Analysis

Posterior estimation of clustering configuration and corresponding model parameters is chal-
lenging due to the varying structure of clusters at each MCMC iteration. The issue has also
been mentioned by Tadesse et al. (2005) in the discussion section of their paper. Putting
aside as a future research, they made posterior inference conditional on a fixed number of
components. We introduce approximation methods for the posterior estimation and investi-
gate the related properties.

3.1 Clustering configuration

The clustering configuration is uniquely determined by (k,Gk). The posterior estimate of
k can be obtained by the posterior mode, denoted by k̂. However, estimating posterior
distribution of Gk̂ reasonably well, using MCMC samples, may not be feasible since the
number of all possible Gk̂’s is too big. To resolve this issue, we consider a spectral clustering
method. We refer the reader to a recent review article by Elavarasi et al. (2011). The
spectral clustering method includes a group of techniques which makes use of the eigen
structure of a similarity matrix. Among all the MCMC iterations which yield k̂ clusters, we
define a similarity matrix Sn×n as

Sp,q =
number of times areas p and q are in the same cluster

total number of the MCMC iterations
.

Sp,q retains the empirical probability that areas p and q are grouped in the same cluster
based on the MCMC samples. Then, with the spectral clustering algorithm (e.g. Shi-Malik
algorithm (2000), Ng-Jordan-Weiss algorithm (2002) or Kannan-Vempala-Vetta algorithm
(2004)), we can obtain an approximate posterior estimate of the cluster configuration with
k̂ clusters. The spectral clustering method generates the posterior “mean” estimate of the
clustering structure via the pairwise cluster membership linkage with very little additional
computational cost.

With a mild effort, one could easily be convinced with the reasoning of a spectral cluster-
ing algorithm. In Appendix B, we outline the Ng-Jordan-Weiss algorithm adapted for our
similarity matrix and analyze the reasoning under the ideal case where S is block-diagonal.
In more general cases, where the off-diagonal blocks are non-zero, we can study the devi-
ation between the spectral clustering result and the true clustering in the light of matrix
perturbation theory. Ng et al. (2001) gave a theorem of the existence of a “good” spectral
clustering under the certain conditions on eigengap, which we won’t repeat here. Readers
can find details in their paper.
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3.2 Model parameters

The challenge in estimating (βj, σ
2
j ), j = 1, . . . , k, comes from the variation in the number

of clusters in each MCMC iteration. To overcome the issue, we consider the following two
approaches:

M1 Area-wise estimation:
Each area, i, is assigned to one of the clusters at each MCMC iteration so that we
can have posterior samples of β, σ2 for the area i. Then, we can obtain the posterior
estimate of (β, σ2) for each i. This is easy to implement but this approach produces n
sets of posterior estimates for (β, σ2). Although we could have similar values for the
parameter estimates that are in the same cluster, we lose clustering information.

M2 Cluster-wise estimation:
Alternative approach is to make use of the posterior estimate of clustering configu-
ration given in section 3.1. For each MCMC iteration with k̂ clusters, the clustering
configuration may be different from the estimated clustering configuration. Then, we
find a mapping between cluster labels at the given MCMC iteration and cluster labels
at the posterior estimate. Let (β

(l)
j , σ

2(l)
j ) be the parameter sample in the l-th MCMC

iteration. If the mapping assigns the g-th cluster in the posterior estimates for the j-th
cluster in the l-th MCMC iteration, (β

(l)
j , σ

2(l)
j ) is assigned to be a posterior sample

for g-th cluster in the posterior estimate. The mapping procedure is further explained
below with a toy example.

Suppose there are 10 areas in total and the posterior estimate has 3 clusters. For a
particular MCMC iteration (with 3 clusters only), suppose that the cluster memberships are
given as in the Table 1(a). That is, the area 1 is classified into Cluster 1 of the posterior
estimate and Cluster 1 of the MCMC sample, and so on. From such information, we can
create a square matrix to display the number of common areas shared by different pairs of a
posterior cluster and a MCMC sample cluster (Table 1 (b)). Then, the mapping is determined
by the order of values in the matrix in Table 1 (b). Since 3 is highest, cluster 3 in the
MCMC iteration is mapped into the posterior cluster 1. Next highest value after removing
those clusters is 2 so that the cluster 1 is mapped into the posterior cluster 2, etc. The final
mapping of cluster labels from MCMC sample to posterior estimate is (3, 1, 2) → (1, 2, 3),
and parameter values at the MCMC iteration is reordered based on the mapping.

In M2 approach, it may happen that certain posterior samples of model parameters
come from MCMC clusters which don’t share many common areas with the target cluster
in the posterior estimate. Since this may produce a poor estimate, we exclude such samples.
For example, in each posterior cluster, we can calculate the posterior estimates of model
parameters based on the MCMC samples whose cluster shares at least 90% areas in common.

