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Abstract

This paper addresses the problem of fitting a known distribution function to the

marginal error distribution of a stationary long memory moving average random field

observed on increasing ν-dimensional “cubic” domains when its mean is known and

unknown. In the case of unknown mean, when mean is estimated by the sample mean,

the first order difference between the residual empirical and null distribution functions

is asymptotically degenerate at zero, and hence can not be used to fit a distribution up

to an unknown mean. In this paper we show that by using a suitable class of estimators

of the mean, this first order degeneracy does not occur. In a similar context, we obtain

the asymptotic chi-square distribution of some test statistics based on kernel density

estimators. The paper extends the recent results of Koul, Mimoto, and Surgailis (2013)

from ν = 1 to ν > 1. As a by-product, we define consistent estimators of the long run

variance and memory parameters of our spatial model which may have independent

interest.

1 Introduction

Spatial statistics and data analysis has become a fast developing area of research. See the

monographs of Ripley (1988), Ivanov and Leonenko (1989), Cressie (1993), Guyon (1995),

and Stein (1999). While many of these works deal with rather simple autoregressive and

point process models with short-range dependence, a number of empirical studies ranging

from astrophysics to agriculture and atmospheric sciences indicate that spatial data may

exhibit nonsummable correlations and strong dependence, see, e.g., Kashyap and Lapsa

(1988), Gneiting (2000), Percival et al. (2008) and Carlos-Davila et al. (1985), among

others.
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Many of the applied works assume Gaussian random field model, which raises the ques-

tion of goodness-of-fit testing. In the case of i.i.d. observations, the goodness-of-fit testing

problem has been well studied, see, e.g., Durbin (1973, 1975), and D’Agostino and Stephens

(1986), among others. Koul and Surgailis (2010) and Koul, Mimoto, and Surgailis (2013)

discussed the problem of fitting a known distribution function to the marginal error distri-

bution of a stationary long memory moving average time series when its mean µ is known

and unknown. In particular, Koul et al. (2013) provided a class of weighted least squares

estimators of µ for which the weak limit of the first order difference between the residual

empirical and null distribution functions is a non-degenerate Gaussian distribution, yielding

a simple Kolmogorov-type test for fitting a known distribution up to an unknown mean. In

the same context, the latter paper also obtained the asymptotic chi-square distribution of

test statistics based on integrated square difference between kernel type estimators of the

marginal density of long memory moving averages with discrete time t ∈ Z := {0,±1, · · · }
and the expected value of the error density estimator based on errors.

The aim of the present paper is to extend the results of Koul et al. (2013) to spatial

observations. Specifically, we consider a moving average random field

Xt =
∑

s∈Zν

bt−sζs, t ∈ Z
ν ,(1.1)

indexed by points of ν-dimensional lattice Z
ν := {0,±1,±2, . . .}ν , ν = 1, 2, · · · , where

{ζs, s ∈ Z
ν} are i.i.d.r.v.’s with zero mean and unit variance. The moving-average coef-

ficients {bt, t ∈ Z
ν} satisfy

bt =
(
B0(t/|t|) + o(1)

)
|t|−(ν−d), t ∈ Z

ν \ {0}, for some 0 < d < ν/2,(1.2)

as |t| → ∞, where B0(x), x ∈ Sν−1 := {y ∈ R
ν : |y| = 1} is a bounded piece-wise continuous

function on the unit sphere Sν−1. The series in (1.1) converges in mean square and defines

a stationary random field {Xt} with EX0 = 0 and

(1.3) Cov(X0, Xt) ∼ R0(t/|t|)|t|−(ν−2d), as |t| → ∞,

where R0 is a strictly positive and continuous function on Sν−1 defined in (4.10) below, see

Proposition 4.4. Since, for 0 < d < ν/2,
∑

t∈Zν\{0} |t|−(ν−2d) = ∞, the random field {Xt} has

long memory. Let

(1.4) An := [1, n]ν ∩ Z
ν and X̄n := n−ν

∑

t∈An

Xt

be the sample mean of {Xt} observed on the ν-dimensional cube, An. Then

(1.5) Var(X̄n) ∼ c(1)n2d−ν and
nν/2−dX̄n√

c(1)
→D Z,
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where

c(1) :=

∫

[0,1]ν

∫

[0,1]ν
R0

( u− v

|u− v|
) dudv

|u− v|ν−2d
.

Here, and in the sequel, Z denotes a N (0, 1) r.v., →D stands for the convergence in distri-

bution, and →p stands for the convergence in probability. For a proof of the above facts,

see, e.g., Surgailis (1982).

Now, let F and f denote the marginal distribution and density functions of X0 and F0

be a known distribution function (d.f.) with density f0. The problem of interest is to test

the hypothesis

H0 : F = F0 vs. H1 : F 6= F0.

A motivation for this problem is that often in practice one uses inference procedures that are

valid under the assumption of {Xt} being a Gaussian field. The rejection of this hypothesis

would cast some doubt about the validity of such inference procedures.

Now, define

F̂n(x) := n−ν
∑

t∈An

I(Xt ≤ x), x ∈ R, θ := (c(1), d)′, ‖f0‖∞ := sup
x∈R

f0(x).

A test of H0 is the Kolmogorov-Smirnov test based on Dn := supx∈R |F̂n(x) − F0(x)|. The
limit distribution of the empirical process F̂n for long memory moving-average observations

{Xt} with one dimensional time t ∈ Z was studied in Giraitis, Koul, and Surgailis (1996),

Ho and Hsing (1996), and Koul and Surgailis (2002). A similar problem for moving-average

random fields in Z
ν , ν > 1 was investigated in Doukhan, Lang, and Surgailis (2002). In

particular, in this last paper it was shown, under some conditions, that

Dn(θ) :=
nν/2−dDn√
c(1)‖f0‖∞

→D |Z|.(1.6)

Let ĉ(1), d̂ be consistent and log(n) consistent estimators of c(1) and d, under H0, re-

spectively, and set θ̂ := (ĉ(1), d̂). Let zα be 100(1− α)th percentile of N (0, 1) distribution.

From (1.6), we readily obtain that the test that rejects H0 whenever Dn(θ̂) ≥ zα/2, is of the

asymptotic size α.

Now consider the problem of fitting F0 to F up to an unknown location parameter. In

other words now we observe Yt’s from the model Yt = µ + Xt, for some µ ∈ R, and the

problem of interest is to test

H0ℓoc : F (x) = F0(x− µ), ∀ x ∈ R, for some µ ∈ R, vs.

H1,ℓoc : H0ℓoc is not true.
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Let F̄n be the empirical d.f. based on Yt − Ȳn, t ∈ An, and D̄n := supx |F̄n(x) − F0(x)|.
It follows from Doukhan et al. (2002) that, similarly as in the case ν = 1 studied by Koul

and Surgailis (2010) and Koul et al. (2013), that nν/2−dD̄n → 0, in probability, and hence

nν/2−dD̄n cannot be used asymptotically to test for H0ℓoc.

