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Abstract

This paper discusses some tests of lack-of-fit of a parametric regression model when

errors form a long memory moving average process with the long memory parameter

0 < d < 1/2, and when design is non-random and uniform on [0, 1]. These tests

are based on certain minimized distances between a nonparametric regression function

estimator and the parametric model being fitted. The paper investigates the asymptotic

null distribution of the proposed test statistics and of the corresponding minimum

distance estimators under minimal conditions on the model being fitted. The limiting

distribution of these statistics are Gaussian for 0 < d < 1/4 and non-Gaussian for

1/4 < d < 1/2. We also discuss the consistency of these tests against a fixed alternative.

1 Introduction

A stochastic process is said to have long memory if its lag k auto-covariances decay to

zero like k−θ, for some 0 < θ < 1. Long memory processes have been found to arise in

a variety of physical and social sciences, see, e.g. Beran (1994), Dehling, Mikosch, and

Sørensen (2002), Doukhan, Oppenheim and Taqqu (2003), Robinson (2003), Giraitis, Koul

and Surgailis (2012), and references therein.

Suppose (Xi, Yi), i = 1, · · · , n, are observed from the regression model

Yi = µ(Xi) + εi, i = 1, 2, · · · , n,(1.1)

where the design process Xi is a p ≥ 1 dimensional random vector, µ is a real valued

function and where the errors εi form a long memory moving average process, i.e., for some

0 < d < 1/2 and c0 6= 0,

εi :=

∞
∑

j=0

αjζi−j, αk ∼ c0 k
−(1−d), as k → ∞.(1.2)
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The innovations ζi are assumed to be i.i.d standardized random variables. These assumptions

imply long-memory decay of the covariance of εi:

(1.3) γj := Eε0εj ∼ c1j
−(1−2d), j → ∞, c1 := c20B(d, 1− 2d),

where B(a, b) :=
∫ 1

0
ua−1(1− u)b−1du, a > 0, b > 0.

In this paper we are interested in the classical problem of lack-of-fit testing of a parametric

regression model when errors have long memory. Under the assumption of independent errors

this problem has been well studied, cf., Hart (1997), Koul and Ni (2002), and Koul (2011).

Not much is available in the literature under long memory errors. Kolmogorov-Smirnov

type test based on a marked empirical process of residuals was analyzed in Koul, Baillie,

and Surgailis (2004) and Guo and Koul (2007). One of the difficulty this process faces is

that to fit a linear regression model with a non-zero intercept one must analyze the second

order approximation to this process, and the weak limit thus obtained has non-trackable

distribution. It is thus highly desirable to investigate tests that overcome this problem.

In this paper we propose a class of such tests based on certain minimized distances in a

regression model with non-random design.

We shall confine our attention to the case where p = 1, Xi = i/n, i = 1, · · · , n, i.e., now

our model is

Yi = µ(i/n) + εi,(1.4)

where εi are as in (1.2). Let hj , j = 1, · · · , q, be continuous functions on [0, 1], and let

H := (h1, · · · , hq)′. Consider the problem of testing

H0 : µ(x) = θ′0H(x), for some θ0 ∈ R
q, and for all x ∈ [0, 1], vs.

H1 : H0 is not true.

The main reason for focusing on this relatively simpler problem, compared to fitting a more

general nonlinear parametric model and with possibly non-random design, is to keep the

exposition from becoming obscure and at the same time for illustrating the new challenges

presented by having long memory errors.

To describe the class of tests for this problem, let K be a probability density kernel

function on [−1, 1], vanishing off (−1, 1), and b ≡ bn be a deterministic bandwidth sequence.

Let g be a probability densities on [0, 1] and define,

Mn(θ) :=

∫ 1

0

[ 1

nb

n
∑

j=1

K
(nx− j

nb

)(

Yj − θ′H
( j

n

)

)]2

g(x)dx,(1.5)

θ̂n := argminθ∈RqMn(θ).
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In the next section we shall discuss asymptotic distribution of θ̂n and Mn(θ̂n). Under

suitable conditions it turns out the limiting distribution of n1/2−d(θ̂n − θ0) under H0 is

Gaussian for all values of 0 < d < 1/2. The description of the limiting distribution of

Mn(θ̂n) is more complicated. For some sequence ℓn of real numbers, see (2.8) below, the

limiting null distribution of n1/2(nb)1/2−2dMn(θ̂n) − b−1/2ℓn is standard Gaussian, while for

1/4 < d < 1/2, the limiting null distribution of n1−2dMn(θ̂n)− b2d−1ℓn is non-Gaussian.

Koul (2011) investigated the above problem in the case of i.i.d. errors. It was shown that

for some sequences τn > 0 and νn > 0, the asymptotic null distribution of τn(Mn(θ̂n) − νn)

is Gaussian. The entities τn, νn depend on some unknown parameters. It is further shown

in the same paper that for some suitable estimators, τ̂n, ν̂n, the limiting null distribution of

Dn := τ̂−1
n (Mn(θ̂n)− ν̂n) is also standard normal. The test is then based on Dn. One could

proceed similarly here, i.e., we could plug in an estimate of ℓn and d and hope to obtain

similar results. Because of the long memory set up things get complicated quickly. Instead we

use the idea of symmetrizing the statisticMn as follows. Let g1, g2 be two distinct probability

densities on [0, 1] and define Mni and θ̂ni as Mn and θ̂n, with g replaced by gi, i = 1, 2. Then

the proposed tests are based on the difference ∆Mn :=Mn1(θ̂n1)−Mn2(θ̂n2).