1Three clusters are labeled as 1,2,3 on the row title and column title for MCMC iteration and posterior
estimate respectively.
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Table 1: Illustration of mapping procedure

Area Index 1 2 3 4 5 6 7 8 9 10

Cluster Post’r 1 1 1 1 2 2 2 2 2 3

Labels MCMC 1 3 3 3 1 1 2 3 3 2

Post’r

1 2 3

M
C

M
C 1 1 2 0

2 0 1 1

3 3 2 0

(a) Cluster label example (b) Cluster mapping matrix, L.1

4 Simulation Study

In the simulation study, we validate the performance of the updating steps of the reversible
jump MCMC algorithm based on both the estimation of the clustering configuration and the
log relative risks. Since the Scotland lip cancer data (Clayton and Kaldor, 1987) is a popular
and extensively studied example for disease risk models, we consider two simulation studies
based on the Scotland county configuration which has 56 counties (areas) in total. The first
study is designed to focus on the estimation of the clustering configuration while the second
study is designed to focus on the estimation of the log relative risks. For each simulation
study, we ran 50,000 iterations and the first half was discarded as burn-in period. On a
regular dual-core PC, Matlab spent about 21

4
hours completing 50,000 MCMC iterations for

both designs, which is moderate given a sophisticated algorithm.

4.1 Design I

In Design I, we assume there are 4 clusters with cluser centers at Ross-Cromarty, Aberdeen,
Dumbarton and Tweedale. We consider a covariate xi simulated from N(10, 3). Without
loss of generality, we assume that Ei equals to 1. The parameters β = (β0, β1)

′ are set to be
(−2 log 10, 0.3 log 10), (−2 log 10, 0.5 log 10), (2 log 10, 0.3 log 10) and (2 log 10, 0.5 log 10) for
the 4 clusters, where β0 corresponds to the intercept. Note that any two clusters will have
the same β0 or β1. The range of yi is quite different for each cluster with given (β0, β1). The
variance of within-cluster error, σ2

j , are assumed to be 0.1, 0.2, 0.3 and 0.4, and the between
variance, σ2, is 0.2. The noise level is relatively low so that the differences among clusters
due to the different mean functions are visible.

The posterior distribution of k is given in Figure 3 (a). The posterior mode is k̂ = 5
and the posterior estimate of the clustering configuration is plotted together with the true
clustering in Figure 3 (b) and (c). The posterior estimate of the clustering configuration
is comparable to the true configuration. The deviation happens at the lower right corner,
where a cluster are split into two. Also, the county located at the center is misclassified.

We measure the clustering performance with some similarity statistics. These measures
are also used in Booth et al. (2008). First we create a 2 × 2 table with counts {nij} by
grouping all

(
56
2

)
= 1540 pairs of counties based on whether they are in the same cluster in

the posterior clustering configuration and in the true configuration.
Then, we consider the following statistics:
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Figure 3: Posterior Estimate of Clustering under the simulation Design I.

• the ψ-statistic,

ψ = 1−
(

(n11 − n1+)2

n1+n++

+
(n22 − n2+)2

n2+n++

)
The best performance is when n11 = n1+ and n22 = n2+, then ψ = 1. The worst
performance occurs when n12 = n1+ and n21 = n2+, where ψ = 0.

• Yule’s Q association measure

Q =
n11n22 − n12n21

n11n22 + n12n21

Q has the range of [−1, 1] and the value close to 1 indicates a good clustering perfor-
mance.

• the sensitivity measure n11/n1+:
The sensitivity measure tells the percentage of the county pairs which are correctly
clustered together. The closer to 1 the value is, the better the performance is.

• the specificity measure n22/n2+

The specificity measure tells the percentage of the county pairs which are correctly
seperated. The closer to 1 the value is, the better the performance is.

For Design I, we obtain ψ = 0.9819, Q = 0.9951, sensitivity = 0.7477, specificity =
0.9928. All the values are very close to 1 (indicating good clustering performance), except
for the sensitivity measure. This is the consequence of the extra cluster. When the original
cluster has been splitted into two clusters in the posterior estimate, a number of county
pairs, which originally belong together, will be separated and this leads to the decrease in
the value of sensitivity measure. However, the specificity measure is still very high, which
implies the additional split happens mostly within one original cluster instead of involving
several original clusters.