We shall now describe the main results and the remaining contents of this paper. As

in Koul et al. (2013), in Section 2 we provide a class of weighted least squares estimators

Ỹn of µ for which the normalized weak limit of the spatial empirical process F̃n based on

residuals Yt − Ỹn, t ∈ An, has a non-degenerate Gaussian distribution under H0ℓoc (Theorem

2.1). Testing for H0ℓoc requires consistent estimates of the asymptotic variance of Ỹn and

the memory parameter d which are defined and studied in Sections 2 and 4, respectively;

see Lemma 2.2 and Proposition 4.1. The limit distributions of test statistics based on kernel

density estimators for testing for H0 and H0ℓoc are provided in Section 3. Examples of

random fields related to spatial fractional integration are discussed in Section 5. All proofs

are confined to Section 6. Note also that while our study of the residual spatial empirical

process relies on the results in Doukhan et al. (2002), we also improve some of the results

of this paper by providing a better approximation rate, see Lemma 6.1.

2 Asymptotics of the spatial residual empirical process

We shall first define an estimator Ỹn of µ. Let ϕ be a piece-wise continuously differentiable

function on [0, 1]ν and let

ϕnt := nν

∫
∏ν

j=1

(
(tj−1)/n,tj/n

] ϕ(u)du, t = (t1, · · · , tν) ∈ An

be its average value on cube
∏ν

j=1

(
(tj − 1)/n, tj/n

]
⊂ [0, 1]ν . Thus, ϕ̄n := n−ν

∑
t∈An

ϕnt =∫
[0,1]ν

ϕ(u)du =: ϕ̄, ∀n ≥ 1. Next, define

Ỹn := n−ν
∑

t∈An

Yt[1 + ϕnt] = µ
(
1 + ϕ̄) + X̄n + W̄n,(2.1)

where {Yt = Xt+µ, t ∈ Z
ν}, {Xt} is a zero-mean moving-average random field in (1.1), and

X̄n := n−ν
∑

t∈An

Xt, W̄n := n−ν
∑

t∈An

Xtϕnt.(2.2)

The following lemma establishes the asymptotic normality of X̄n and W̄n.

Lemma 2.1 Let ϕ(x), x ∈ [0, 1]ν be a piecewise continuously differentiable function and

suppose {Xt} satisfy (1.1) and (1.2). Then

nν/2−dX̄n →D

√
c(1)Z, nν/2−dW̄n →D

√
c(ϕ)Z,(2.3)
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where

c(ϕ) :=

∫

[0,1]ν

∫

[0,1]ν
ϕ(u)ϕ(v)R0

( u− v

|u− v|
) du dv

|u− v|ν−2d
.(2.4)

Note ϕ̄ = 0 implies Ỹn →p µ, in other words, Ỹn of (2.1) is a consistent estimator of µ. Also

note that when ϕ(u) ≥ −1, u ∈ [0, 1]ν and ϕ̄ = 0, Ỹn is a weighted least squares estimator

since it minimizes the weighted sum of squares: Ỹn = argminµ∈R
∑

t∈An
(Yt − µ)2[1 + ϕnt].

Next, we discuss the weak convergence of a suitably standardized residual empirical

process. Let

F̃n(x) := n−ν
∑

t∈An

I(Yt − Ỹn ≤ x) = F̂n(x+ δ̃n), δ̃n := Ỹn − µ,

D̃n(x) := F̃n(x)− F0(x), x ∈ R, D̃n := sup
x∈R

|D̃n(x)|.

Let ζ be a copy of ζ0. Assume that the innovation distribution satisfies

E|ζ |3 < C,(2.5)

|Eeiuζ | ≤ C(1 + |u|)−δ, for some 0 < C <∞, δ > 0, ∀ u ∈ R.(2.6)

Under (2.6), it is shown in Doukhan et al. (2002) that the d.f. F of X0 is infinitely differen-

tiable and for some universal positive constant C,

(f(x), |f ′(x)|, |f ′′(x)|, |f ′′′(x)|) ≤ C(1 + |x|)−2, ∀ x ∈ R,

where f ′′, f ′′′ are the second and third derivatives of f , respectively. This fact in turn clearly

implies f and these derivatives are square integrable.

Theorem 2.1 Suppose (1.1), (1.2), (2.5) and (2.6) hold. Let ϕ(x), x ∈ [0, 1]ν be a piece-

wise continuously differentiable function satisfying ϕ̄ = 0. Then, under H0ℓoc,

nν/2−d sup
x∈R

∣∣F̃n(x)− F0(x)− W̄nf0(x)
∣∣ = op(1),(2.7)

and

(2.8) nν/2−dD̃n →D

√
c(ϕ)‖f0‖∞|Z|,

with c(ϕ) as in (2.4).

Remark 2.1 Koul et al. (2013) used a slightly different version of Ỹn with ϕ( t
n
) in-

stead of ϕnt in (2.1). For that version, Theorem 2.1 requires the addition condition ϕ̄n =

n−ν
∑

t∈An
ϕ( t

n
) = o(nν/2−β) and therefore the definition in (2.1) is preferable.
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Remark 2.2 It follows from Theorem 2.1 that under H0ℓoc and ϕ̄ = 0, the test that rejects

H0ℓoc whenever (
√
c̃(ϕ)‖f0‖∞)−1nν/2−d̃ D̃n > zα/2 is asymptotically distribution free and

of the asymptotic level α, where c̃(ϕ), d̃ are, respectively, consistent and log(n)-consistent

estimators of c(ϕ), d, under H0ℓoc.

Remark 2.3 Consistent estimation of long memory intensity d for some fully observable

random field models was discussed in Boissy et al. (2005), Leonenko and Sakhno (2006),

Frias et al. (2008), Guo et al. (2009). However, most of these results do not apply to the

model in (1.1) - (1.2). In sec. 4 we introduce a simple variance-based estimator of d for

the spatial model in (1.1) and obtain its consistency together with convergence rates under

semi-parametric assumptions on the moving-average coefficients bt in (1.2).

Next, we introduce a consistent estimator of c(ϕ). Since

(2.9) Var(W̄n) =
1

n2ν

∑

t,s∈An

ϕntϕnsEXtXs

and Var(W̄n) ∼ c(ϕ)n2d−ν , see the proof of Lemma 2.1, a natural estimator of c(ϕ) is

(2.10) ĉ(ϕ) :=
1

qν+2d

∑

u,v∈Aq

ϕquϕqvγ̂n(u− v),

where q → ∞, q = 1, 2, · · · , q = o(n) is a bandwidth sequence and γ̂n(u) is the estimator of

the covariance γ(u) := EX0Xu:

(2.11) γ̂n(u) :=
1

nν

∑

t,s∈An:t−s=u

(Xt − X̄n)(Xs − X̄n).