Limiting null distributions of Mn(θ̂n), θ̂n and ∆Mn are described in Theorem 2.1, Corol-

lary 2.1, and Theorem 2.2, respectively. Theorem 2.3 discusses the asymptotic behavior

of ∆Mn under some alternatives, including fixed alternatives, which in turn helps to prove

consistency of these tests. All proofs are deferred to the last section.

2 Main results

In this section we shall discuss asymptotic distributions of θ̂n,Mn(θ̂n), and ∆Mn. To proceed

further, let

Hn(x) :=
1

nb

n
∑

j=1

K
(nx− j

nb

)

H
( j

n

)

, 0 ≤ x ≤ 1,

Σn :=

∫

Hn(x)Hn(x)
′g(x)dx, Σ :=

∫

H(x)H(x)′g(x)dx.

Here, and in the sequel, all limits are taken as n→ ∞, unless specified otherwise; for any two

sequence of real numbers an, bn tending to infinity, an ∼ bn, means that limn→∞ an/bn = 1;

N (µ, σ2) denote the normal distribution with mean µ and variance σ2; and →D denotes the

convergence in distribution.

We need to assume the following about g, K, H and the window width sequence b.

g are Lipschitz continuous probability densities on [0, 1].(2.1)

Σn and Σ are positive definite for all n ≥ q.(2.2)
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K is an even Lipschitz continuous probability density with support [−1, 1].(2.3)

b→ 0, nb → ∞.(2.4)

Note that (2.1) - (2.3), b→ 0 and continuity of H imply

∫

‖Hn(x)−H(x)‖2g(x)dx→ 0, Σn → Σ.(2.5)

Let θ0 be as in H0, and let

Un(x) :=
1

nb

n
∑

j=1

K(
nx− j

nb
)εj, Sn :=

∫

Un(x)Hn(x)g(x)dx.(2.6)

Note that Mn(θ0) =
∫

U2
n(x) g(x) dx and

Mn(θ) =

∫

[Un(x)− (θ − θ0)
′Hn(x)]

2g(x)dx

=

∫

U2
n(x) g(x) dx− 2(θ − θ0)

′Sn + (θ − θ0)
′Σn(θ − θ0), θ ∈ R

q.

Hence, in view of (2.2),

θ̂n − θ0 = Σ−1
n Sn, Mn(θ̂n) = Mn(θ0)− S ′

nΣ
−1
n Sn, ∀n ≥ q.(2.7)

Let

K∗(z) :=

∫

K(x)K(z + x)dx, K∗∗(z) :=

∫

K∗(x)K∗(z + x)dx.

Note that K∗ and K∗∗ are nonnegative even probability densities with supports [−2, 2] and

[−4, 4], respectively. Also denote ‖g‖2 =
∫ 1

0
g2dx and τα+ := ταI(τ > 0) (τ, α ∈ R). Introduce

(2.8) ℓn :=
1

nb

∞
∑

j=−∞

(nb)1−2dγjK∗

( j

nb

)

.

Note that (1.3) and nb→ ∞ imply that

(2.9) lim
n→∞

ℓn = ℓ(c0, d) := c1

∫

|z|−(1−2d)K∗(z)dz,

where c1 = c20B(d, 1− 2d) is the asymptotic constant in (1.2).

Theorem 2.1 Let εi be a long memory moving average process as in (1.2) with standardized

i.i.d. innovations having finite fourth moment, and suppose assumptions (2.1) to (2.4) hold.

Then the following holds.
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(i) For 0 < d < 1/4,

n1/2(nb)1/2−2dMn(θ̂n)− b−1/2ℓn →D N (0, σ2(c0, d)),

where

σ2(c0, d) := 2c21(2B(2d, 1− 4d) +B(2d, 2d))‖g‖2
∫

|z|4d−1K∗∗(z)dz.(2.10)

(ii) For 1/4 < d < 1/2,

n1−2dMn(θ̂n)− b2d−1ℓn →D W(c0, d) := W(2) − Z ′Σ−1Z,

where

W(2) := c20

∫

R2

W (dx1)W (dx2)

∫ 1

0

g(τ)(τ − x1)
d−1
+ (τ − x2)

d−1
+ dτ,(2.11)

Z := c0

∫

R

W (dx)

∫ 1

0

g(τ)H(τ)(τ − x)d−1
+ dτ,

are stochastic Itô-Wiener integrals with respect to Gaussian white noise W (dx) with zero

mean and variance dx. In particularly, random vector Z has a Gaussian distribution with

mean 0 and covariance

EZZ ′ = c20B(d, 1− 2d)

∫ 1

0

∫ 1

0

g(τ1)g(τ2)H(τ1)H(τ2)
′|τ1 − τ2|

2d−1dτ1dτ2.(2.12)

From the proof of Theorem 2.1 (see (3.4)) and (2.7), the following statement is immediate.

Corollary 2.1 Under the conditions of Theorem 2.1, n1/2−d(θ̂n − θ0) →D Σ−1Z, for all

0 < d < 1/2, where Z is a Gaussian vector with zero mean and covariance matrix as in

(2.12).

Remark 2.1 (i) The case d = 1/4 is open. We expect that in this case, the asymptotic

distribution of Mn(θ̂n) is Gaussian under a normalization that includes an additional loga-

rithmic factor.