Figure 4 (a) shows posterior estimates and true νi with 90% credible intervals. The
posterior estimate is calculated by posterior mean. For majority of the counties, the posterior
estimates from the cluster model are close to the true values with very narrow 90% credible
intervals. On Figure 4 (a), most of the credible intervals from cluster model (solid segments)
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Figure 4: 90% Credible Interval Plot for Log Relative Risks under the simulation Designs.
The symbols and segments are grouped according to the true cluster that each county (area)
belongs to. Solid segments represent the credible intervals derived via the cluster model,
while the dot-dash segments represent the ones via the Poisson-CAR model.
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shrink to single vertical segments because of the narrowness. Counties with wide credible
intervals belongs to the cluster 1 with small yi (less than 5). We also fitted the Poisson-
CAR model. The posterior estimates of νi are quite different from the true values and the
credible intervals also fail to capture the true value for most of the counties, except for the
true Cluster 1. All the intervals are generally consistent in their ranges. This is due to the
unified parameter estimation from Poisson-CAR model. Under the setting of an apparent
clustering tendency and a low noise level, one global regression model, such as the Poisson-
CAR model, is unable to provide a flexible and accurate disease risk estimation. To compare
the performance of the two models, we consider the following quantity

RAD =
n∑
i=1

∣∣∣∣ ν̂i,Cluster − νi
νi

∣∣∣∣
/

n∑
i=1

∣∣∣∣ ν̂i,CAR − νi
νi

∣∣∣∣ ,
which is the Ratio of averaged Absolute relative Difference between two models. We have
RAD = 0.000753 for the Design I which indicates that the cluster model performs better for
estimating the log relative risks.

The posterior means for model parameters βj = (β0j, β1j)
′ are plotted in Figure 5. Under

Design I, the difference between the two approaches, area-wise estimation and cluster-
wise estimation, is negligible. This is expected since Design I has quite distinct values of
βj for clusters. Posterior estimates of βj from both approaches are close to the true values.
The estimation of σ2

j (not shown) also behaves similarly and is comparable to the true value.

4.2 Design II

For the second simulation design, we still adopt a 4-cluster design on the Scotland map. We
retain the expected risk Ei and xi from the Scottish Lip cancer data, where xi = PcAFFi/10
are scaled percentages of the work force employed in agriculture, fishing and forestry. By
controlling the level of β, we mimic the real data closely but have different levels so that
clustering tendency exists. We set the model coefficients β = (β0, β1) as (0.41,−0.38),
(0.21,−0.18), (−0.14,−0.18) and (−0.31, 0.38). With the same within- and between-cluster
variance levels as in Design I, the clustering tendency is much weaker in Design II. This
design provides the Poisson-CAR model with a chance to get a better estimation of disease
risks, but poses a greater challenge to our model in cluster detection. The question, we want
to answer via the second simulation is, whether our model can still estimate the log relative
risks well enough in the absence of a strong clustering tendency.

The posterior mode of the number of clusters k is 5 and 90% credible interval is [4, 8] . The
clustering performance measures are given as ψ = 0.8720, Q = 0.5536, sensitivy = 0.3931
and specificity = 0.8431. The ψ and specificity measures show our method is generally good
and separated the majority of the county pairs correctly. But because of the extra cluster
and some misclassifications, the Yule’s Q association and sensitivity measures are not very
satisfactory.

Since the true log relative risks do not show apparent clustering tendency contrast to the
Design I, the posterior estimates from both the cluster model and the Poisson-CAR model
are comparable (Figure 4 (b)). Indeed, the ratio of averaged absolute relative difference
RAD = 0.7117 shows that the cluster model still works better. 90% credible intervals from
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Figure 5: Posterior estimates of βj under the simulation Design I. Left panel shows the
true value; middle panel shows the posterior mean via M1 area-wise estimation; right panel
shows the posterior mean via M2 cluster-wise estimation
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Table 2: Posterior estimates of β1 based on M2 under the simulation Design II

Cluster Posterior Estimate Credible Interval

1 -0.4834 [−1.1250,−0.0796]

2 -0.3145 [−0.8988, 0.1835]

3 -0.2577 [−0.9707, 0.2904]

4 0.1448 [0.1401, 0.1497]

5 0.2056 [0.0025, 0.4854]

the Poisson-CAR model are narrower than those of the cluster model for some counties.
Similar to Design I, these counties have small yi, which is nearly 0 in this case. We found
that the covariate xi are relatively large for those counties. Large xi can amplify a small
change in model parameter estimation into a large change in log relative risk estimation.
Since cluster models allow different values of model parameters for clusters, this may cause
wider credible intervals. On the other hand, we should notice that some of the credible
intervals from the Poisson-CAR model fail to include the true values while the corresponding
cluster intervals don’t. Bayes factor based on the MCMC samples is 27.3145 (Cluster vs.
Poisson-CAR) which indicates that the data strongly support the cluster model over the
Poisson-CAR model. To conclude, our model can still estimate the disease risks reasonably
well even under a weak clustering tendency.

The posterior estimates of model parameters using the area-wise estimation, M1, do
not show clear difference between clusters because of the averaging of estimation between
neighboring clusters. To see whether the cluster model can capture the difference in β1
among clusters, we compare posterior estimates from the cluster-wise estimation, M2 with
the true β1. Table 2 shows posterior estimates of β1 with 90% credible intervals. Note that,
the cluster model can detect a significant positive/negative linear association in Cluster 1,4
and 5. On the other hand, the Poisson-CAR model gives the single estimates for model
parameters as β̂1 = −0.11 with credible interval [−0.35, 0.12], which implies an insignificant
linear association and totally ignores the variation among clusters.