Note that for ϕ(u) ≡ 1 and ν = 1, ĉ(1) is the well-known HAC estimator of the long-run

variance c(1) (see, e.g. Abadir, Distaso, and Giraitis (2009)). Note that

qν+2dnν ĉ(ϕ) =
∑

u,v∈Aq

ϕquϕqv

∑

t,s∈An:t−s=u−v

(Xt − X̄n)(Xs − X̄n)

=
∑

k∈An⊖Aq

( ∑

u∈Aq:k+u∈An

ϕqu(Xk+u − X̄n)
)2

,

where An ⊖ Aq := {k ∈ Z
ν : k = t− u, t ∈ An, u ∈ Aq}. Hence, ĉ(ϕ) ≥ 0.

Lemma 2.2 Let ϕ(x) and {Xt} satisfy the conditions of Lemma 2.1. Moreover, assume

that E|ζ0|3 <∞. Then, as n, q, n/q → ∞,

ĉ(ϕ) →p c(ϕ).(2.12)
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3 Asymptotics of density based test statistics

Following Koul et al. (2013), we shall now study asymptotic distribution of some tests based

on kernel density estimators in random field set-up. Towards this end, let K be a density

kernel on [−1, 1], h ≡ hn be bandwidth sequence, E0 denote the expectation under H0, and

define

f̂n(x) :=
1

nνh

∑

t∈An

K
(x−Xt

h

)
, f̃n(x) :=

1

nνh

∑

t∈An

K
(x− (Yt − Ỹn)

h

)
, x ∈ R,

Tn :=

∫ (
f̂n(x)− E0f̂n(x)

)2
dx, T̃n :=

∫
(f̃n(x)− E0f̂n(x))

2dx,

where Yt = Xt + µ and {Xt}, An, Ỹn are as in the previous section. Statistics Tn and T̃n are

the analogues of the Bickel-Rosenblatt test statistics useful in testing for H0 and H0ℓoc in

the current set up, see Koul et al. (2013). Throughout, for any square integrable function

g, ‖g‖2 :=
∫
R
g2(x)dx. The proof of the following proposition uses Lemma 6.1 below, and is

similar to that of Corollary 2.1 in Koul et al. (2013). We omit the details.

Proposition 3.1 Assume the conditions of Theorem 2.1 hold. Moreover, suppose that kernel

K is a symmetric and continuously differentiable probability density vanishing off (−1, 1) and

that the bandwidth satisfies hmin(n2d, nν−2d) → ∞. Then, the following hold.

(i) Suppose µ = 0, ϕ(x) ≡ −1, and H0 holds. Then

nν−2dTn →D κ2(1)Z2, κ2(1) := c(1)‖f ′
0‖2.

(ii) Suppose ϕ̄ = 0 and H0ℓoc holds. Then

nν−2dT̃n →D κ2(ϕ)Z2, κ2(ϕ) := c(ϕ)‖f ′
0‖2.

Let 0 < α < 1 and kα be the (1−α)100th percentile of the χ2
1 distribution. From the above

proposition it follows that the test that rejects H0 whenever (ĉ(1)‖f ′
0‖2)−1nν−2d̂Tn > kα, has

the asymptotic size α. Similarly, the test that rejects H0ℓoc, whenever n
ν−2d̃(T̃n/c̃(ϕ)‖f ′

0‖2) >
kα, has the asymptotic size α. Here, ĉ(ϕ), d̂, c̃(ϕ), d̃ are as before.

As in the case of Theorem 2.1, for ν = 1 the above result, including the condition on the

bandwidth, agrees with Koul et al. (2013). The proof of the consistency of the tests based

on Tn and T̃n is analogous as in the above mentioned paper for the case of ν = 1.

4 A variance-based estimator of d

Let ĉ(1; q) ≡ ĉ(1) denote the estimator of the long-run variance in (2.10) corresponding to

ϕ ≡ 1,

(4.1) Ĉ(q) := qν+2dĉ(1; q) =
∑

u,v∈Aq

γ̂n(u− v),
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and define

(4.2) d̂ :=
1

2

{
1

log 2
log

(Ĉ(2q)
Ĉ(q)

)
− ν

}
, q = 1, 2, · · · , q = o(n).

The above estimator of d is motivated by the fact that under the assumptions of Lemma 2.2

and (2.12),

Ĉ(2q)

Ĉ(q)
=

(2q)ν+2dĉ(1; 2q)

qν+2dĉ(1; q)
→p 2ν+2d

as n, q, n/q → ∞. Hence it immediately follows d̂ →p d, or weak consistency of the estimator

(4.2) under the premisses of Lemma 2.2.

Next, we investigate the convergence rate of d̂. Define V (q) := EĈ(q).

Proposition 4.1 Assume the following conditions, as n, q, n/q all tend to infinity:

There exists sequences of real numbers A(n, q) → ∞ and B(n, q) → ∞, such that

B(n, q)
( V (2q)

2ν+2dV (q)
− 1

)
→ 1,(4.3)

A(n, q)
(Ĉ(q)
V (q)

− 1
)

= Op(1).(4.4)

Then

d̂− d =
1

2(log 2)B(n, q)
+Op

(
A(n, q)−1

)
+ o

(
B(n, q)−1

)
.(4.5)

Proposition 4.1 does not require stationarity or any assumptions about {Xt} and basically

uses the identity (6.14) only. In order to apply Proposition 4.1 to concrete situations, we

need to separately discuss the convergences (4.3) and (4.4).

Proposition 4.2 Assume that (1.3) is strengthened to

(4.6) EXtX0 = R0(t/|t|)|t|−(ν−2d)
(
1 + o(|t|−λ)

)
, |t| → ∞,

where R0(x), x ∈ Sν−1 is a Lipschitz function and 0 ≤ λ < 1. Then (4.3) holds with

B(n, q) → ∞ such that

(4.7) B(n, q)
{
o(q−λ) + (q/n)ν−2d

}
→ 0.

Proposition 4.3 Let {Xt} satisfy (1.1)-(1.2) and E|ζ0|2p < ∞ for some 1 < p ≤ 2. Then

(4.4) holds with

(4.8) A(n, q) = q((1/p)−1)ν + (n/q)(ν/2)∧(ν−2d)/ log1/2(n/q) → ∞.
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From (4.5), (4.7), (4.8) a convergence rate d̂ − d = Op(n
−ǫ) with some ǫ > 0 can be

derived. E.q., assume E|ζ0|4 < ∞, or p = 2 in Proposition 4.3. Choose q = na with

0 < a < 1 so that the exponents of q and n/q in (4.7) and (4.8) agree. This leads to the

convergence rate d̂− d = Op(n
−ǫ) for the estimator in (4.2) with

0 < ǫ < min
( λ(ν − 2d)

λ+ ν − 2d
,

2ν[(ν/2) ∧ (ν − 2d)]

2ν + [(ν/2) ∧ (ν − 2d)]

)

where ǫ is arbitrarily close to the upper bound.

Condition (4.6) of Proposition 4.2 can be specified in terms of the moving-average coef-

ficients, see below.