(ii) The limit r.v. W(c0, d) in Theorem 2.1(ii) is non-Gaussian, the r.v.’s W(2) and Z ′Σ−1Z

being correlated. In particularly, EW(2) = 0 and

Var(W(2)) = 2c40B(d, 1− 2d)2
∫ 1

0

∫ 1

0

g(τ1)g(τ2)|τ1 − τ2|
2(2d−1)dτ1dτ2.

A natural idea for implementing the lack-of-fit tests based on Theorem 2.1 is to replace

ℓn by ℓ(c0, d) of (2.9). Then, the corresponding limit distributions of Mn(θ̂n) would be

completely determined by parameters c0 and d which can be estimated in principle from the
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residuals ε̂i = Yi− θ̂′nH(i/n), 1 ≤ i ≤ n. However, because of the presence of asymptotically

divergent factors b−1/2 and b2d−1 in front of ℓn in both cases (i) and (ii), this procedure

requires additional assumptions on the convergence rate in (2.9), which in turn leads to

severe restrictions on the bandwidth especially when d is close to 0. Moreover, the critical

regions obtained in such a way might be very sensitive to the estimation error of these

parameters, resulting in a poor empirical size of these tests.

In order to overcome the above difficulties, we shall now propose a test based on the

difference of two minimized dispersions:

∆Mn := Mn1(θ̂n1)−Mn2(θ̂n2).(2.13)

Here, Mni(θ) is the dispersion (1.5) with g replace by gi, θ̂ni := argminθ∈RqMni(θ) is the

corresponding estimator of θ, i = 1, 2, and (g1, g2), g1 6≡ g2 is a given pair of probability

densities on [0, 1]. Let

Σni :=

∫

Hn(x)Hn(x)
′gi(x)dx, Σi :=

∫

H(x)H(x)′gi(x)dx

and assume for i = 1, 2 that

gi are Lipschitz continuous probability densities on [0, 1].(2.14)

Σni and Σi are positive definite for all n ≥ q.(2.15)

The following Theorem 2.2 shows that for the difference of two minimized dispersions in

(2.13), the asymptotic bias terms containing ℓn cancel out, which is what can be expected

from Theorem 2.1 since ℓn (2.8) does not depend on g. The proof of Theorem 2.2 largely

repeats that of Theorem 2.1, with few changes.

Theorem 2.2 Suppose assumptions (2.3), (2.4), (2.14), and (2.15) hold, and that εi are as

in Theorem 2.1. Then the following results hold.

(i) For 0 < d < 1/4,

n1/2(nb)1/2−2d∆Mn →D N (0, σ2
∆(c0, d)),

where

σ2
∆(c0, d) := 2c21{2B(2d, 1− 4d) +B(2d, 2d)}‖g1 − g2‖

2

∫

|z|4d−1K∗∗(z)dz.(2.16)

(ii) For 1/4 < d < 1/2,

n1−2d∆Mn →D W∆(c0, d) := (W(2)
1 −W(2)

2 )−
(

Z ′
1Σ

−1
1 Z1 − Z ′

2Σ
−1
2 Z2

)

,

where W(2)
i , Zi are defined as in (2.11) with g replaced by gi, i = 1, 2.
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From part (i) of the above theorem, in the case of 0 < d < 1/4, we have an asymptotically

distribution free test as follows. Let θ̄n := (θ̂n1+θ̂n2)/2. Let d̂ be a log(n)-consistent estimator

of d and ĉ0 be a consistent estimator of c0 under H0, based on Yi− θ̄′nH(i/n), 1 ≤ i ≤ n. Let

σ̂2
n := σ2

∆(ĉ0, d̂). Then, for an 0 < α < 1, the test that rejects H0 whenever

n1/2(nb)1/2−2d̂
∣

∣∆Mn

∣

∣

/

σ̂n > zα/2,

is of the asymptotic size α, where zα is the upper (1 − α)100% percentile of the N (0, 1)

distribution. The situation is far from standard in the case 1/4 < d < 1/2.

Finally, we discuss the consistency of the ∆Mn test against a class of alternatives. To

this end, let

(2.17) κn :=







n−1/2(nb)2d−1/2, 0 < d < 1/4,

n2d−1, 1/4 < d < 1/2,

so that ∆Mn = Op(κn) is the convergence rate of ∆Mn under the null hypothesis.

Theorem 2.3 Let µn(x), x ∈ [0, 1], n ≥ 1 be a sequence of continuous functions in L2[0, 1]

such that

(2.18) ∆ni := inf
θ∈Rq

∫ 1

0

(µn(x)− θ′H(x))2gi(x)dx > 0, ∀n ≥ 1, i = 1, 2.

Let ∆n := ∆n1 −∆n2, and θ0ni := infθ∈Rq

∫ 1

0
(µn(x)− θ′H(x))2gi(x)dx, i = 1, 2.

Suppose the assumptions of Theorem 2.2 and the regression model (1.4) hold with µ ≡ µn.

Moreover, assume that there exist real sequences δni and continuous functions ψi such that

(2.19) µn(x)− θ′0niH(x) = δniψi(x), x ∈ [0, 1]

and

(2.20) δ2ni = O(∆n), i = 1, 2.

Then

(2.21) ∆Mn = ∆n +Op(κn),

where κn is defined at (2.17).

Note that in the case of fixed alternative µ(x) (independent of n) and such that with

θ0i := argminθ∈Rq

∫ 1

0
(µ(x)− θ′H(x))2gi(x)dx, i = 1, 2,

∆ =

∫ 1

0

(µ(x)− θ′01H(x))2g1dx−

∫ 1

0

(µ(x)− θ′02H(x))2g2dx 6= 0,
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conditions (2.19) and (2.20) are automatically satisfied with δni ≡ 1, implying

∆Mn = ∆+Op(κn) = ∆ + op(1).