5 Applications

We consider two real data examples in this section. The first one is Michigan lung cancer
data and the second one is Scotland lip cancer data.

5.1 Michigan lung cancer data

Michigan consists of 83 counties, which are divided into upper and lower peninsulas, sepa-
rated by the Great Lakes. Due to the geographical discontinuity, there may exist discrepancy
on various socio-economical and health variables over Michigan counties. Since the simple
correlation between poverty rate and observed SMR of Lung cancer is reasonably high,
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we consider the poverty rate as the covariate for the analysis. We use lung cancer mor-
tality counts from 2001 to 2005 for 83 Michigan counties available at the SEER database
(seer.cancer.gov). The expected counts are calculated by the age-adjusted formula as
provided by Jin, Carlin and Banerjee (2005), and each county’s age distribution is obtained
from U.S. Census 2000. The poverty rate at county level, as the covariate, is obtained from
the SEER database as well.

  Cluster 1
  Cluster 2
  Cluster 3
  Cluster 4
  Cluster 5
  Cluster 6

−1.2959
  1.1020
  2.1031
  2.3717
  2.6182
  2.8477

−0.3097
−0.3077
−0.2370
−0.2155
−0.1360
  0.1437

0.0130
0.0140
0.0160
0.0410

(a) Clustering (b) β1j (c) β0j (d) σ2
j

Figure 6: Estimation results for Michigan lung cancer data.

The estimated clustering structure is given in Figure 6 (a) with 6 clusters. The clustering
configuration coincides with the general picture of Michigan’s economic status:

• Cluster 1: Southwestern metropolitan cluster (e.g., Grand Rapids and Kalamazoo)

• Cluster 2: East lake side/chemical industry cluster (e.g., Midland, Bay City and Sagi-
naw)

• Cluster 3: Upper/lower peninsula conjunction cluster (e.g., Gaylord and Mackinaw
City)

• Cluster 4: Upper peninsula cluster (e.g., Marquette, Crystal Falls and Negaunee)

• Cluster 5: West lake side cluster (e.g., Traverse City and Muskegon)

• Cluster 6: Auto city cluster (e.g., Flint and Detroit)

Figure 7 shows the estimates of relative risks. Compared to the observed SMR (yi/Ei),
the estimates from the cluster model and the Poisson-CAR model are smoothed, which is
expected given the smoothing capability of the models. While two models produce com-
parable relative risk estimates, the estimates of model parameters show clear difference.
The Poisson-CAR model gives a single estimate of β̂1 = 2.03 with 90% credible interval
[0.2574, 3.8105]. The posterior estimates of β1 from the cluster model show distinct features
over clusters (Figure 6 (b)-(d)). For example, the upper peninsula cluster (Cluster 4) has
a negative β1 estimate while the lower peninsula clusters (Cluster 1, 2, 3, 5 and 6) have
positive ones. Table 3 shows the significance of β1 for Cluster 2, 4 and 5. More urbanized
areas (lower peninsula) shows that higher poverty rate leads to an increase in disease risk
while relatively less urbanized areas (upper peninsula) shows the opposite. When comparing
this result with our pre-investigation in Figure 1, the preliminary findings are confirmed.
Further investigation with additional covariates and demographic information on Michigan
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Figure 7: Posterior Estimate of relative risks for Michigan Lung Cancer data

Table 3: Posterior estimates of β1 for Michigan Lung Cancer data

Cluster Posterior Estimate Credible Interval

1 2.6182 [−0.1938, 3.7009]

2 2.3717 [0.4878, 4.1826]

3 2.1031 [−1.1920, 3.9449]

4 -1.2959 [−4.7095,−0.3792]

5 2.8477 [0.5525, 4.7126]

6 1.1020 [−0.1163, 2.2716]

counties is necessary to find thorough reasoning on this discrepancy. One explanation for
this apparent contradiction could be due to the fact that the upper peninsula has casinos
and people smoke lot more compared to other parts of Michigan. Had we factor in smoking
into our regression model, the scenario could have been different. Another clue we can look
at is, the correlation between poverty rate and observed log relative risk is -0.4840 for the
upper peninsula cluster, which is in accord with the negative slope estimate.

Note that the single estimate from the Poisson-CAR model ignores the underlying differ-
ences in different areas. The posterior estimation of β0 (not shown) shows a similar pattern,
which is positive in the upper peninsula cluster but negative in the lower peninsula clusters.
This reveals, when there is a very low poverty rate, the log relative risk of lung cancer is
higher in upper peninsula than in lower peninsula.