Proposition 4.4 Let {Xt, t ∈ Z
ν} be a moving-average field in (1.1) with coefficients

(4.9) bt =
(
B0(t/|t|) + o(|t|−κ)

)
|t|−(ν−d), t ∈ Z

ν , |t| → ∞,

where 0 ≤ κ < d, 0 < d < ν/2 and where B0(x), x ∈ Sν−1 is a nonnegative Lipschitz function

on Sν−1 not identically zero B0(x) 6≡ 0. Then EXtX0 satisfies (4.6) with

(4.10) R0(x) :=

∫

Rν

B0(y/|y|)B0((x+ y)/|x+ y|)|y|−(ν−d)|x+ y|−(ν−d)dy

a Lipschitz function on Sν−1, and any λ ≥ 0 satisfying

(4.11) λ < d ∧ 1 ∧ κ.

5 Fractionally integrated random fields

Let ν = 2 and L1Xt,s = Xt−1,s, L2Xt,s = Xt,s−1, (t, s) ∈ Z
2 be backward shift operators on

Z
2. Consider a stationary fractionally integrated random field

(5.1) (1− pL1 − qL2)
dXt,s = ζt,s,

where {ζt,s, (t, s) ∈ Z
2} are standard i.i.d. r.v.’s, p, q ≥ 0, p+q = 1 are parameters, 0 < d < 1

is the order of fractional integration, and (1− z)d =
∑∞

j=0 ψj(d)z
j , ψj(d) := Γ(j − d)/Γ(j +

1)Γ(−d). More explicitly,

(1− pL1 − qL2)
dXt,s =

∞∑

j=0

ψj(d)

j∑

k=0

(
j

k

)
pkqj−kLk

1L
j−k
2 Xt,s

=
∑

u,v≥0

au,vXt−u,s−v, au,v := ψu+v(d)bin(u, u+ v; p)

and where bin(k, j; p) :=
(
j
k

)
pkqj−k, 0 ≤ k ≤ j are binomial probabilities. Note

∑
u,v≥0 |cu,v| =∑∞

j=0 |ψj(d)| < ∞, d > 0 and therefore the l.h.s. of (5.1) is well-defined for any stationary

9



random field {Xt,s} with E|X0,0| < ∞. A stationary solution of (5.1) with zero-mean and

finite variance can be defined as a moving-average random field:

(5.2) Xt,s = (1− pL1 − qL2)
−dζt,s =

∑

u,v≥0

bu,vζt−u,s−v,

where bu,v := ψu+v(−d) bin(u, u + v; p). The random field in (5.2) is well-defined for any

0 < d < 3/4 since

∑

u,v≥0

b2u,v :=

∞∑

j=0

ψ2
j (−d)

j∑

k=0

(bin(k, j; p))2 ≤
∞∑

j=0

ψ2
j (−d) max

0≤k≤j
bin(k, j; p)

≤ C

∞∑

j=0

j
2(d−1)
+ j

−1/2
+ < ∞, 0 < d < 3/4.(5.3)

It easily follows from the Moivre-Laplace theorem (Feller, 1966, ch.7, §2, Thm.1) that the

result in (5.3) cannot be improved, in the sense that for any d ≥ 3/4

∑

u,v≥0

b2u,v ≥
∞∑

j=0

ψ2
j (−d)

∑

0≤k≤j:|k−pj|≤c/
√
j

(bin(k, j; p))2 ≥ c
∑

j≥j0

j2(d−1)j−1/2 = ∞,

where c > 0, j0 > 0 are some constants. The moving average coefficients bu,v in (5.2) do

not satisfy the assumption (1.2) since they are very much “concentrated” along the line

uq−vp = 0 and exponentially decay if u, v → ∞ so that |uq−vp| > c > 0. The random field

in (5.2) exhibits strongly anisotropic long memory behavior different from the random fields

in (1.1)-(1.2). See Puplinskaitė and Surgailis (2012). Obviously, the results in the previous

sections do not apply to (5.2).

Assume now that p ∈ [0, 1] is random and has a bounded probability density ℓ(p) on

[0, 1]. Consider a moving-average random field

(5.4) X̃t,s =
∑

u,v≥0

b̃u,vζt−u,s−v, (t, s) ∈ Z
2,

where

(5.5) b̃u,v := Ebu,v = ψu+v(−d)
(
u+ v

u

)∫ 1

0

pu(1− p)vℓ(p)dp.

It easily follows that

b̃u,v ≤ Cψu+v(−d)
(
u+ v

u

)∫ 1

0

pu(1− p)vdp

= Cψu+v(−d)
(
u+ v

u

)
B(u+ 1, v + 1) = Cψu+v(−d)(u+ v)−1
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and therefore

∑

u,v≥0

b̃2u,v ≤ C

∞∑

j=0

ψ2
j (−d)(j + 1)−1 < ∞, for any 0 < d < 1.(5.6)

The random field in (5.4) is of interest since it arises by aggregating random-coefficient

autoregressive random fields with common innovations following Granger’s (1980) contempo-

raneous aggregation scheme, as explained below. Consider a nearest-neighbor autoregressive

random field

(5.7) (1− a(pL1 + qL2))Yt,s = ζt,s, (t, s) ∈ Z
2,

where a ∈ [0, 1), p ∈ [0, 1], q = 1−p are random coefficients, a is independent of p and having

a beta distribution with density

(5.8) φ(x) := B(d, 1− d)−1xd−1(1− x)−d, 0 < x < 1, 0 < d < 1.

Let (ai, pi, qi = 1− pi), i = 1, · · · , N be independent copies of (a, p, q = 1− p) and

(5.9) Y
(i)
t,s = (1− ai(piL1 + qiL2))

−1ζt,s =

∞∑

j=0

aji (piL1 + qiL2)
jζt,s

be solution of (5.7) with (a, p, q) replaced by (ai, bi, qi). The limit aggregated random field

is defined as the limit in probability: Yt,s := limN→∞N−1
∑N

i=1 Y
(i)
t,s . It easily follows by the

law of large numbers that

(5.10) Yt,s =

∞∑

j=0

EajE(pL1 + qL2)
jζt,s =

∑

u,v≥0

Eau+vEbin(u, u+ v; p)ζt−u,s−v

In the case of beta density in (5.8), Eaj = Γ(j + d)/Γ(j + 1)Γ(d) = ψj(−d) and therefore

the moving average coefficients Eau+vEbin(u, u+ v; p) in (5.10) coincide with b̃u,v of (5.5),

implying {Yt,s} = {X̃t,s}.
The following proposition shows that under some regularity conditions on the density ℓ of

p ∈ [0, 1], the random field in (5.4) belongs to the class of random fields (1.1) discussed in this

paper. Let S2 := {(u, v) ∈ R
2 : |(u, v)| =

√
u2 + v2 = 1}, S+

2 := {(u, v) ∈ S2 : u ≥ 0, v ≥ 0}.