This together with the fact κn → 0 in turn implies the consistency of the ∆Mn test against

the fixed alternatives µ(x) with ∆ 6= 0, for all 0 < d < 1/2.

Example. q = 1, H(x) = x, µ(x) = x2. We get for i = 1, 2

θ̂ni =

∫ 1

0

[

1
nb

∑n
j=1K(nx−j

n
)(( j

n
)2 + εj)

][

1
nb

∑n
j=1K(nx−j

n
)( j
n
)
]

gi(x)dx
∫ 1

0

[

1
nb

∑n
j=1K(nx−j

n
)( j
n
)
]2
gi(x)dx

,

Mni(θ̂ni) =

∫ 1

0

[ 1

nb

n
∑

j=1

K(
nx− j

n
)((

j

n
)2 + εj)

]2
gi(x)dx

−

{ ∫ 1

0

[

1
nb

∑n
j=1K(nx−j

n
)(( j

n
)2 + εj)

][

1
nb

∑n
j=1K(nx−j

n
)( j
n
)
]

gi(x)dx
}2

∫ 1

0

[

1
nb

∑n
j=1K(nx−j

n
)( j
n
)
]2
gi(x)dx

.

Clearly, as n→ ∞ for each i = 1, 2

Mni(θ̂ni) →

∫ 1

0

x4gi(x)dx−

{ ∫ 1

0
x3 gi(x)dx

}2

∫ 1

0
x2gi(x)dx

.(2.22)

It is also clear that for any i = 1, 2 µ(x) can be written as

µ(x) = x2 = θix+ ψi(x),

where

(2.23) θi =

∫ 1

0
x3gidx

∫ 1

0
x2gidx

, ψi(x) = x2 − θix = x2 − x

∫ 1

0
x3gidx

∫ 1

0
x2gidx

satisfy
∫ 1

0
xψi(x)gi(x)dx = 0. We see that (2.22) can be rewritten as

Mni(θ̂ni) →

∫ 1

0

ψ2
i (x)gi(x)dx.(2.24)

and hence

∆Mn =Mn1(θ̂n1)−Mn2(θ̂n2) →

∫ 1

0

(ψ2
1(x)g1(x)− ψ2

2(x)g2(x))dx(2.25)

completely in agreement with (2.21). Clearly, θi, ψi in (2.23) depend on gi although µ(x) = x2

is fixed alternative and does not depend on i.
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3 Proof of Theorems 2.1 - 2.3

Proof of Theorem 2.1. Recall the decomposition of Mn(θ̂n) in (2.7). Theorem 2.1 follows

from (2.7) and relations below:

(nb)1−2dEMn(θ0) = ℓn +O(b),(3.1)

n1/2(nb)1/2−2d(Mn(θ0)−EMn(θ0)) →D N (0, σ2(c0, d)), 0 < d < 1/4,(3.2)

n1−2d(Mn(θ0)−EMn(θ0)) →D W(2), 1/4 < d < 1/2,(3.3)

n1/2−dSn →D Z, 0 < d < 1/2,(3.4)

and the joint convergence

(

n1−2d(Mn(θ0)− EMn(θ0)), n
1/2−dSn

)

→D (W(2), Z), 1/4 < d < 1/2.(3.5)

Indeed, if 0 < d < 1/4, then n1/2(nb)1/2−2dS ′
nΣ

−1
n Sn = Op(b

1/2−2d) = op(1) according to

(3.4), implying n1/2(nb)1/2−2dMn(θ̂n) = n1/2(nb)1/2−2dEMn(θ0) + n1/2(nb)1/2−2d(Mn(θ0) −

EMn(θ0)) + op(1) and the statement of the theorem follows from (3.1) and (3.2). In the

case 1/4 < d < 1/2, we have n1−2dEMn(θ0) = b2d−1ℓn + o(1) by (3.1) and the statement of

Theorem 2.1 obviously follows from (2.7) and (3.5).

Proof of Theorem 2.2. Write

(3.6) ∆Mn = Qn −
(

S ′
n1Σ

−1
n1Sn1 − S ′

n2Σ
−1
n2Sn2

)

,

where

(3.7) Qn :=
(

Mn1(θ0)−Mn2(θ0)
)

=

∫ 1

0

U2
n(x)(g1(x)− g2(x))dx,

Un is defined in (2.6) and Sni are defined as in (2.6) with g replaced by gi. Similarly as

above, Theorem 2.2 follows from (3.6) and relations below:

(nb)1−2dEQn = O(b),(3.8)

n1/2(nb)1/2−2d(Qn −EQn) →D N (0, σ2
∆(c0, d)), 0 < d < 1/4,(3.9)

n1−2d(Qn −EQn) →D W(2)
∆ , 1/4 < d < 1/2,(3.10)

n1/2−dSni →D Zi, i = 1, 2, 0 < d < 1/2,(3.11)

and the joint convergence

(

n1−2d(Qn −EQn), n
1/2−dSn1, n

1/2−dSn2
)

→D (W(2)
∆ , Z1, Z2), 1/4 < d < 1/2.(3.12)

Here, (3.8) is immediate from (3.1), while (3.9)-(3.12) are analogous to (3.2)-(3.5) and we

omit the details. This concludes the proof of Theorem 2.2.
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Proof of Theorem 2.3. Define

Ψni(x) :=
1

nb

n
∑

j=1

K
(nx− j

nb

)

ψi
( j

n

)

,

Ũni(x) := Un(x) + δniΨni(x), S̃ni :=

∫ 1

0

Ũni(x)Hn(x)gi(x)dx, i = 1, 2.