The DIC values show the cluster model is better than the Poisson-CAR model (Clus-
ter=719.3 and CAR=733.8). Also the Bayes factor 746.3 (Cluster vs. CAR) shows a strong
support to the cluster model.

5.2 Scotland lip cancer data

The Scotland lip cancer data consists of the observed counts and expected counts of the lip
cancer cases from 1975 to 1980 in each of its 56 counties. The covariate is xi = PcAFFi/10,
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Figure 8: Estimation results for Scotland lip cancer data.

where PcAFFi are the percentages of the work force employed in agriculture, fishing and
forestry. The posterior mode is k = 5 with 90% credible interval [4, 8]. The 5-cluster posterior
estimate is given in Figure 8 (a). The estimation of relative risks (not shown) indicates that
there is not much difference between the cluster model and the Poisson-CAR model. The
model parameter estimates based on the Poisson-CAR model are β̂1 = 0.38([0.16, 0.58]),
β̂0 = −0.31([−0.95, 0.38]), where the numbers in the brackets are 90% credible intervals. The
estimates from the Poisson-CAR model shows a significant positive linear association between
the log relative risks and the covariate. Figure 8 (b)-(d) shows the posterior estimates
of model parameters using cluster-wise estimation M2 for the cluster model. Unlike the
single estimate obtained by the Poisson-CAR model, the cluster model is able to detect the
differences of model parameters across the clusters. For example, β̂0 for southern Scotland
is mainly negative while being positive for northern Scotland. The southeastern Scotland
tends to have a higher noise level than the rest. Although the general pattern on β̂1 shows
positiveness, we can see a stronger linear association in southeastern Scotland and a weaker
linear association in middle southern part. Table 4 gives the posterior estimates of β1 with
90% credible interval from which we can see a significant positive linear relationship in two
clusters (Cluster 1 and 2). The DIC values are not quite different between the cluster model
and Poisson-CAR model. And the Bayes factor (Cluster vs. CAR) equals to 11.4, which

Table 4: Posterior estimates of β1 for Lip Cancer data

Cluster Posterior Estimate Credible Interval

1 0.7350 [0.1998, 1.1469]

2 0.5601 [0.2733, 0.7975]

3 0.0718 [−0.7607, 0.3758]

4 0.4305 [−0.3538, 1.2129]

5 0.3762 [−0.3223, 0.7996]
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indicates a slight preference to the cluster model.

6 Conclusions and Discussions

The model we proposed in this article can perform the dual tasks of spatial clustering detec-
tion and regression on the log relative risks in an interactive manner. The discontinuity in
the regression modeling will guide the clustering. On the other hand, the spatial clustering
structure will improve the knowledge of similarity and dissimilarity of regression models on
different areas. Through the simulation study, we successfully showed the effectiveness of
our cluster model in the estimation of both clustering structure and log relative risks when
a strong clustering tendency presents. Even under a weak clustering setting, our model can
still provide a superior estimation of the disease risks over the Poisson-CAR model.

The model design can also be changed based on the research question of interest. The
model we described in this paper is a “full” model in the sense that it allows the cluster-wise
variation in all the cluster-specific model parameters, slope β1j, intercept β0j, and within-
cluster noise level σ2

j . Such comprehensive design enables dynamic values in the estimation
of log relative risks to capture the disease mapping discontinuities. If the main goal is
to obtain a good disease risk estimation, we recommend the use of the “full” model. On
the other hand, the clustering result contains mixed information as a consequence. The
spatial clustering is actually due to the differences in the combination of model parameters
(β0j, β1j, σ

2
j ), instead of just any single parameter. If the research question cares more about

the clustering structure induced by partial model parameters, we can alternatively redesign
a “reduced” model correspondingly. For example, if we want to obtain the spatial clustering
induced by the difference in slope β1 only, the “reduced” model we can design is as follow:

yi|νi
indep.∼ Poisson(Eie

νi)

νi = β0 + xiβ1j + uj + εi for ∀i ∈ Cj

uj
i.i.d∼ N(0, σ2

1) and εi
i.i.d.∼ N(0, σ2

2) i = 1, 2, . . . , n, j = 1, 2, . . . , k

As we can see, the variations of the intercept and the within-cluster noise level are eliminated
from the “full” model in the “reduced” model. Under this redesigned model, the spatial
clustering result will be purely determined by the dissimilarity in slope only. However, it
does also pose an effect on the disease risk estimation because it loses certain flexibilities.
Generally speaking, it is a trade-off relation between the spatial clustering determined by
concrete information and the delicate estimation of disease risks. The model developed in
Knorr-Held and Raßer (2000) is a special “reduced” model under the “full” model. In our
model description, one can easily include multiple covariates.
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A Reversible jump MCMC algorithm

Due to the clustering structure, the dimension of the parameter space in our hierarchical
model changes along with the number of the clusters k. Green (1995) proposed a reversible
jump MCMC which can handle the dimension changing problem. To fulfill the dimension-
matching requirement, the auxiliary variable(s) are generated. The acceptance probability
α is formulated in the following format

α = min(1,L ×A× P × J ), (5)

where L is the likelihood ratio, A is the prior ratio, P is the proposal ratio for the augmenting
variable(s), and J is the Jacobian for the change of parameters.