Proposition 5.1 Assume that ℓ(x), x ∈ [0, 1] is a continuous function with support in (0, 1).

Then

b̃u,v ∼ 1

Γ(d)
ℓ(

u

u+ v
)

1

(u+ v)2−d
, u+ v → ∞.(5.11)

In particular, b̃u,v in (5.5) satisfy (1.2) with

B0(u, v) :=





1
Γ(d)

ℓ( u
u+v

) 1
(u+v)2−d , (u, v) ∈ S+

2 ,

0, (u, v) ∈ S2 \ S+
2 .
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Remark 5.1 Boissy et al. (2005), Guo et al. (2009) discuss fractionally integrated random

fields satisfying

(5.12) (1− L1)
d1(1− L2)

d2Yt,s = ζt,s, (t, s) ∈ Z
2

with possibly different parameters |di| < 1/2, i = 1, 2. We note that (5.12) form a dis-

tinct class from (1.1) - (1.2) and also from (5.1). Extension of Theorem 2.1 to fractionally

integrated spatial models in (5.12) and (5.1) remains open.

6 Proofs

Proof of Lemma 2.1. Since X̄n is a particular case of W̄n, it suffices to consider W̄n only.

From (1.3), (2.9) and the dominated convergence theorem it easily follows Var(nν/2−dW̄n) →
c(ϕ) = E(

√
c(ϕ)Z)2. The asymptotic normality of W̄n can be established following the

scheme of discrete stochastic integrals, see e.g. Surgailis (1982), Koul and Surgailis (2002,

Lemma 2.4 (iii)), Giraitis et al. (2012, Prop.14.3.1). Details are omitted for the sake of

brevity.

Proof of Lemma 2.2. We follow the argument in Lavancier, Philippe, and Surgailis

(2010, proof of Prop. 4.1) in the case ν = 1. Write ĉ(ϕ) = ĉ1(ϕ) + ĉ2(ϕ), ĉi(ϕ) :=

q−ν−2d
∑

t,s∈Aq
ϕqtϕqsγ̂ni(t− s), i = 1, 2, where

(6.1) γ̂n1(t− s) :=
1

nν

∑

u,v∈An:u−v=t−s

XuXv

is the empirical covariance from noncentered observations, and γ̂n2(t − s) := γ̂n(t − s) −
γ̂n1(t− s). Then (2.12) follows from

ĉ1(ϕ) →p c(ϕ), ĉ2(ϕ) = op(1).(6.2)

To prove the first relation of (6.2), write ĉ1(ϕ) =
∑3

i=1 ki(ϕ), where k1(ϕ) is obtained by

replacing XuXv in (6.1) by EXuXv = EXtXs = γ(t− s), viz.,

k1(ϕ) := q−ν−2d
∑

t,s∈Aq

ϕqtϕqsγ(t− s)

=
1

q2ν

∑

t,s∈Aq

ϕqtϕqsR0

( t
q
− s

q

| t
q
− s

q
|

)
1

| t
q
− s

q
|ν−2d

→ c(ϕ)(6.3)

as q → ∞. Terms ki(ϕ), i = 2, 3 correspond to the decomposition XuXv − EXuXv =∑
w∈Zν bu+wbv+wηw+

∑
w1,w2∈Zν ,w1 6=w2

bu+w1
bv+w2

ζw1
ζw2

of XuXv in (6.1) with ηw := ζ2w−Eζ2w,
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yielding

k2(ϕ) := q−ν−2d
∑

w∈Zν

ηw
∑

t,s∈Aq

ϕqtϕqs
1

nν

∑

u,v∈An:u−v=t−s

bu+wbv+w,(6.4)

k3(ϕ) := q−ν−2d
∑

w1 6=w2

ζw1
ζw2

∑

t,s∈Aq

ϕqtϕqs
1

nν

∑

u,v∈An:u−v=t−s

bu+w1
bv+w2

.

To estimate k2(ϕ), we use the fact that the ηu’s are i.i.d.r.v.’s, the well-known inequality

E|∑i ξi|p ≤ 2
∑

iE|ξi|p for independent zero mean random variables ξi with E|ξi|p < ∞
and 1 ≤ p ≤ 2 (see, e.g., Giraitis et al., 2012, Lemma 2.5.2), the fact E|ηs|p = C < ∞ for

1 < p ≤ 3/2 due to E|ζs|3 <∞, and the Minkowski inequality. Using these facts, we obtain

E|k2(ϕ)|p ≤ Cq−pν−2pdn−νp
∑

w∈Zν

( ∑

t,s∈Aq

∑

u,v∈An:u−v=t−s

|bu+wbv+w|
)p

≤ Cq−pν−2pdn−νp
( ∑

t,s∈Aq

∑

u,v∈An:u−v=t−s

( ∑

w∈Zν

|bu+wbv+w|p
)1/p)p

≤ Cq−pν−2pdn−νp
( ∑

t,s∈Aq

∑

u,v∈An:u−v=t−s

( ∑

w∈Zν

|u+ w|−p(ν−d)
+ |v + w|−p(ν−d)

+

)1/p)p

≤ Cq−pν−2pdn−νp
( ∑

t,s∈Aq

∑

u,v∈An:u−v=t−s

(
|u− v|ν−2p(ν−d)

+

)1/p)p

≤ Cq−pν−2pd
( ∑

t,s∈Aq

|t− s|(ν/p)−2(ν−d)
+

)p

≤ Cq−pν−2pd
(
q2ν+(ν/p)−2(ν−d)

)p
= Cq−(p−1)ν → 0,(6.5)

since p > 1. Finally, using the fact that for u1 6= u2, the r.v.s ζu1
ζu2

have zero mean, finite

variance and are mutually uncorrelated, we obtain

E|k3(ϕ)|2 ≤ Cq−2ν−4dn−2ν
∑

w1,w2∈Zν

( ∑

t,s∈Aq

∑

u∈An

bu+w1
bu−t+s+w2

)2

≤ Cq−2ν−4dn−2ν
∑

t,s,t′,s′∈Aq

∑

u,u′∈An

∑

w1,w2

|bu+w1
bu−t+s+w2

bu′+w1
bu′−t′+s′+w2

|

≤ Cq−2ν−4dn−2ν
∑

t,s,t′,s′∈Aq

∑

u,u′∈An

|u− u′|2d−ν
+ |u− u′ + s− s′ − t+ t′|2d−ν

+

≤ Cqν−4dn−ν
∑

|u|<n

|u|2d−ν
+

∑

|t|<2q

|u+ t|2d−ν
+ ≤ C(J1 + J2),(6.6)
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where

J1 := qν−4dn−ν
∑

|u|<4q

|u|2d−ν
+

∑

|t|<6q

|t|2d−ν
+

≤ Cqν−4dn−νq4d = O((q/n)ν) = o(1),

J2 := Cqν−4d(q/n)ν
∑

4q≤|u|<n

|u|4d−2ν ≤ Cqν−4d(q/n)ν





n4d−ν , 2ν − 4d < ν

q4d−ν , 2ν − 4d > ν

log(n/q), 2ν − 4d = ν

and so J2 = o(1) as q, n, n/q → ∞ in all three cases (in the last case where 2ν − 4d = ν,

this follows from the fact that x → 0 entails xν log(1/x) → 0). Clearly, (6.3)-(6.6) prove

the first relation in (6.2).