Following the decomposition in (3.6), we have ∆Mn = Q̃n − R̃n, where

(3.13) Q̃n :=

∫ 1

0

(Ũ2
n1(x)g1(x)− Ũ2

n2(x)g2(x))dx, R̃n := S̃ ′
n1Σ

−1
n1 S̃n1 − S̃ ′

n2Σ
−1
n2 S̃n2.

From (3.11) and
∫ 1

0
ψiHgidx = 0 we have that S̃ni = Sni + δni

∫ 1

0
Ψni(x)Hn(x)gi(x)dx =

Op(n
d−1/2) + o(δni) and therefore

(3.14) R̃n = Op(n
2d−1) + o(δ2n1 + δ2n2).

Next, Q̃n = Qn + Jn + 2Ln, where Qn is defined in (3.7) and

Jn :=

∫ 1

0

(δ2n1Ψ
2
n1(x)g1(x)−δ

2
n2Ψ

2
n2(x)g2(x))dx, Ln :=

∫ 1

0

Un(x)(δn1Ψn1(x)−δn2Ψn2(x))dx.

We have with δnψ as in (2.21) that

Jn = δnψ + o(δ2n1 + δ2n2), Ln = Op((|δn1|+ |δn2|)n
d−1/2),(3.15)

where the last relation follows similarly to (3.11). The statement (2.21) of Theorem 2.3

now follows by combining (3.14), (3.14), (2.20) and using the facts that Qn = Op(κn) and

n2d−1 = O(κn).

The proof of the technical facts (3.1)-(3.5) used in the above proofs is presented in

subsections 3.1-3.3. Before it, let us give a heuristic argument explaining the normalization

and the limit distribution in (3.2) and (3.3). Let m = nb be an integer, m → ∞, m = o(n).

By ‘discretizing’ Mn(θ0) we can write

Mn(θ0) ≈
1

n

n
∑

t=1

g
( t

n

)

( 1

m

n
∑

j=1

K
(t− j

m

)

εj

)2

= m2d−1
(m

n

)

∑

τ= 1

m
, 2
m
,··· , n

m

g
(

τ
m

n

)(

Ym(τ)
)2 1

m

≈ m2d−1
(m

n

)

∫ n
m

0

g
(

τ
m

n

)(

Ym(τ)
)2
dτ,

where

Ym(τ) :=
1

m1/2+d

n
∑

j=1

K
(

τ −
j

m

)

εj

10



is a linear process in continuous time τ ∈ R. Using the moving average representation of εj

in (1.2) and the asymptotics of its coefficients, it is easy to show that

Ym(τ) →FDD Y(τ),

where

Y(τ) := c0

∫

K(τ − u)dBd(u) =

∫

(

∫

K(τ − u)(u− x)
−(1−d)
+ du

)

W (dx)

is a stationary Gaussian process in τ ∈ R, with zero mean, given by stochastic integral with

respect to Gaussian white noise W (dx) as in Theorem 2.1. Let us note that the process

Bd(τ) :=

∫

(

∫ τ

0

(u− x)
−(1−d)
+ du

)

W (dx), τ ∈ R

is a fractional Brownian motion with variance EB2
d(τ) = B(d, 1− 2d)τ 1+2d (see, e.g., Taqqu

(2003)). The covariance of Y equals

EY(0)Y(τ) = c20

∫ ∫

K(−u)K(τ − v)dudv

∫

(u− x)
−(1−d)
+ (v − x)

−(1−d)
+ dx

= c20B(d, 1− 2d)

∫ ∫

K(−u)K(τ − v)|u− v|−(1−2d)dudv

= c1

∫

K∗(y)|y − τ |−(1−2d)dy,

with c1 given in (1.3), and hence it decays as τ−(1−2d) meaning that the covariance of the

squared Gaussian process,
(

Y
)2
, decays as τ−2(1−2d), and hence it is integrable on the real

line for 0 < d < 1/4 and nonintegrable for 1/4 < d < 1/2. Since

Mn(θ0)−EMn(θ0) ≈ m2d−1
(m

n

)

∫ n
m

0

g
(

τ
m

n

)

[

(

Y(τ)
)2

−E
(

Y(τ)
)2
]

dτ(3.16)

according to approximations above, one can expect that the limit distribution of Mn(θ0) −

EMn(θ0) coincides with that of the integral on the right-hand side of (3.16). This is true

indeed and the limit distribution of the right-hand side of (3.16) can be obtained by using

usual techniques for subordinated Gaussian processes (see, e.g., Giraitis and Surgailis (1985),

Giraitis et al. (2012)), and coincides with the limits in (3.2)-(3.3). However, a rigorous

justification of the approximation in (3.16) in the case 0 < d < 1/4 is difficult and in the

proof of (3.2) we use a different approach based on finite-memory approximations and a

central limit theorem for m−dependent r.v.’s.

3.1 Proof of (3.1)

We have

(3.17) Mn(θ0) =

n
∑

k,j=1

wjkεjεk,

11



where

wjk :=
1

(nb)2

∫

K
(nx− j

nb

)

K
(nx− k

nb

)

g(x)dx(3.18)

=
1

n2b

∫

K(z)K
(

z +
k − j

nb

)

g
(

bz +
k

n

)

dz.