We consider five update steps: Birth Step that adds one more cluster, Death Step that re-
moves one cluster, Latent Step that updates ν, Parameter Step that updates (β1, . . . , βk, σ

2
1, . . . , σ

2
k, σ

2)
and Shift Step that improves the mixing behavior. Birth Step and Death Step involve
dimension-chaning updates.

A.1 Birth Step

Suppose we have k clusters at the current stage with Gk = (g1, . . . , gk) as the cluster centers.
The Birth Step includes the following components:

(1) Determine a new cluster center by uniformly select one area from the (n − k) areas
which are not cluster centers. Insert the new cluster center into Gk to form the Gk+1

by uniformly select one position among the (k + 1) positions. Then, a new cluster
partition will been formed via the minimum distance criterion. We denote the extra
cluster as C∗.

(2) Generate the parameters (β∗, σ2
∗) for C∗. Denote the number of areas, the design

matrix, the response vector, the variance-covariance matrix and the log relative risks
in the new cluster C∗ as n∗, X∗, y∗, Σ∗ and ν∗ respectively. And the priors are
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β∗ ∼ Np(µ
∗, V ∗), σ2

∗ ∼ IG(a∗, b∗). The joint proposal density is

f(β∗, σ2
∗ |ν∗, σ2) ∝

1

(σ2
∗)

(n∗−1)/2 ·
1

(σ2
∗ + n∗σ2)1/2

exp

(
−1

2
(ν∗ −X∗′β∗)′Σ∗−1(ν∗ −X∗′β∗)

)
× exp

(
−1

2
(β∗ − µ∗)′V ∗−1(β∗ − µ∗)

)(
1

σ2
∗

)a∗+1

exp

(
− b
∗

σ2
∗

) (6)

We can generate (β∗, σ2
∗) in a hierarchical way. First, use the Greedy-Grid search to

generate σ2
∗ from the following density:

f(σ2
∗|ν∗, σ2) ∝(

1

σ2
∗

)a∗+(n∗+1)/2

exp

(
− b
∗

σ2
∗

)
· 1

(σ2
∗ + n∗σ2)1/2

· 1

det (A)1/2
· exp

(
−1

2
R +

1

2
B′A−1B

)
where

A = X∗Σ∗−1X∗′ + V ∗−1

B = X∗Σ∗−1ν∗ + V ∗−1µ∗

R = ν∗′Σ∗−1ν∗ + µ∗′V ∗−1µ∗

Then we can generate β∗ from the following Gaussian density with additionally condi-
tioning on σ2

∗: β
∗|σ2
∗,ν

∗, σ2 ∼ Np(A
−1B,A−1).

(3) Update the log relative risks in C∗. Let’s denote the updated log relative risks in the
new cluster C∗ as ν̃∗. The proposal density is

f(ν̃∗|y∗, β∗, σ2
∗, σ

2) ∝ exp

(
−1

2
(ν̃∗ −X∗′β∗)′Σ∗−1(ν̃∗ −X∗′β∗)

)
exp

(∑
i∈C∗

yiν̃i −
∑
i∈C∗

Eie
ν̃i

)

Here, we approximate eν̃i by its Taylor expansion up to the second order around the log
relative risk value in the previous iteration νi, i.e. eν̃i ≈ eνi+(ν̃i−νi)eνi+ 1

2
(ν̃i−νi)2eνi =

(eνi − νieνi)ν̃i +
(
1
2
eνi
)
ν̃2i + c, where c is a constant free of ν̃i. Alternatively, one can

follow the idea of the Laplace approximation by expanding around the mode. In the
algorithm, it needs an extra step to search for the mode, for example via the penalized
iterative least squares (PIRLS) algorithm presented in Bates (2011b). For an efficient
algorithm design, we prefer the former expansion. Then, the proposal density to obtain
the updated value ν̃∗ is given by

ν̃∗|y∗, β∗, σ2
∗, σ

2 ∼ Nn∗((Σ∗−1 +Q∗)−1(Σ∗−1X∗′β∗ + P ∗), (Σ∗−1 +Q∗)−1) (7)

where P ∗ is a n∗-dimensional vector with the entries of {yi − Eieνi + Eiνie
νi : i ∈ C∗}

and the Q∗ is a n∗ × n∗ diagonal matrix with the diagonal entries as {Eieνi : i ∈ C∗}.
For convention, we denote the log relative risks of all areas in the previous iteration
(i.e. before the update) as ν and those after the update as ν̃. From the description of
the updating procedure, it’s clear that the only differences between ν and ν̃ are the
log relative risks in the new cluster C∗.
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(4) Calculate the acceptance probability α. In the birth step, the state transits from
(k,Gk,θk) to (k + 1, Gk+1,θk+1) where θk = (ν, β1, . . . , βk, σ