It remains to show the second relation in (6.2). It follows from

(6.7) q−2d
∑

|t|≤q

E|γ̂n2(t)| = o(1).

Using the definition of γ̂n2(t) = γ̂n(t)− γ̂n1(t), the Cauchy-Schwarz inequality, and (1.5), we

obtain

(E|γ̂n(t)− γ̂n1(t)|)2

≤ EX̄2
nE

(
n−ν

∑

u,v∈An:u−v=t

Xv

)2

+ EX̄2
nE

(
n−ν

∑

u,v∈An:u−v=t

Xu

)2

+
(
EX̄2

n

)2

≤ Cn4d−2ν ,

with C independent of |t| < n/2. Hence, (6.7) reduces to (q/n)ν−2d = o(1) which is a

consequence of d < ν/2 and q/n→ 0. This proves (6.2) and completes the proof of Lemma

2.2.

Proofs of Theorem 2.1 and Proposition 3.1 rely on Lemma 6.1, below. It improves the

bound in Doukhan et al. (2002, Lemma 1.4) (DLS for brevity). For reader’s convenience, in

the rest of the paper we use the parametrization β := ν− d from DLS. Let us note although

(DLS, (1.5)) assume a more restrictive form of moving average coefficients bt (with term

o(1)) missing in (1.2), the proofs in DLS easily extend to bt in (1.2) since they rely on the

upper bound |bt| ≤ C|t|−(ν−d) only. Let

Ht(x) := I(Xt ≤ x)− F (x) + f(x)Xt, Ht(x, y) := Ht(y)−Ht(x), t ∈ Z
ν ,

g(x) := (1 + |x|)−3/2, x, y ∈ R.

We also need to define

a :=




4β − 2ν, ν/2 < β < 3ν/4,

2β − ν/2, 3ν/4 < β < ν,
(6.8)
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Lemma 6.1 For all t, t′ ∈ Z
ν, x, y, x′, y′,∈ R,

∣∣Cov
(
Ht(x, y), Ht′(x

′, y′)
)∣∣ ≤ C

( ∫ y

x

g(u)du

∫ y′

x′

g(v)dv
)1/2

|t− t′|−a
+ .(6.9)

Remark 6.1 Lemma 6.1 and its extensions play an important role in long memory inference,

see Giraitis et al. (2012, Chs. 10, 11). Note that in the case ν = 1 the exponent a in (6.9)

agrees with that given in Koul et al. (2013, (4.1)) or Giraitis et al. (2012, Lemma 10.2.5).

Lemma 6.1 extends the above mentioned works also in the case ν = 1 since it applies to

noncausal moving averages, in contrast to causal processes discussed in most of the long

memory literature.

Proof of Lemma 6.1. Using (DLS, (1.10)) and the notation from DLS, we have Ht(x, y) =∑
s�0 Ut,s(x, y) and hence

∣∣Cov
(
Ht(x, y), Ht′(x

′, y′)
)∣∣ ≤

∑

s,s′�0

∣∣Cov
(
Ut,s(x, y), Ut′,s′(x

′, y′)
)∣∣ ≤

3∑

i=1

Γt,t′,i,

where

Γt,t′,1 :=
∑

s,s′�0:t+s=t′+s′

∣∣Cov
(
Ut,s(x, y), Ut′,s′(x

′, y′)
)∣∣,

Γt,t′,2 :=
∑

s,s′�s1:t+s 6=t′+s′

∣∣Cov
(
Ut,s(x, y)− Ut,s;t′,s′(x, y), Ut′,s′(x

′, y′)− Ut′,s′;t,s(x
′, y′)

)∣∣,

Γt,t′,3 :=
∑

0�s,s′�s1:t+s 6=t′+s′

∣∣Cov
(
Ut,s(x, y)− Ut,s;t′,s′(x, y), Ut′,s′(x

′, y′)− Ut′,s′;t,s(x
′, y′)

)∣∣.

Terms Γt,t′,2 and Γt,t′,2 are evaluated exactly as in DLS. In particularly, from (DLS, (3.13),

(3.10)) we obtain

|Γt,t′,2| ≤
∑

s,s′�s1:t+s 6=t′+s′

E1/2
(
Ut,s(x, y)− Ut,s;t′,s′(x, y)

)2
E1/2

(
Ut′,s′(x

′, y′)− Ut′,s′;t,s(x
′, y′)

)2

≤ C(µ(x, y)µ(x′, y′))1/2
∑

s,s′∈Zν

|s|−β
+ |s′|−β

+ |t′ + s′ − t|−β
+ |t + s− t′|−β

+

≤ C(µ(x, y)µ(x′, y′))1/2|t− t′|2ν−4β
+ ,(6.10)

where µ(x, y) :=
∫ y

x
g(u)du is a finite measure on R. Also, (DLS, (3.14)) with δ = 1 extends

to possibly different intervals (x, y), (x′, y′), see also (DLS, (5.1)), yielding

|Γt,t′,3| ≤ C(µ(x, y)µ(x′, y′))1/2|t− t′|ν−3β
+ .(6.11)

Let us check that for any t, s ∈ Z
ν , x < y,

EU2
t,s(x, y) ≤ Cµ(x, y)|s|ν−4β

+ ,(6.12)
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which improves the exponent α := min(3β, 3β − ν/2) = 3β − ν/2 in the corresponding

bound (DLS, Lemma 3.3) due to β > ν/2. The proof of (6.12) follows the decomposition

Ut,s(x, y) =
∑3

i=1 Vi as in (DLS, p.888), where EV 2
1 ≤ Cµ(x, y)|bs|3 ≤ Cµ(x, y)|s|−3β

+ and

EV 2
3 ≤ Cµ(x, y)b2s|s|ν−2β

+ ≤ Cµ(x, y)|s|ν−4β
+ as in (DLS, (4.12), (4.15), (4.16)). However,

V3 = bsζt+s

∫ y

x
[f ′(z)−f ′(z−Yt,s)]dz is now estimated using (DLS, (4.4)) with γ = 3/2 which

leads to |V2| ≤ C|bsζt+s|µ(x, y)(|Yt+s|+ |Yt,s|3/2) and

EV 2
2 ≤ Cµ(x, y)b2s(E|Yt,s|2 + E|Yt,s|3) ≤ Cµ(x, y)|s|ν−4β

+ ,

using the fact that Yt,s =
∑

u≻s buζt+s is a sum of independent r.v.’s, hence E|Yt,s|p ≤
C
(∑

u≻s b
2
s(E|ζt+s|p)2/p

)p/2 ≤ C
(∑

u≻s b
2
s

)p/2 ≤ CBs for 2 ≤ p ≤ 3 by Rosenthal’s inequality

(see, e.g., Giraitis et al., 2012, Lemma 2.5.2), where Bs ≤ C|s|ν−2β
+ is estimated in (DLS,

(4.16)). This proves (6.12). Using (6.12) and the Cauchy-Schwarz inequality, term Γt,t′,1 can

be easily estimated as

|Γt,t′,1| ≤ C(µ(x, y)µ(x′, y′))1/2
∑

s∈Zd

|s|ν/2−2β
+ |t+ s− t′|ν/2−2β

+

≤ C(µ(x, y)µ(x′, y′))1/2|t− t′|−a
+(6.13)

with a given in (6.8). The statement of the lemma now follows from (6.10), (6.11), and

(6.13).