Introduce

w̃jk :=
1

n2b
K∗

(k − j

nb

)

g
(k

n

)

, M̃n(θ0) :=

n
∑

k,j=1

w̃jkεjεk.(3.19)

Then, using Lipschitz condition for g and the fact that |γu| = |Eε0εu| ≤ C|u|2d−1, we obtain

(nb)1−2d|EMn(θ0)− EM̃n(θ0)|

=
1

n

∣

∣

∣

∣

n
∑

k=1

1

nb

n−k
∑

u=1−k

[(nb)1−2dγu]

∫

K(z)K
(

z +
u

nb

)

[

g
(

bz +
k

n

)

− g
(k

n

)

]

dz

∣

∣

∣

∣

≤ (Cb)
1

nb

∑

|u|≤2(nb)

[(nb)1−2dγu] = O(b).(3.20)

Next, (nb)1−2dEM̃n(θ0) = Jn1 + Jn2, where

Jn1 :=
(1

n

n
∑

k=1

g
(k

n

))

ℓn = ℓn +O(1/n),(3.21)

|Jn2| ≤
1

n

n
∑

k=1

g
(k

n

) 1

nb

∑

u 6∈[1−k,n−k]

(nb)1−2d|γu|K∗

( u

nb

)

≤
1

n

∑

k:|k−1|≤2nb or |k−n|≤2nb

1

nb

∑

|u|≤2(nb)

(nb)1−2d|γu| = O(b)(3.22)

similarly as above. Now, (3.1) follows from (3.20), (3.21) and (3.22).

3.2 Proof of (3.2)

Let us first prove the asymptotics of the variance:

Var(Mn(θ0)) ∼ (nb)−(1−4d)n−1σ2(c0, d),(3.23)

with σ2(c0, d) given in (2.10). Let Wts :=
∑n

k,j=1wjkαj−sαk−t, with wjk as in (3.18). Note

wjk = wkj and Wts = Wst. Since Mn(θ0) =
∑

t,sWtsζtζs, see (3.17), is a quadratic form in

standardized i.i.d. r.v.’s ζt’s, so

Var(Mn(θ0)) = 2
∑

t,s

W 2
ts + (κ4 + 1)

∑

t

W 2
tt,(3.24)

12



where κ4 = Cum4(ζ0) is the fourth cumulant. Relation (3.23) for 0 < d < 1/4 follows from

∑

t,s

W 2
ts ∼ (nb)−(1−4d)n−1c(d)

∫

|z|4d−1K∗∗(z)dz,(3.25)

∑

t

W 2
tt = o

(

(nb)−(1−4d)n−1
)

,(3.26)

where c(d) := c21(2B(2d, 1− 4d) +B(2d, 2d))‖g‖2.

Let us prove (3.26). Using |wjk| ≤ C(n2b)−11(|k− j| ≤ 2nb) and
∑

s |αsαt+s| ≤ C|t|2d−1
+ ,

we obtain

∑

t

W 2
tt =

∑

t

(

n
∑

k,j=1

wjkαj−tαk−t

)2

≤
C

n2(nb)2

n
∑

k=1

∑

t

∑

k′

∑

|u|≤2nb, |u′|≤2nb

|αk−tαk+u−tαk′−tαk′+u′−t|

≤
C

n(nb)2

∑

|u|≤2nb, |u′|≤2nb

|u|2d−1
+ |u′|2d−1

+

≤
C(nb)4d−2

n
,

thereby proving (3.26).

Consider (3.25). Write

n(nb)1−4d
∑

t,s

W 2
ts = (nb)1−4dn

n
∑

k,k′=1

γk−k′
n

∑

j,j′=1

wj,kwj′,k′γj−j′

=
1

nb

∑

|t|<n

(nb)1−2dγt
∑

|t+z|<n

1

nb
(nb)1−2dγt+z(3.27)

×
1

nb

∑

u

∫ ∫

K(x)K
(

x+
u

nb

)

K(y)K
(

y +
u+ z

nb

)

dxdy

×
1

n

∑

k

†
g
(

bx+
k

n

)

g
(

by +
k − t

n

)

,

where the sum
∑†

k is taken over all k ∈ {1, 2, · · · , n} such that k−t ∈ {1, 2, · · · , n}. Consider

the limit of the above sum as

(3.28) t/nb→ τ, z/nb → ν, u/nb→ η, k/n→ s

13



and n→ ∞, b→ 0, nb→ ∞. We claim that the last limit is

c21

∫

|τ |2d−1dτ

∫

|τ + ν|2d−1dν

×

∫

dη

∫ ∫

K(x)K(x + η)K(y)K(y + η + ν)dxdy

∫ 1

0

g2(s)ds

= c21‖g‖
2

∫

K∗∗(ν)dν

∫

|τ |2d−1|τ + ν|2d−1dτ

= c(d)

∫

|ν|4d−1K∗∗(ν)dν,(3.29)

with c(d) as in (3.25). To rigorously show (3.29), we use the dominated convergence theorem

and rewrite the right-hand side of (3.27) as

(nb)1−4dn
∑

t,s

W 2
ts =

1

(nb)3n

∑

|t/nb|≤1/b,|(t+z)/nb|≤1/b,|u/nb|≤2,|k/n|≤1

Gn(t/nb, z/nb, u/nb, k/n)

with

Gn(t/nb, z/nb, u/nb, k/n) → c21|τ |
2d−1|τ + ν|2d−1g2(s)

×

∫ ∫

K(x)K(x+ η)K(y)K(y + η + ν)dxdy

in the limit (3.28), and then check the dominated bound

|Gn(t/nb, z/nb, u/nb, k/n)| ≤ Ḡ(t/nb, z/nb, u/nb, k/n),(3.30)

with

(3.31) Ḡ(τ, ν, η, s) :=
C

|τ |1−2d|τ + ν|1−2d

an integrable function:
∫

R
dτ

∫ 2

−2
dν

∫ 2

−2
dη

∫ 1

0
dsḠ(τ, ν, η, s) < ∞, due to 0 < d < 1/4.