2, σ2
1, . . . , σ

2
k) and θk+1 =

(ν̃, β1, . . . , βk, β
∗, σ2, σ2

1, . . . , σ
2
k, σ

2
∗). By taking the auxiliary variables U = (β∗, σ2

∗, ν̃
∗)

and U∗ = ν∗, the invertible deterministic function qk,k+1(θk,U) = (θk+1,U
∗) main-

tains the dimensionality during the Markov chain transition.

Based on the format in equation (5), we have the likelihood ratio

L =
L(y|k + 1, Gk+1,θk+1)

L(y|k,Gk,θk)
=
∏
i∈C∗

exp [(ν̃i − νi)yi − Ei(eν̃i − eνi)],

the prior ratio

A =
π(k + 1, Gk+1,θk+1)

π(k,Gk,θk)

=
π(k + 1)

π(k)

π(Gk+1|k + 1)

π(Gk|k)

p(ν̃|k + 1, Gk+1,θk+1)

p(ν|k,Gk,θk)
π(β∗)π(σ2

∗)

=
1− d
n− k

· p(ν̃|k + 1, Gk+1,θk+1)

p(ν|k,Gk,θk)
π(β∗)π(σ2

∗), and

the proposal ratio

P =
g(k,Gk|k + 1, Gk+1)h(u∗|k + 1, Gk+1,θk+1, k, Gk)

g(k + 1, Gk+1|k,Gk)h(u|k,Gk,θk, k + 1, Gk+1)

= (n− k)
P (Death Step)

P (Birth Step)

1

f(β∗, σ2
∗|ν∗, σ2)

pν̃∗(ν∗)

pν∗(ν̃∗)
,

where f(β∗, σ2
∗|ν∗, σ2) is given by equation (6) and p.(·) is the density of the multivariate

normal distribution in (7).

The Jacobian is

J = |J| =

∣∣∣∣∣ dqk,k+1(θ,u)

d(θ,u)

∣∣∣∣
(θ,u)=(θk,U)

∣∣∣∣∣ = 1.

A.2 Death Step

In the Death Step, the status moves from (k+ 1, Gk+1,θk+1) to (k,Gk,θk). Following proce-
dures are involved in this step.

(1) A discrete unform random variable j over {1, . . . , k + 1} is generated to determine
the cluster center gj and the corresponding βj and σ2

j which will be removed. Then
the cluster Cj disappears and is merged to the rest of the k clusters according to the
minimum distance criterion.

(2) Update νj = {νi : i ∈ Cj}. Note that entries in νj are reassigned to one of remaining
clusters. Thus, we update νj with new cluster membership. Let νj(i) denote the subset
of νj that is merged into Ci for i = 1, . . . , j − 1, j + 1, . . . , k + 1. Without loss of
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generality, we assume νj(i) is non-empty. The updated value is denoted as ν̃j(i). The
size of νj(i), the design matrix, the response vector are denoted as nj(i), Xj(i), yj(i)
respectively. Then, we have

ν̃j(i)|νi, βi, σ2
i , σ

2 ∼ N(µ,Σ),

where µ = X ′j(i)βi + Σ21Σ
−1
11 (νi −X ′iβi) and Σ = Σ22 − Σ21Σ

−1
11 Σ12 with Σ11 = σ2

i Ini
+

σ2Jni
, Σ12 = σ2Jni×nj(i)

, Σ21 = σ2Jnj(i)×ni
.

Similar to (7), the proposal density is given by

ν̃j(i)|yj(i), βi, σ2
i , σ

2 ∼ Nnj(i)
((Σ

−1
+Qj(i))

−1(Σ
−1
µ+ Pj(i)), (Σ

−1
+Qj(i))

−1)

where P and Q matrices have the same definitions as before.

(3) The acceptance probability α is the reciprocal of the one in the Birth Step.

A.3 Latent Step and Parameter Step

In the Latent Step, we update the ν. Eventually, we update ν values in each cluster inde-
pendently based on the proposal density given by (7). Furthermore, when we determine the
acceptance probability, we also do it cluster-wisely. The cluster-wise operation can help us
improve the convergence performance of the MCMC algorithm. The acceptance probability
for the Cj is

α = min(1,L · A · P)

where the likelihood ratio L remains the same as before, and the prior ratio A and the
proposal ratio P are

A =
p(ν̃j|βj, σ2, σ2

j , k, Gk)

p(νj|βj, σ2, σ2
j , k, Gk)

, P =
pν̃j(νj)

pνj(ν̃j)