Proof of Theorem 2.1. To prove (2.7), write F̃n(x)−F0(x)−W̄nf0(x) = Un1(x)+Un2(x),

where

Un1(x) := F̂n(x+ δ̃n)− F0(x+ δ̃n) + f0(x+ δ̃n)X̄n,

Un2(x) := F0(x+ δ̃n)− F0(x)− f0(x+ δ̃n)X̄n − f0(x)W̄n, δ̃n := Ỹn − µ.

According to (DLS, Cor.1.2), ‖Un1‖∞ = op(n
ν/2−β). Next, by Taylor’s expansion, Un2(x) =

f0(x)δ̃n + op(δ̃n) − f0(x)X̄n − f0(x)W̄n = f0(x)µϕ̄ + op(δ̃n) = o(nν/2−β) uniformly in x ∈ R.

Recall β = ν−d. These facts and δ̃n = X̄n+ W̄n = Op(n
ν/2−β) entail (2.7), from which (2.8)

immediately follows.

Proof of Proposition 4.1. From definition (4.2) follows the immediate identity

d̂− d =
1

2 log 2
log

( Ĉ(2q)
V (2q)

V (q)

Ĉ(q)

V (2q)

2ν+2dV (q)

)
(6.14)

=
1

2 log 2

{
log

(
1 +

Ĉ(2q)− V (2q)

V (2q)

)
− log

(
1 +

Ĉ(q)− V (q)

V (q)

)

+ log
(
1 +

( V (2q)

2ν+2dV (q)
− 1

))}
.
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It is clear from (4.3) that log
(
1+

( V (2q)
2ν+2dV (q)

−1
))

= B(n, q)−1+o (B(n, q)−1). Therefore, (4.5)

follows from (6.14) and the fact log
(
1 + Ĉ(2q)−V (2q)

V (2q)

)
− log

(
1 + Ĉ(q)−V (q)

V (q)

)
= Op (A(n, q)

−1) ,

which is an easy consequence of (4.4). Proposition 4.1 is proved.

Proof of Proposition 4.2. We have V (q) =
∑

t,s∈Aq
Eγ̂n(u − v) =

∑3
i=0 Vi(q), where

V0(q) := c(1)qν+2d is the main term (which satisfies V0(2q)
2ν+2dV0(q)

− 1 = 0 by definition), and

V1(q) := qν+2d
{ 1

q2ν

∑

t,s∈Aq

R0

( t
q
− s

q

| t
q
− s

q
|
)

| t
q
− s

q
|ν−2d

− c(1)
}
,

V2(q) :=
∑

t,s∈Aq

(
EXtXs −

R0(t− s)

|t− s|ν−2d
+

)
,

V3(q) = Op(q
2νEX̄2

n) = Op(q
2νn2d−ν).(6.15)

are remainder terms. By Lipschitz continuity of R0 [(6.16) needs to be double checked

- the exponent may be incorrect!],

(6.16) V1(q) = O(qν+2d−1).

Assumption (4.6) implies

(6.17) V2(q) = o(qν+2d−λ).

From (6.15)-(6.17), we obtain

V (q) = c(1)qν+2d
(
1 +O(q−λ) +Op((q/n)

ν−2d)
)

and hence

V (2q)

2ν+2dV (q)
− 1 =

1 +O(q−λ) +Op((q/n)
ν−2d)

1 +O(q−λ) +Op((q/n)ν−2d)
− 1 = O(q−λ) +Op((q/n)

ν−2d),

or the statement of the proposition.

Proof of Proposition 4.3. We follow the proof of Lemma 2.2. With (4.1) in mind, write

ĉ(1; q) = q−ν−2d
∑

u,v∈Aq

γ̂n(u− v) = ĉ1(1; q) + ĉ2(1; q),

where ĉ1(1; q) := q−ν−2d
∑

u,v∈Aq
γ̂n1(u − v) and γ̂n1 are defined in (6.1). Then, similarly as

in the proof of Lemma 2.2, split ĉ1(1; q) =
∑3

i=1 ki(1; q), where k1(1; q) = q−ν−2dV (q) and

ki(1; q), i = 2, 3 are defined as in (6.4) with ϕqt = ϕqs ≡ 1. Obviously, the bounds (6.5) and

(6.6) apply, yielding

E|k2(1; q)|p = O(q(p−1)ν), E|k3(1; q)|2 = O((q/n)ν∧(2ν−4d) log(n/q)).
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From the proof of (6.7) we also have E|ĉ2(1; q)| ≤ C(q/n)ν−2d. Combining the above facts

yields

Ĉ(q)

V (q)
= 1 +Op(q

(1−(1/p))ν) +Op((q/n)
(ν/2)∧(ν−2d) log1/2(ν/q)) +Op((q/n)

ν−2d).

Proposition 4.3 is proved.

Proof of Proposition 4.4. Note first that R0(x) in (4.10) is strictly positive and con-

tinuous on Sν−1. Indeed, since B0(y) ≥ 0 and B0 6≡ 0, there exist w0 ∈ Sν−1, ǫ > 0

such that infw∈Uǫ(w0)B0(w) > ǫ, where Uǫ(w0) := {w ∈ Sν−1 : |w − w0| < ǫ}. Let

y = rw ∈ R
ν , r > 0, w ∈ Uǫ(w0). Then for any x ∈ Sν−1, limr→∞(x + rw)/|x + rw| =

limr→∞(x/r+w)/|x/r+w| = w ∈ Uǫ(w0) and the last convergence is uniform in w ∈ Uǫ(w0).

In particular, B0(y/|y|) > 0 and B0((x + y)/|x+ y|) > 0 for any y = rw ∈ R
ν , r > r0, w ∈

Uǫ(w0), where r0 > 0 is large enough. Therefore the integral R0(x) > 0.

Denote b0t := B0(t/|t|)|t|−(ν−d), b1t := bt − b0t . For t = x|t| ∈ Z
ν , x ∈ Sν−1, |t| > 0 consider

R|t|(x) := |t|ν−2dEXtX0 = |t|ν−2d
∑

s∈Zν

bsbt+s.

Since infx∈Sν−1
R0(x) > 0 (see above), (4.6) follows from

(6.18) |R|t|(x)−R0(x)| = o(|t|−λ), |t| → ∞.