Verification of the last equality in (3.29), viz.

∫

|τ |2d−1|τ + ν|2d−1dτ = (2B(2d, 1− 4d) +B(2d, 2d))|ν|4d−1,

reduces to the case ν = 1, by writing

I :=
∫∞

−∞
|τ |2d−1|τ + 1|2d−1dτ = 2I1 + I2,

I1 :=
∫∞

0
τ 2d−1(τ + 1)2d−1dτ, I2 :=

∫ 1

0
τ 2d−1(1− τ)2d−1dτ,

where I1 = B(2d, 1− 4d) and I2 = B(2d, 2d) (see e.g. Gradstein and Ryzhik (1962)).

Next, we turn to the central limit theorem in (3.2). It is possible that this result follows

also from the central limit theorem for quadratic forms in Bhansali, Kokoszka and Giraitis

14



(2006), however, we were not able to verify the conditions on the kernel in the last paper.

To prove (3.2), we approximate Qn :=Mn(θ0) by a quadratic form Qn,L in Lnb−dependent

r.v.’s, with L < ∞ large enough, for which the result follows by a central limit theorem for

finitely dependent triangular arrays. To this end, let

(3.32) αj,L := αjI(0 ≤ j ≤ Lnb), εt,L :=
∞
∑

j=0

αj,Lζt−j, Qn,L :=
n

∑

k,j=1

wjkεj,Lεk,L.

We will prove that

lim
L→∞

lim sup
n→∞

n(nb)1−4dVar(Qn −Qn,L) = 0(3.33)

and that, for any L <∞, there exists a CL(d) <∞ such that, as n→ ∞, nb→ ∞, b→ 0,

Var(Qn,L) ∼ (nb)−(1−4d)n−1CL(d),(3.34)

n1/2(nb)1/2−2d(Qn,L − EQn,L) →D N (0, CL(d)).(3.35)

These facts entail (3.2). Indeed, let

Un := n1/2(nb)1/2−2d(Qn − EQn) and Un,L := n1/2(nb)1/2−2d(Qn,L −EQn,L).

Then the difference of characteristic functions can be estimated as |EeiaUn − e−a
2C2(d)/2| ≤

|EeiaUn,L − e−a
2C2

L
(d)/2| + |EeiaUn − EeiaUn,L| + |e−a

2C2(d)/2 − e−a
2C2

L
(d)/2| =: J1 + J2 + J3,

where J1 = o(1) as n → ∞ for any L fixed, by (3.35), and J2 ≤ |θ|
√

Var(Un − Un,L) can

be made arbitrarily small by (3.33), by letting first n → ∞ and then L → ∞. Relation

J3 → 0 (L → ∞), or limL→∞C2
L(d) = C2(d), is a consequence of (3.33) and the Cauchy-

Schwarz inequality.

Let us prove (3.33). Let Wts,L :=
∑n

j,k=1wjkαj−s,Lαk−t,L. Similarly to (3.24), Var(Qn −

Qn,L) ≤ C
∑

t,s(Wts −Wts,L)
2. Also introduce

(3.36) ε̃t,L := εt − εt,L, γ̃t,L := Eε̃0,Lε̃t,L, γt,L := Eε0,Lεt,L.

Then

∑

t,s

(Wts −Wts,L)
2 ≤ 2

n
∑

j,k,j′,k′=1

wjkwj′k′|γj−j′γ̃k−k′,L|+ 2

n
∑

j,k,j′,k′=1

wjkwj′k′|γj−j′,Lγ̃k−k′,L|

=: 2Rn1 + 2Rn2.

Note, by definitions (3.32) and (3.36), that |γt,L| ≤ Ct2d−1(t ≥ 1) and |γ̃t,L| ≤ δ̃(L)t2d−1 (t ≥

nb), with δ̃(L) → 0 (L → ∞. Using these facts and similarly to the proof of (3.29) above,

we can show that

lim
L→∞

lim sup
n→∞

n(nb)1−4d
(

|Rn1|+ |Rn2|
)

= 0.
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This proves (3.33).

Let us prove (3.35). For simplicity, assume that m := nb and ℓ := 1/b are integers. Then,

m, ℓ→ ∞, m = o(n), ℓ = o(n). Let

(3.37) Ũn,L := ℓ−1/2
ℓ

∑

i=1

g
(

i
m

n

)

ξmi,L,

where

ξmi,L := m−1−2d

im
∑

k=(i−1)m+1

∑

j:|j−k|≤2m

K∗

(k − j

m

)

(εj,Lεk,L −Eεj,Lεk,L),

i = 1, · · · , ℓ. It is easy to check that E(Un,L − Ũn,L)
2 = O(1/ℓ) = o(1) and therefore it

suffices to show (3.35) for normalized sum Ũn,L in (3.37). Note that, for fixed n,m and L, the

sequence g
(

im
n

)

ξmi,L, i ∈ Z is (L+ 2)−dependent (and has zero mean). Orey (1958) proved

that for such sequences, asymptotic normality follows from a Lindeberg-type condition, viz.

max
1≤i≤ℓ

g
(

i
m

n

)2
Eξ2mi,LI

(
∣

∣g
(

i
m

n

)

ξmi,L
∣

∣ > uℓ1/2
)

= o(1) for any u > 0.