(β1, . . . , βk, σ
2
1, . . . , σ

2
k, σ

2) are updated in the Parameter Step. A hybrid Gibbs sampling
can be applied here via the following proposals. For j = 1, . . . , k,

βj|· ∼ Np(A
−1
j Bj, A

−1
j )

where Aj = XjΣ
−1
j X ′j + V −1j and Bj = XjΣ

−1
j νj + V −1j µj

σ2
j |· ∝

(
1

σ2
j

)nj−1

2
+aj+1

exp

(
− 1

σ2
j

[
1

2
(Nj −X ′jβj)′(Nj −X ′jβj) + bj

])
· 1

(σ2
j + njσ2)1/2

exp

(
σ2

2σ2
j (σ

2
j + njσ2)

(Nj −X ′jβj)′Jnj
(Nj −X ′jβj)

)
and

σ2|· ∝
(

1

σ2

)a+1

exp

(
− b

σ2

)
·

k∏
j=1

1

(σ2
j + njσ2)

1
2

exp

(
σ2

2σ2
j (σ

2
j + njσ2)

(Nj −X ′jβj)′Jnj
(Nj −X ′jβj)

)
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Since the proposal densities for σ2
j and σ2 are not from the known distributions, we

consider the Greedy-grid sampling algorithm.
Also, we update d from the posterior density of d which depends only on k.

A.4 Shift Step

As noted in Knorr-Held and Raßer (2000), moving one cluster center to its neighborhood
can improve the mixing performance of the MCMC.

(1) Suppose we have k clusters at the current stage. Among the k cluster centers, there are
n(Gk) of them having at least one neighborhood who is not a cluster center. Choose
one cluster center uniformly out of the n(Gk) cluster centers, and denote it as gj.
Suppose gj has m(gj) neighborhood areas who are not cluster centers. Then choose
one area uniformly out of the m(gj) areas as the new cluster center g∗j to replace the

original gj in Gk. Denote the new set of the cluster centers as G̃k. Note that, even
though the order of the cluster centers is not changed, (k, G̃k) may still determine a
different cluster partition via the minimum distance criterion.

(2) The acceptance probability α is

α = min(1,L · A · P)

The likelihood ratio L = 1. The prior ratio is

A =
π(k, G̃k,θk)

π(k,Gk,θk)
=
p(ν|k, G̃k, β1, . . . , βk, σ

2, σ2
1, . . . , σ

2
k)

p(ν|k,Gk, β1, . . . , βk, σ2, σ2
1, . . . , σ

2
k)
,

and the proposal ratio is

P =
g(k,Gk|k, G̃k)

g(k, G̃k|k,Gk)
=
n(Gk)m(gj)

n(G̃k)m(g∗j )
.

B Adapted Ng-Jordan-Weiss algorithm and analysis

under the ideal situation

B.1 Adapted Ng-Jordan-Weiss algorithm

Suppose we want to obtain k clusters on n areas. Sn×n is the similarity matrix defined in
Section 3.1. The algorithm contains the following steps:

1. Define D as a diagonal matrix whose ith diagonal entry is the sum of S’s ith row.
Then create the matrix L = D−

1
2SD−

1
2 .

2. Find the k largest eigenvalues of L and stack the corresponding eigenvectors in columns
to form a matrix. When there are duplicate eigenvalues, choose the eigenvectors to
be orthogonal to each other. Normalize each row of the matrix to have unit length.
Denote the finalized matrix as X ∈ Rn×k.
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3. Treat each row of X as a point inRk, and cluster them into k clusters via K-means. The
cluster assignment of each row indicates the clustering membership of the respective
area.

B.2 Analysis of algorithm under ideal situation

For simplicity of discussion, let’s assume the first n1 areas belong to Cluster 1, the next n2

areas belong to Cluster 2 and so on. The ideal situation occurs when

Sp,q =

{
1 if area p and q belong to the same cluster

0 otherwise

Then

S =


S11 0

. . .

0 Skk

 and D =


D11 0

. . .

0 Dkk


where Sii is ni × ni matrix with all entries as 1 and Dii is ni × ni diagonal matrix with all
diagonal entries as ni, i = 1, . . . , k.

L = D−
1
2SD−

1
2 =


L11 0

. . .

0 Lkk


with Lii = n−1i Sii.

For the block-diagonal matrix L, the set of its eigenvalues is the union of the eigenvalues
of each block matrix Lii. Also, It is easy to see that the eigenvalues of Lii are 1 and (ni− 1)
0’s. Therefore, the k largest eigenvalues of L are k 1’s. Then X = [x1x2 . . . xk] where xi ∈ Rn

is defined as a vector of zeroes except that the entries at between (
∑i−1

j=1 nj+1) and (
∑i

j=1 nj)
are 1 for i = 1, . . . , k.

With the nice and discrete form of X, the final step k-means will yield the true clustering
for the algorithm.

25