We have R|t|(x) = R0
|t|(x) +R1

|t|(x), where

R0
|t|(x) := |t|ν−2d

∑

s∈Zν

b0sb
0
t−s

= |t|ν−2d
∑

s∈Zν

B0(s/|s|)B0((t− s)/|t− s|)|s|−(ν−d)|t− s|−(ν−d)

= |t|−ν
∑

y=s/|t|∈Rν ,s∈Zν

B0

( y
|y|

)
B0

( x− y

|x− y|
)
|y|−(ν−d)|x− y|−(ν−d),

with the convention B0(0/|0|)|0|−(ν−d) := b0. Let Fx(y) := B0(y/|y|)B0((x − y)/|x −
y|)|y|−(ν−d)|x− y|−(ν−d). Then

|R0
|t|(x)− R0(x)| ≤ C

|t|ν +

∫

|y|> 2ν
|t|

,|x−y|> 2ν
|t|

{
sup

z:|y−z|≤ ν
|t|

|Fx(y)− Fx(z)|
}
dy

Using | y
|y|− z

|z| | = |y−z
|y| +

z(|z|−|y|)
|y||z| | ≤ |y−z|

|y| + ||z|−|y||
|y| | ≤ 2 |y−z|

|y| and | 1
|y|ν−d− 1

|z|ν−d | ≤ C |y−z|
|y|1+ν−d (|y−

z| < |y|/2) together with the Lipschitz condition for B0 we obtain

∣∣B0(y/|y|)
|y|ν−d

− B0(z/|z|)
|z|ν−d

∣∣ ≤
∣∣B0(y/|y|)− B0(z/|z|)

|y|ν−d

∣∣+B0(z/|z|)
∣∣ 1

|y|ν−d
− 1

|z|ν−d

∣∣

≤ C
|y − z|
|y|1+ν−d

.(6.19)
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This implies

|Fx(y)− Fx(z)| ≤
∣∣B0(y/|y|)

|y|ν−d
− B0(z/|z|)

|z|ν−d

∣∣× B0((x− y)/|x− y|)
|x− y|ν−d

+
B0(z/|z|)
|z|ν−d

×
∣∣B0((x− y)/|x− y|)

|x− y|ν−d
− B0((x− z)/|x− z|)

|x− z|ν−d

∣∣

≤ C
|y − z|

|y|1+ν−d|x− y|ν−d
+ C

|y − z|
|y|ν−d|x− y|1+ν−d

and consequently

|R0
|t|(x)−R0(x)| ≤ C

|t|ν +
C

|t|
(∫

|y|> 2ν
|t|

dy

|y|1+ν−d|x− y|ν−d
+

∫

|x−y|> 2ν
|t|

dy

|y|ν−d|x− y|1+ν−d

)

≤ C

|t|ν +
C

|t|
(∫ 1

2ν
|t|

rν−1dr

r1+ν−d
+ 1

)

≤ C





|t|−d, 0 < d < 1,

|t|−1, d > 1,

|t|−1 log |t|, d = 1.

(6.20)

Next, with δ|t| = o(1)

|R1
|t|(x)| ≤ C|t|ν−2d

∑

s∈Zν

(
δ|s||s|−(ν−d+κ)

+ |t− s|−(ν−d)
+ + |s|−(ν−d)

+ δ|t−s||t− s|−(ν−d+κ)
+

)

≤ o(|t|−κ).(6.21)

Combining (6.20) and (6.21) we obtain (6.18), or relation (4.6) with λ as in (4.11).

Finally, let us prove that R0 in (4.10) is Lipschitz. Using the notation and the argument

in (6.19) we have that

|R0(x)− R0(w)| ≤
∫

Rν

B0(y/|y|)
|y|ν−d

∣∣B0((x+ y)/|x+ y|)
|x+ y|ν−d

− B0((w + y)/|w + y|)
|w + y|ν−d

∣∣dy

≤ C

∫

Rν

|x− w|
|y|ν−d|x+ y|ν−d

dy ≤ C|x− w|.

Proposition 4.4 is proved.

Proof of Proposition 5.1. Let j = u+ v and u/(u+ v) = k/j. Then

b̃u,v = ψj(−d)
∫ 1

0

bin(k, j; p)ℓ(p)dp.

We shall use the following version of the Moivre-Laplace theorem (Feller, 1966, ch.7, §2,
Thm.1): There exists a constant C such that when j → ∞ and k → ∞ vary in such a way

that

(6.22)
(k − pj)3

j2
→ 0,
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then
∣∣∣∣

bin(k, j; p)
1√

2πjp(1−p)
exp{− (k−jp)2

2jp(1−p)
}
− 1

∣∣∣∣ <
C

j
+
C|k − pj|3

j2
.(6.23)

Note that the constant C in (6.23) does not depend on p ∈ (ǫ, 1 − ǫ), ǫ > 0 separated

from 0 and 1. Next, for a small δ > 0, split Ebin(k, j; p) = Ebin(k, j; p)I(|k − pj|3/j2 ≤
δ) + Ebin(k, j; p)I(|k − pj|3/j2 > δ) =: β1(k, j) + β2(k, j). Using (6.23), we can write

β1(k, j) = γ1(k, j) + γ2(k, j), where

γ1(k, j) :=

∫

{|p−k/j|3≤δ/j}

1√
2πjp(1− p)

exp{− (k − jp)2

2jp(1− p)
}ℓ(p)dp

and

|γ2(k, j)| ≤ C(δ + j−1)

∫

{|p−k/j|3≤δ/j}

1√
2πjp(1− p)

exp{− (k − jp)2

2jp(1− p)
}ℓ(p)dp

≤ C(δ + j−1)
1√
2πjǫ

∫

R

exp{−(j/2)(p− k/j)2}dp

≤ C(δ + j−1)j−1 = o(1/j),(6.24)

where we used the facts that 1 ≥ p(1 − p) > ǫ on {p ∈ [0, 1] : ℓ(p) > 0} and that δ > 0 can

be chosen arbitrarily small. Next, using the continuity of ℓ(p) and 1/p(1 − p) we see that

γ1(k, j) = γ̃1(k, j)(1 + o(1)), j → ∞, where

γ̃1(k, j) :=
ℓ(k/j)√

2πj(k/j)(1− (k/j))

∫

{|p−k/j|3≤δ/j}
exp{− (k − jp)2

2(k/j)(1− (k/j))
}dp

=
ℓ(k/j)

j

(
1 + o(1)

)
.(6.25)

To estimate β2(k, j), we use Hoeffding’s inequality (Hoeffding, 1963), according to which

β2(k, j) ≤ sup
ǫ<p<1−ǫ

b(k, j; p)I(|k − pj|3/j2 > δ) ≤ 2e−2δ1/3j1/6 = o(1/j).(6.26)

Relations (6.24), (6.25), and (6.26) entail (5.11), hence the proposition.
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