Since g is bounded, and r.v.’s ξmi,L, i ∈ Z are identically distributed, the above fact follows

from

Eξ2m0,LI(|ξm0,L| > uℓ1/2) = o(1) for any u > 0.(3.38)

To show (3.38), we shall verify the existence of the limit distribution:

(3.39) ξm0,L →D ξL and Eξ2m0,L → Eξ2L, m→ ∞.

Using Skorohod’s theorem, the r.v.’s in (3.39) can be defined on the same probability space

so that they converge in probability:

(3.40) ξm0,L →p ξL and Eξ2m0,L → Eξ2L, m→ ∞.

Since ξ2m0,LI(|ξm0,L| > uℓ1/2) = op(1), relation (3.38) follows from (3.40) and Pratt’s lemma

(Pratt (1960)).

Let us prove (3.39). To this end, rewrite ξm0,L as a ‘discrete stochastic integral’:

ξm0,L =
∑

t,s∈Z

( ζt
m1/2

ζs
m1/2

−E
ζt
m1/2

ζs
m1/2

)

×
1

m

m
∑

k=1

1

m

n
∑

j=1

K∗

(k − j

m

)

(αk−t,L
md−1

)(αk−s,L
md−1

)

;
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see Giraitis et al. (2012, sec. 14.3), Surgailis (2003). Using the definition and asymptotics

of the truncated moving average coefficients αj,L and Surgailis (2003, Prop. 3.2), it can be

easily shown that the above sum converges in distribution to a r.v. ξL given by the double

Itô-Wiener integral:

ξL = c20

∫ ∫

W (dx)W (dy)

∫ 1

0

∫

K∗(u− v)(u− x)d−1
L (v − y)d−1

L dudv,

where yd−1
L := yd−1I(0 < y < L). This proves (3.23) and (3.2).

3.3 Proofs of (3.3), (3.4), and (3.5)

The proofs of (3.3)-(3.5) follow a similar ‘scheme of discrete stochastic integral’ as in (3.39).

Let us start with the simplest relation, (3.4). Let S̃n :=
∑n

j,k=1 w̃jkεkH(j/n), where w̃jk are

defined in (3.19). Similarly as in the proof of (3.1) we can show that it suffices to prove

(3.4) for S̃n instead of Sn =
∑n

j,k=1wjkεkH(j/n). Next, rewrite S̃n as a ‘discrete stochastic

integral’:

n1/2−dS̃n =
∑

s∈Z

(ζs/n
1/2)hn1(s), with

hn1(x) :=
1

n

n
∑

k=1

g
(k

n

)(αk−[nx]

nd−1

) 1

nb

n
∑

j=1

K∗

(k − j

nb

)

H
( j

nb

)

, x ∈ R.

The convergence n1/2−dS̃n →D Z, with Z in (2.11), follows from Giraitis et al. (2012, Prop.

14.3.2) and the fact that the integrand

(3.41) hn1(x) → h1(x) := c0

∫ 1

0

g(u)H(u)(u− x)d−1
+ du, in L2(R),

where h1 is the integrand of the limit stochastic integral Z, see (2.11). The proof of (3.41)

is elementary by the dominated convergence theorem. This proves the convergence in (3.4),

for any 0 < d < 1/2.

Let us prove (3.3). Again, it is convenient to first approximateQn by Q̃n :=
∑n

j,k=1 w̃jkεkεj,

with w̃jk as in (3.19). Let us show (3.3) for Q̃n instead of Qn and the convergence

(3.42) n2−4dVar(Q̃n) → Var(W(2)),

with the limit variance given in (2.13). To this end, rewrite the normalized quadratic form,

Q̃n, as a ’double discrete stochastic integral’:

n1−2d(Q̃n − EQ̃n) =
∑

t,s∈Z

( ζt
n1/2

ζs
n1/2

− E
ζt
n1/2

ζs
n1/2

)

hn2(t, s), with

hn2(x, y) :=
1

n

n
∑

k=1

g
(k

n

) 1

nb

n
∑

j=1

K∗

(k − j

nb

) (αk−[nx]

nd−1

)(αj−[ny]

nd−1

)

, (x, y) ∈ R
2.

17



Since

(3.43) hn2(x, y) → h2(x, y) := c20

∫ 1

0

g(u)(u− x)d−1
+ g(u)(u− y)d−1

+ du, in L2(R2),

where h2 is the integrand of the double integral W(2) (see (2.11)), from Giraitis et al. (2012,

Prop. 14.3.2) we obtain

n1−2d(Q̃n − EQ̃n) →D W(2) and n2−4dVar(Q̃n) → Var(W(2)).

The proof of (3.43) uses the dominated convergence theorem and the asymptotics of αk in

(1.2). The above relations extend from Q̃n to Qn using Lipschitz continuity of g as in the

proof of (3.1). This proves (3.3). Finally, the joint convergence in (3.5) follows from (3.41),

(3.43) and Giraitis et al. (2012, Prop. 14.3.3). This ends the proof of Theorem 2.1.
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